1
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, farnesol, CAS Registry Number 4602-84-0. Food Chem Toxicol 2023; 182 Suppl 1:114229. [PMID: 38008279 DOI: 10.1016/j.fct.2023.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
2
|
Karabulut G, Barlas N. Endocrine adverse effects of mono(2-ethylhexyl) phthalate and monobutyl phthalate in male pubertal rats. Arh Hig Rada Toksikol 2022; 73:285-296. [PMID: 36607728 PMCID: PMC9985344 DOI: 10.2478/aiht-2022-73-3617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/01/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Considering that research of adverse effects of mono(2-ethylhexyl) phthalate (MEHP) and monobutyl phthalate (MBP), two key metabolites of the most common phthalates used as plasticisers in various daily-life products, has been scattered and limited, the aim of our study was to provide a more comprehensive analysis by focusing on major organ systems, including blood, liver, kidney, and pancreas in 66 male pubertal rats randomised into eleven groups of six. The animals were receiving either metabolite at doses of 25, 50, 100, 200, or 400 mg/kg bw a day by gavage for 28 days. The control group was receiving corn oil. At the end of the experiment, blood samples were collected for biochemical, haematological, and immunological analyses. Samples of kidney, liver, and pancreas were dissected for histopathological analyses. Exposure to either compound resulted in increased liver and decreased pancreas weight, especially at the highest doses. Exposed rats had increased ALT, AST, glucose, and triglyceride levels and decreased total protein and albumin levels. Both compounds increased MCV and decreased haemoglobin levels compared to control. Although they also lowered the insulin level, exposed rats had negative islet cell and insulin antibodies, same as control. Treatment-related histopathological changes included sinusoidal degeneration in the liver, glomerular degeneration in the kidney, and degeneration of pancreatic islets. Our findings document toxic outcomes of MEHP and MBP on endocrine organs in male pubertal rats but also suggest the need for additional studies to better understand the mechanisms behind adverse effects in chronic exposure.
Collapse
Affiliation(s)
- Gözde Karabulut
- Dumlupınar University Faculty of Science, Department of Biology, Kütahya, Turkey
| | - Nurhayat Barlas
- Hacettepe University Faculty of Science, Department of Biology, Ankara, Turkey
| |
Collapse
|
3
|
Pharmacokinetics and the Dermal Absorption of Bromochlorophene, a Cosmetic Preservative Ingredient, in Rats. TOXICS 2022; 10:toxics10060329. [PMID: 35736937 PMCID: PMC9229563 DOI: 10.3390/toxics10060329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023]
Abstract
The cosmetic industry has flourished in recent years. Accordingly, the safety of cosmetic ingredients is increasing. Bromochlorophene (BCP) is a commonly used cosmetic preservative. To evaluate the effects of BCP exposure, in vitro dermal absorption and in vivo pharmacokinetic (PK) studies were conducted using gel and cream formulations. The Franz diffusion cell system and rat dorsal skin were used for tests according to the Korea Ministry of Food and Drug Safety guidelines for in vitro skin absorption methods. After the dermal application (1.13 mg/cm2) of BCP in the gel and cream formulations, liquid chromatography–mass spectrometry (LC–MS/MS) was used to evaluate the amount of BCP that remained unabsorbed on the skin (WASH), and that was present in the receptor fluid (RF), stratum corneum (SC), and (epi)dermis (SKIN). The total dermal absorption rate of BCP was 7.42 ± 0.74% for the gel formulation and 1.5 ± 0.9% for the cream formulation. Total recovery in an in vitro dermal absorption study was 109.12 ± 8.79% and 105.43 ± 11.07% for the gel and cream formulations, respectively. In vivo PK and dermal absorption studies of BCP were performed following the Organization for Economic Cooperation and Development guidelines 417 and 427, respectively. When intravenous (i.v.) pharmacokinetics was performed, BCP was dissolved in glycerol formal and injected into the tail vein (n = 3) of the rats at doses of 1 and 0.2 mg/kg. Dermal PK parameters were estimated by the application of the gel and cream formulations (2.34 mg/kg of BCP as an active ingredient) to the dorsal skin of the rats. Intravenous and dermal PK parameters were analyzed using a non-compartmental method. The dermal bioavailability of BCP was determined as 12.20 ± 2.63% and 4.65 ± 0.60% for the gel and cream formulations, respectively. The representative dermal absorption of BCP was evaluated to be 12.20 ± 2.63% based on the results of the in vivo PK study.
