1
|
Ferramola FF, Marrassini C, Alonso MR, Mattar Dominguez MA, Vega AE, Anesini C. Origanum vulgare: peroxidase-, superoxide dismutase- and immunomodulatory activities on macrophages activated with Helicobacter pylori derivatives. Nat Prod Res 2024; 38:3941-3949. [PMID: 37830772 DOI: 10.1080/14786419.2023.2269593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Helicobacter pylori, invades the gastric mucosa and is one of the causative agents of stomach cancer and peptic ulcers. Origanum vulgare, is a flavouring herb used worldwide. But little is known about the effects of extracts prepared by maceration in cold PBS. This study was aimed at determining the superoxide dismutase (SOD)- and peroxidase (Px)-like antioxidant activities as well as the immunomodulatory activity (anti-inflammatory/pro-inflammatory) of an aqueous extract of O. vulgare by evaluating the production of nitric oxide (NO) in macrophages stimulated with H. pylori derivatives. The cold extract presented SOD-like and Px-like activities with effective concentration 50 (EC50) values of Px = 489.7 ± 48 µg/ml and SOD= 384.7 ± 30 µg/ml. The extract was also capable of modulating the production of NO in macrophages stimulated by H. pylori derivatives by exerting a pro-inflammatory activity at high concentrations and an anti-inflammatory activity at low concentrations.
Collapse
Affiliation(s)
- Florencia Fátima Ferramola
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Carla Marrassini
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Rosario Alonso
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Aida Mattar Dominguez
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Alba Edith Vega
- Immunology Laboratory, Microbiology and Immunology Area, Department of Biochemistry, Faculty of Chemistry Biochemistry and Pharmacy, National University of SanLuis, San Luis, Argentina
| | - Claudia Anesini
- National Council for Scientific and Technical Research (CONICET), Institute of Chemistry and Drug Metabolism (IQUIMEFA), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Costa Miranda Pires D, da Silva Moraes A. Long-term food supplementation with sweet basil ( Ocimum basilicum L.) prevents age-associated cognitive decline in female mice. Nutr Health 2024:2601060241281765. [PMID: 39340486 DOI: 10.1177/02601060241281765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Background: Mild cognitive decline, a common issue in aging, affects memory, learning, and attention. Nutrition can influence cognition, and research indicates that Ocimum sp. (holy basil and sweet basil) leaf extracts may enhance cognition in rodents and humans. However, these studies do not address whether these benefits extend to fresh or dry leaves consumed in typical human diets, along with physiological aging. Aim: To investigate the effects of sweet basil supplementation on cognition in mature and aged female mice. Methods: Female C57bl mice were divided into four groups: 8-month-old mature adults and 18-month-old aged adults, each receiving either a control or supplemented diet. The supplemented diet included a mix of standard chow and fresh basil leaves, administered for 2-8 months. Cognitive and behavioral assessments were conducted using the novel object recognition (NOR), Morris water maze (MWM), and elevated plus maze (EPM) tasks, focusing on memory, learning, and anxiety. Results: No cognitive improvement was observed in mature mice. However, aged mice receiving long-term basil supplementation showed enhanced discrimination in NOR and stayed closer to the absent platform in MWM compared to nonsupplemented controls. While aging mice exhibited reduced anxiety-like behavior in EPM, basil supplementation prevented this reduction. Conclusion: Basil supplementation appears beneficial in elderly mice, potentially preventing age-related cognitive decline and behavioral changes. These findings support the benefits of basil consumption in cognition and underscore its potential role in promoting healthy aging. Incorporating basil into the diet at a younger age may preserve memory and mitigate behavioral changes as individuals age.
Collapse
Affiliation(s)
- Dâmaris Costa Miranda Pires
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil
| | - Alberto da Silva Moraes
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlandia, Brazil
| |
Collapse
|
3
|
Al-Saeed FA, Abd-Elghfar SS, Ali ME. Efficiency of Thyme and Oregano Essential Oils in Counteracting the Hazardous Effects of Malathion in Rats. Animals (Basel) 2024; 14:2497. [PMID: 39272282 PMCID: PMC11394387 DOI: 10.3390/ani14172497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The widespread use of MLT may pose numerous hazards to animal breeding, health, and resilience due to the presence of MLT residues in animal feedstuffs, pastures, hay, and cereals. Many medicinal plants provide what is called a generalized anti-toxic remedy. The current study examined hazardous biochemical and histological reactions to MLT and the efficiency of ThEO and OEO essential oils as anti-toxic therapies to return to a natural state after MLT exposure. A total of 75 male albino rats were randomly assigned to two groups: (i) C - MLT, comprising 25 rats, served as the control group; and (ii) C + MLT, with 50 rats that were exposed to 5 mg/kg/BW. After exposure to MLT for 21 days, a return to normal status was determined by subdividing the C + MLT group into two equal groups: ThEO and OEO were used as treatments, with 100 mg/kg body weight of thyme and oregano essential oils, respectively, being administered for 21 days. The results showed a significant decrease in body weight gain (BWG) and final weight (FW) compared to C - MLT, while the therapeutic effects of ThEO and OEO enhanced FW and BWG. Our results indicated that MLT exposure resulted in deficient serum liver function, but that OEO and ThEO therapy brought about a significant improvement in liver enzyme function. Although there was no significant difference in serum aspartate transaminase (AST) or alkaline phosphatase (ALK-Ph) and a significant drop in alanine transaminase (ALT) and acetyl choline-esterase (AChE) levels, the C + MLT group showed hepatic fibrosis in the third stage. Furthermore, histological sections of the OEO and ThEO groups showed reduced hepatocellular damage, inflammation, and hepatic fibrosis. However, there was a significant increase in serum creatinine between the C + MLT and C - MLT groups following exposure to MLT. Histological sections of renal tissue from rats treated with OEO and ThEO showed reduced tubular damage, reduced interstitial inflammation, and preserved renal tissue architecture. In conclusion, OEO and ThEO are potential compounds for use as anti-toxic therapies to return to a natural state after MLT exposure. These compounds could serve as an experimental therapeutic approach against natural toxins, providing a solution to the problems of raising livestock that are exposed to nutritional toxicity.
Collapse
Affiliation(s)
- Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
4
|
Chen X, Song W, Xiong P, Cheng D, Wei W, Zhou Q, Xu C, Song Q, Ji H, Hu Y, Zou Z. Effects of microencapsulated plant essential oils on growth performance, immunity, and intestinal health of weaned Tibetan piglets. Front Vet Sci 2024; 11:1456181. [PMID: 39229599 PMCID: PMC11368909 DOI: 10.3389/fvets.2024.1456181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Plant essential oils (PEOs) have received significant attention in animal production due to their diverse beneficial properties and hold potential to alleviate weaning stress. However, PEOs effectiveness is often compromised by volatility and degradation. Microencapsulation can enhance the stability and control release rate of essential oils. Whether different microencapsulation techniques affect the effectiveness remain unknown. This study aimed to investigate the effects of PEOs coated by different microencapsulation techniques on growth performance, immunity, and intestinal health of weaned Tibetan piglets. Methods A total of 120 Tibetan piglets, aged 30 days, were randomly divided into five groups with four replicates, each containing six piglets. The experimental period lasted for 32 days. The groups were fed different diets: a basal diet without antibiotics (NC), a basal diet supplemented with 10 mg/kg tylosin and 50 mg/kg colistin sulfate (PC), 300 mg/kg solidified PEO particles (SPEO), 300 mg/kg cold spray-coated PEO (CSPEO), or 300 mg/kg hot spray-coated PEO (HSPEO). Results The results showed that supplementation