Collapse
|
4
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
5
|
Pan W, Zeng D, Ding N, Luo K, Man YB, Zeng L, Zhang Q, Luo J, Kang Y. Percutaneous Penetration and Metabolism of Plasticizers by Skin Cells and Its Implication in Dermal Exposure to Plasticizers by Skin Wipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10181-10190. [PMID: 32678582 DOI: 10.1021/acs.est.0c02455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous studies focused on the human exposure to plasticizers via dermal contact; however, the percutaneous penetration of plasticizers was seldom considered in exposure assessment. In the present study, skin wipes of palms, back-of-hands, and forehead were collected from 114 participants (ages: 18-27). There was no significant difference between the levels of phthalates from palms and back-of-hand, while all phthalates collected from the forehead were significantly higher than those from palms and back-of-hand (p < 0.001); di(2-ethylhexyl)phthalate levels were substantially higher than other detected phthalates followed by di(n-butyl)phthalate and di(isobutyl)phthalate (DiBP), and for alternative plasticizers, bis-2-ethylhexyl terephthalate levels were substantially higher than acetyltributyl citrate and bis-2-ethylhexyladipate. Skin permeation and metabolism of phthalates was assessed using human skin equivalent models. The permeability coefficient (kp) values of phthalates were significantly negatively correlated with their log octanol-water partition coefficient (log Kow), while a significantly positive correlation was found between the log Kow and the cumulative amounts of phthalates in the cells. The proportion of phthalate intake via dermal exposure to skin wipes ranges from 1.3% (for dimethyl phthalate) to 8.6% (for DiBP) and suggests that dermal absorption is a significant route for adult phthalate exposure.
Collapse
Affiliation(s)
- Weijian Pan
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Chemistry, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Huang YW, Huang HH, Wu GX, Chang HR, Wu KL, Kuo SM. Antiaging and smoothness-improving properties of farnesol-based facial masks on rat skin exposed to ultraviolet B. J Cosmet Dermatol 2019; 19:540-552. [PMID: 31243886 DOI: 10.1111/jocd.13046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Farnesol is an acyclic sesquiterpene presents in various natural sources including fruits, vegetables, and herbs. In this study, we successfully prepared a farnesol-containing gel with ultraviolet B-screening and skin-repairing capabilities. Furthermore, the advantageous potential of farnesol-containing facial masks for UVB-caused sunburnt skin was evaluated. AIMS Thus, the objectives of this study are to design and prepare optimal facial masks possessing collagen production and smoothness-enhancing capabilities for the skin. METHODS A series of formulations consisting of hydroxypropyl methylcellulose, hyaluronan, and farnesol were used to prepare the facial masks. The effects of the facial masks on collagen production by skin fibroblasts in vitro were examined. The effects of the prepared masks on collagen synthesis, smoothness, and inflammation of the skin were further evaluated in vivo using two modes (mask administration interspersed with UVB exposure and mask administration after UVB exposure) of a rat model. RESULTS Facial masks containing both 0.3 and 0.8 mM farnesol improved skin smoothness and enhanced collagen content and arrangement in the skin of rats with mask administration interspersed with and after UVB exposure. The masks containing 0.8 mM farnesol exerted the greatest effects on collagen production/arrangement and smoothness improvement in vivo model. Histopathologically observed inflammation was alleviated, and interleukin (IL)-6 was decreased in the 0.8 mM farnesol-containing facial mask-covered skin compared with that without facial masks. CONCLUSIONS The farnesol-containing facial masks prepared in this study may have collagen production-increasing, smoothness-improving, and anti-inflammatory properties for UVB-caused sunburn; thus, farnesol is potentially a beneficial component in facial masks.