with SPEO, CSPEO, or HSPEO led to a notable decrease in diarrhea incidence and feed to gain ratio, as well as duodenum lipopolysaccharide content, while simultaneously increase in average daily gain, interleukin-10 (IL-10) levels and the abundance of ileum Bifidobacterium compared with the NC group (p < 0.05). Supplementation with SPEO, CSPEO, or HSPEO significantly elevated serum immunoglobulin G (IgG) levels and concurrently reduced serum lipopolysaccharide and interferon γ levels compared with the NC and PC groups (p < 0.05). Serum insulin-like growth factor 1 (IGF-1) levels in the SPEO and HSPEO groups significantly increased compared with the NC group (p < 0.05). Additionally, CSPEO and HSPEO significantly reduced jejunum pH value (p < 0.05) compared with the NC and PC groups (p<0.05). Additionally, Supplementation with HSPEO significantly elevated levels of serum immunoglobulin M (IgM) and interleukin-4 (IL-4), abundance of ileum Lactobacillus, along with decreased serum interleukin-1 beta (IL-1β) levels compared with both the NC and PC groups. Discussion Our findings suggest that different microencapsulation techniques affect the effectiveness. Dietary supplemented with PEOs, especially HSPEO, increased growth performance, improved immune function, and optimized gut microbiota composition of weaned piglets, making it a promising feed additive in piglet production.
Collapse
Affiliation(s)
- Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| | - Wenjing Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Pingwen Xiong
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Di Cheng
- Institute of Animal Science and Fisheries, Gannan Academy of Sciences, Ganzhou, China
| | - Weiqun Wei
- Jiangxi Tianjia Biological Engineering Co., Ltd., Nanchang, China
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Chuanhui Xu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Qiongli Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Huayuan Ji
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yan Hu
- Institute of Animal Science and Fisheries, Gannan Academy of Sciences, Ganzhou, China
| | - Zhiheng Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Nanchang, China
| |
Collapse
|
5
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
6
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
7
|
Avram Ș, Bora L, Vlaia LL, Muț AM, Olteanu GE, Olariu I, Magyari-Pavel IZ, Minda D, Diaconeasa Z, Sfirloaga P, Adnan M, Dehelean CA, Danciu C. Cutaneous Polymeric-Micelles-Based Hydrogel Containing Origanum vulgare L. Essential Oil: In Vitro Release and Permeation, Angiogenesis, and Safety Profile In Ovo. Pharmaceuticals (Basel) 2023; 16:940. [PMID: 37513852 PMCID: PMC10383657 DOI: 10.3390/ph16070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Origanum vulgare var. vulgare essential oil (OEO) is known as a natural product with multiple beneficial effects with application in dermatology. Oregano essential oil represents a potential natural therapeutic alternative for fibroepithelial polyps (FPs), commonly known as skin tags. Innovative formulations have been developed to improve the bioavailability and stability of essential oils. In this study, we aimed to evaluate the morphology of a polymeric-micelles-based hydrogel (OEO-PbH), the release and permeation profile of oregano essential oil, as well as to assess in vivo the potential effects on the degree of biocompatibility and the impact on angiogenesis in ovo, using a chick chorioallantoic membrane (CAM). Scanning electron microscopy (SEM) analysis indicated a regular aspect after the encapsulation process, while in vitro release studies showed a sustained release of the essential oil. None of the tested samples induced any irritation on the CAM and the limitation of the angiogenic process was noted. OEO-PbH, with a sustained release of OEO, potentially enhances the anti-angiogenic effect while being well tolerated and non-irritative by the vascularized CAM, especially on the blood vessels (BVs) in the presence of leptin treatment. This is the first evidence of in vivo antiangiogenic effects of a polymeric-micelle-loaded oregano essential oil, with further mechanistic insights for OEO-PbH formulation, involving leptin as a possible target. The findings suggest that the OEO-containing polymeric micelle hydrogel represents a potential future approach in the pathology of cutaneous FP and other angiogenesis-related conditions.