Collapse
Affiliation(s)
- Yu Wen Huang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Guan Xuan Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Huoy Rou Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Kun Lieh Wu
- Bioptik Technology, INC, Miaoli County, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Park CJ, Barakat R, Ulanov A, Li Z, Lin PC, Chiu K, Zhou S, Perez P, Lee J, Flaws J, Ko CJ. Sanitary pads and diapers contain higher phthalate contents than those in common commercial plastic products. Reprod Toxicol 2019; 84:114-121. [PMID: 30659930 DOI: 10.1016/j.reprotox.2019.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/23/2023]
Abstract
Sanitary pads and diapers are made of synthetic plastic materials that can potentially be released while being used. This study measured the amounts of volatile organic compounds (VOCs) (methylene chloride, toluene, and xylene) and phthalates (DBP, DEHP, DEP, and BBP) contained in sanitary pads and diapers. In sanitary pads, 5,900- and 130-fold differences of VOC and phthalate concentrations were seen among the brands. In the diapers, 3- and 63-fold differences of VOC and phthalate concentrations were detected among the brands. VOC concentrations from the sanitary pads and diapers were similar to that of the residential air. However, phthalate concentrations of sanitary pads and diapers were significantly higher than those found in common commercial plastic products. As sanitary pads and diapers are in direct contact with external genitalia for an extended period, there is a probability that a considerable amount of VOCs or phthalates could be absorbed into the reproductive system.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA; Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Benha, 13518, Egypt
| | - Alexander Ulanov
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Zhong Li
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Karen Chiu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Sherry Zhou
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Pablo Perez
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jungyeon Lee
- TV Chosun Broadcasting, 33, Sejong-daero 21-gil, Jung-gu, Seoul, 04519, Republic of Korea
| | - Jodi Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
8
|
Lee JD, Kim JY, Jang HJ, Lee BM, Kim KB. Percutaneous permeability of 1-phenoxy-2-propanol, a preservative in cosmetics. Regul Toxicol Pharmacol 2019; 103:56-62. [PMID: 30611821 DOI: 10.1016/j.yrtph.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
1-Phenoxy-2-propanol (PP) is used as a preservative in cosmetics. PP is currently permitted to be used to up to 1% in cosmetic formulations in Korea and Europe. For risk assessment, percutaneous absorption is a crucial factor, but dermal absorption of PP has not yet been reported. In this study, Franz diffusion method was used to determine the percutaneous penetration of PP using the dorsal skin of rats. Each formulation of shampoo or cream, 113.6 mg/cm2, was applied to a donor compartment of Franz diffusion cell for 24 h. Receptor fluid was collected at 0, 1, 2, 4, 8, 12, and 24 h following dermal application. Remaining formulation was removed with a cotton swab after last sampling. Using tape stripping method, stratum corneum was removed. PP in epidermis and dermis was extracted in PBS for 24 h. The concentration of PP from the swab, stratum corneum, and epidermis and dermis samples was determined using high performance liquid chromatography. Total percutaneous absorption rates of PP for shampoo and cream were 50.0 ± 6.0% and 33.0 ± 3.2%, respectively. In vitro skin permeability was calculated as 1,377.2 ± 240.1 mg/cm2 for shampoo and 1,038.0 ± 72.2 mg/cm2 for cream for 24 h.
Collapse
Affiliation(s)
- Jung Dae Lee
- College of Pharmacy, Sungkyunkwan University, Sebu-ro 2066, Changan-Ku, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Ji-Young Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam, 31116, Republic of Korea
| | - Hyun Jun Jang
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Byung-Mu Lee
- College of Pharmacy, Sungkyunkwan University, Sebu-ro 2066, Changan-Ku, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam, 31116, Republic of Korea.
| |
Collapse
|
9
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Dagli ML, Date M, Dekant W, Deodhar C, Francis M, Fryer AD, Jones L, Joshi K, La Cava S, Lapczynski A, Liebler DC, O'Brien D, Patel A, Penning TM, Ritacco G, Romine J, Sadekar N, Salvito D, Schultz TW, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, trans-2-Hexenol, CAS Registry Number 928-95-0. Food Chem Toxicol 2018; 118 Suppl 1:S49-S58. [PMID: 29932994 DOI: 10.1016/j.fct.2018.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member RIFM Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member RIFM Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP, 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Francis
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - D O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Patel
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member RIFM Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member RIFM Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - S Tsang
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
10
|
Evaluation of sesquiterpenes as permeation enhancers for a model macromolecule across human skin in vitro. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Liu KS, Huang TH, Aljuffali IA, Chen EL, Wang JJ, Fang JY. Exploring the structure-permeation relationship of topical tricyclic antidepressants used for skin analgesia. Int J Pharm 2017; 523:386-397. [DOI: 10.1016/j.ijpharm.2017.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/06/2017] [Accepted: 03/19/2017] [Indexed: 12/17/2022]
|
12
|
Topically applied mesoridazine exhibits the strongest cutaneous analgesia and minimized skin disruption among tricyclic antidepressants: The skin absorption assessment. Eur J Pharm Biopharm 2016; 105:59-68. [DOI: 10.1016/j.ejpb.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 01/16/2023]
|
13
|
Lin CF, Hung CF, Aljuffali IA, Huang YL, Liao WC, Fang JY. Methylation and Esterification of Magnolol for Ameliorating Cutaneous Targeting and Therapeutic Index by Topical Application. Pharm Res 2016; 33:2152-67. [PMID: 27233503 DOI: 10.1007/s11095-016-1953-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE As a continuing effort to elucidate the impact of structure modification upon cutaneous absorption behavior, we attempted to assess the skin permeation of magnolol by methylation and acetylation. METHODS Diacetylmagnolol and 2-O-acetyl-2'-O-methylmagnolol (AMM) were designed and synthesized in this study. The anti-inflammatory activity against stimulated neutrophils and keratinocytes was evaluated to check the bioactivity of the analogues. In vitro skin absorption was investigated using nude mouse and pig skin models at both equimolar and saturated doses. RESULTS Magnolol generally showed the strongest anti-inflammatory potential, followed by diacetylmagnolol and AMM. The antibacterial activity was observed for magnolol and diacetylmagnolol but not AMM. Diacetylmagnolol and AMM could be partly hydrolyzed to magnolol and 2-O-methylmagnolol after entering the skin. The hydrolysis rate of diacetylmagnolol was faster than that of AMM. The lipophilicity played a crucial role in cutaneous absorption, with AMM exhibiting the highest skin deposition. AMM accumulation within nude mouse skin was about 2.5-fold greater than that of magnolol and diacetylmagnolol. On the other hand, the transdermal penetration across the skin was lessened by methylation and esterification. This led to a superior skin targeting of AMM. Although the pharmacological activity of AMM was low, the high skin uptake and bioconversion into 2-O-methylmagnolol in the skin contributed to a greater therapeutic index (TI, skin deposition x inflammatory inhibition percentage) compared to the others. The accumulation of AMM in the hair follicles was 77.12 nmol/cm(2), which was significantly greater than that with magnolol (44.84 nmol/cm(2)) and diacetylmagnolol (26.96 nmol/cm(2)). The synthetic analogues were tolerable to the nude mouse skin. CONCLUSIONS Based on the experimental results, we may suggest topically applied AMM as a potent and safe candidate for the treatment of cutaneous inflammation.
Collapse
Affiliation(s)
- Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yu-Ling Huang
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Wei-Chun Liao
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
14
|
What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure. Reprod Toxicol 2015; 58:252-81. [DOI: 10.1016/j.reprotox.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 08/31/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023]
|
15
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Miyachi Y, Politano VT, Ritacco G, Salvito D, Shen J, Schultz TW, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, (2E,6Z)-Nona-2,6-dien-1-ol, CAS registry number 28069-72-9. Food Chem Toxicol 2015; 84 Suppl:S57-65. [PMID: 26140952 DOI: 10.1016/j.fct.2015.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 11/26/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, University of Nebraska Lincoln, 230 Whittier Research Center, Lincoln, NE 68583-0857, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | - Y Miyachi
- Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996- 4500, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| |
Collapse
|
16
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Miyachi Y, Politano VT, Ritacco G, Salvito D, Shen J, Schultz TW, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, (Z)-2-penten-1-ol, CAS Registry Number 1576-95-0. Food Chem Toxicol 2015; 84 Suppl:S66-75. [PMID: 26140953 DOI: 10.1016/j.fct.2015.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, University of Nebraska Lincoln, 230 Whittier Research Center, Lincoln, NE 68583-0857, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | - Y Miyachi
- Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996-4500, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| |
Collapse
|
17
|
Klimová Z, Hojerová J, Beránková M. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens--In vitro study mimicking real-life consumer habits. Food Chem Toxicol 2015; 83:237-50. [PMID: 26151237 DOI: 10.1016/j.fct.2015.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
Abstract
Due to health concerns about safety, three UV-filters (Benzophenone-3, BP3, 10%; Ethylhexyl Methoxycinnamate, EHMC, 10%; Butyl Methoxydibenzoylmethane, BMDBM; 5%) were examined in vitro for absorption on full-thickness pig-ear skin, mimicking human in-use conditions. Kinetic profiles confirmed the rapid permeation of BP3; after the first hour of skin (frozen-stored) exposure to 2 mg/cm(2) (W/O sunscreen; recommended but unrealistic amount), about 0.5% of the applied dose passed into the receptor fluid. The absorption rate of filters was higher from W/O than from O/W emulsions. The fresh/frozen-stored skin permeability coefficient (0.83-0.54) for each UV filter was taken into account. Systemic Exposure Dosage of BP3, EHMC, BMDBM for humans as a consequence of (i) whole-body and (ii) face treatment with 0.5 mg/cm(2) of W/O sunscreen for 6-h skin exposure followed by washing and subsequent 18-h permeation (a realistic scenario) were estimated to be (i) 4744, 1032 and 1036 μg/kg-bw/day, and (ii) 153, 33 and 34 μg/kg-bw/day, respectively. From Margin of Safety for BP3, EHMC and BMDBM (i) 42, 485 and 192 as well as (ii) 1307; 15,151 and 5882, respectively, only the value of 42 (<100) for BP3 indicated a possible health risk. Escalation of a phobia towards all organic UV filters is undesirable.
Collapse
Affiliation(s)
- Z Klimová
- Laboratories of Cosmetology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovak Republic.
| | - J Hojerová
- Laboratories of Cosmetology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovak Republic.
| | - M Beránková
- Laboratories of Cosmetology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovak Republic.
| |
Collapse
|
18
|
Pan TL, Wang PW, Aljuffali IA, Leu YL, Hung YY, Fang JY. Coumarin derivatives, but not coumarin itself, cause skin irritation via topical delivery. Toxicol Lett 2014; 226:173-81. [PMID: 24561300 DOI: 10.1016/j.toxlet.2014.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/09/2014] [Accepted: 02/11/2014] [Indexed: 11/19/2022]
Abstract
Coumarin and its derivatives are widely employed as a fragrance in cosmetics and skin care products. The skin absorption level and possible disruption to the skin by topical application of coumarins were evaluated in this study. Percutaneous absorption of osthole, daphnoretin, coumarin, byakangelicin, and 7-hydroxycoumarin was assessed in vitro and in vivo. Skin physiology measurements and immunoblotting were utilized as methodologies for validating toxicity. The relationship between structures and permeation/toxicity of coumarins was elucidated. Both equimolar concentration and saturated solubility in 30% ethanol were used as the applied dose. Osthole with the most lipophilic characteristic demonstrated the greatest skin accumulation, followed by coumarin and 7-hydroxycoumarin. Coumarin was the permeant with the highest flux across the skin. The trend of in vivo deposition was consistent with that of the in vitro profiles. Skin uptake of osthole was 8-fold higher than that of coumarin. Hair follicles played a significant role as a pathway for transport of coumarin according to the examination of follicular accumulation. Osthole and 7-hydroxycoumarin slightly, but significantly, enhanced transepidermal water loss after a consecutive 5-day administration. The immunoblotting profiling verified the role of proliferation in skin damage induced by osthole, byakangelicin, and 7-hydroxycoumarin. The proliferation-related proteins examined in this work included glucose-regulated proteins, cytokeratin, and C-myc. Daphnoretin and coumarin showed a negligible alteration on protein biomarkers. The experimental results suggested that skin irritation caused by coumarins was mainly derived from the analogs but not from coumarin itself.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yann-Lii Leu
- Natural Products Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yi-Yun Hung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Hopf N, Berthet A, Vernez D, Langard E, Spring P, Gaudin R. Skin permeation and metabolism of di(2-ethylhexyl) phthalate (DEHP). Toxicol Lett 2014; 224:47-53. [DOI: 10.1016/j.toxlet.2013.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
|
20
|
Pan TL, Wang PW, Aljuffali IA, Hung YY, Lin CF, Fang JY. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics. Food Chem Toxicol 2013; 65:105-14. [PMID: 24384410 DOI: 10.1016/j.fct.2013.12.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
Abstract
The toxicity of phthalates is an important concern in the fields of environmental health and toxicology. Dermal exposure via skin care products, soil, and dust is a main route for phthalate delivery. We had explored the effect of topically-applied phthalates on skin absorption and toxicity. Immunohistology, functional proteomics, and Western blotting were employed as methodologies for validating phthalate toxicity. Among 5 phthalates tested, di(2-ethylhexyl)phthalate (DEHP) showed the highest skin reservoir. Only diethyl phthalate (DEP) and dibutyl phthalate (DBP) could penetrate across skin. Strat-M(®) membrane could be used as permeation barrier for predicting phthalate penetration through skin. The accumulation of DEHP in hair follicles was ∼15nmol/cm(2), which was significantly greater than DBP and DEP. DBP induced apoptosis of keratinocytes and fibroblasts via caspase-3 activation. This result was confirmed by downregulation of 14-3-3 and immunohistology of TUNEL. On the other hand, the HSP60 overexpression and immunostaining of COX-2 suggested inflammatory response induced by DEP and DEHP. The proteomic profiling verified the role of calcium homeostasis on skin inflammation. Some proteins investigated in this study can be sensitive biomarkers for dermal toxicity of phthalates. These included HSPs, 14-3-3, and cytokeratin. This work provided novel platforms for examining phthalate toxicity on skin.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yi-Yun Hung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
21
|
Dancik Y, Miller MA, Jaworska J, Kasting GB. Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliv Rev 2013; 65:221-36. [PMID: 22285584 DOI: 10.1016/j.addr.2012.01.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022]
Abstract
A comprehensive transient model of chemical penetration through the stratum corneum, viable epidermis and dermis formulated in terms of an Excel™ spreadsheet and associated add-in is presented. The model is a one-dimensional homogenization of underlying microscopic transport models for stratum corneum and dermis; viable epidermis is treated as unperfused dermis. The model's salient features are a detailed structural description of the skin layers, a combination of first-principles based transport equations and empirical partition and diffusion coefficients, and the capability of simulating a variety of exposure scenarios. Model predictions are compared with representative in vitro skin permeation data obtained from the literature using as summary parameters total absorption (Q(abs)), maximum flux (J(max)) and skin permeability coefficient (k(p)). The results of this evaluation demonstrate the current state-of-the-art in prediction of transient skin absorption and highlight areas in which further elaborations are needed to obtain satisfactory predictions.
Collapse
Affiliation(s)
- Yuri Dancik
- The Procter & Gamble Company, Strombeek-Bever, Belgium
| | | | | | | |
Collapse
|
22
|
Hsieh PW, Al-Suwayeh SA, Fang CL, Lin CF, Chen CC, Fang JY. The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin. Eur J Pharm Biopharm 2012; 81:369-78. [DOI: 10.1016/j.ejpb.2012.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 02/14/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
|
23
|
A comparison of skin delivery of ferulic acid and its derivatives: Evaluation of their efficacy and safety. Int J Pharm 2010; 399:44-51. [DOI: 10.1016/j.ijpharm.2010.07.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/26/2010] [Accepted: 07/30/2010] [Indexed: 11/20/2022]
|
24
|
Gilpin S, Maibach H. Allergic contact dermatitis caused by farnesol: clinical relevance. Cutan Ocul Toxicol 2010; 29:278-87. [PMID: 20858058 DOI: 10.3109/15569527.2010.511369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The fragrance material farnesol is cited as an infrequent but important cause of allergic contact dermatitis (ACD). It is included in the fragrance mix II patch series and requires labeling in the European Union if it is used in a consumer product. OBJECTIVE To review the existing literature to determine the causative role of farnesol in clinical contact allergy. MATERIALS AND METHODS Survey of the literature on farnesol studies; predictive and clinical elicitation tests in case reports, reviews, and abstracts. RESULTS Predictive animal studies demonstrated in most cases that farnesol was a nonsensitizer. However, 2 local lymph node assays (LLNAs) indicated strong sensitization potential. Predictive human test data indicated a low potential, if any, for sensitization in human tests with farnesol at 10% or 12%. A few clinical reports indicated low-level allergy or questionable reactions to farnesol, with 5% being the most commonly used. There were also reports in which no reactions were seen. DISCUSSION Predictive testing on farnesol in animals shows conflicting results depending on the study methodology used. Human predictive patch-test data also had gaps that prevented it from being definitive in pointing to a causative relationship between farnesol and contact dermatitis. The real sensitizing potential of a material can best be determined by evaluating the clinical and epidemiological data so as to help resolve the conflicting animal and human predictive test data. CONCLUSIONS This literature and scoring exercise showed that predictive and clinical elicitation data do not document a clear causative determination that farnesol is a frequent contact allergen. Detailed clinical relevance and patient studies should clarify the clinical problem farnesol represents.
Collapse
Affiliation(s)
- Sarah Gilpin
- Research & Development, Aveda Corporation, Blaine, Minnesota 55449, USA.
| | | |
Collapse
|