Collapse
Affiliation(s)
- Ștefana Avram
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Larisa Bora
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lavinia Lia Vlaia
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ana Maria Muț
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Gheorghe-Emilian Olteanu
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Olariu
- Department II-Pharmaceutical Technology, Formulation and Technology of Drugs Research Center, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorița Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Paula Sfirloaga
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
8
|
Mueed A, Shibli S, Al-Quwaie DA, Ashkan MF, Alharbi M, Alanazi H, Binothman N, Aljadani M, Majrashi KA, Huwaikem M, Abourehab MAS, Korma SA, El-Saadony MT. Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Front Nutr 2023; 10:1125106. [PMID: 37415912 PMCID: PMC10320526 DOI: 10.3389/fnut.2023.1125106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Department of Food Technology, Institute of Food and Nutrition, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sahar Shibli
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Diana A Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mada F Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael Huwaikem
- Cinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Chin JD, Zhao L, Mayberry TG, Cowan BC, Wakefield MR, Fang Y. Photodynamic Therapy, Probiotics, Acetic Acid, and Essential Oil in the Treatment of Chronic Wounds Infected with Pseudomonas aeruginosa. Pharmaceutics 2023; 15:1721. [PMID: 37376169 PMCID: PMC10301549 DOI: 10.3390/pharmaceutics15061721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a prevalent medical problem that burdens millions of patients across the world, chronic wounds pose a challenge to the healthcare system. These wounds, often existing as a comorbidity, are vulnerable to infections. Consequently, infections hinder the healing process and complicate clinical management and treatment. While antibiotic drugs remain a popular treatment for infected chronic wounds, the recent rise of antibiotic-resistant strains has hastened the need for alternative treatments. Future impacts of chronic wounds are likely to increase with aging populations and growing obesity rates. With the need for more effective novel treatments, promising research into various wound therapies has seen an increased demand. This review summarizes photodynamic therapy, probiotics, acetic acid, and essential oil studies as developing antibiotic-free treatments for chronic wounds infected with Pseudomonas aeruginosa. Clinicians may find this review informative by gaining a better understanding of the state of current research into various antibiotic-free treatments. Furthermore. this review provides clinical significance, as clinicians may seek to implement photodynamic therapy, probiotics, acetic acid, or essential oils into their own practice.
Collapse
Affiliation(s)
- Jaeson D. Chin
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| | - Lei Zhao
- The Department of Respiratory Medicine, The Second People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China
| | - Trenton G. Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Braydon C. Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
10
|
An Overview of Herbal Nutraceuticals, Their Extraction, Formulation, Therapeutic Effects and Potential Toxicity. SEPARATIONS 2023. [DOI: 10.3390/separations10030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Herbal nutraceuticals are foods derived from plants and/or their derivatives, such as oils, roots, seeds, berries, or flowers, that support wellness and combat acute and chronic ailments induced by unhealthful dietary habits. The current review enlists various traditional as well as unexplored herbs including angelica, burnet, caraway, laurel, parsley, yarrow, and zedoary, which are rich sources of bioactive components, such as aloesin, angelicin, trans-anethole, and cholesteric-7-en-3β-ol. The review further compares some of the extraction and purification techniques, namely, Soxhlet extraction, ultrasound assisted extraction, microwave assisted extraction, supercritical fluid extraction, accelerated solvent extraction, hydro-distillation extraction, ultra-high-pressure extraction, enzyme assisted extraction, pulsed electric field extraction, bio affinity chromatography, cell membrane chromatography, and ligand fishing. Herbal nutraceuticals can be purchased in varied formulations, such as capsules, pills, powders, liquids, and gels. Some of the formulations currently available on the market are discussed here. Further, the significance of herbal nutraceuticals in prevention and cure of diseases, such as diabetes, obesity, dementia, hypertension, and hypercholesterolemia; and as immunomodulators and antimicrobial agents has been discussed. Noteworthy, the inappropriate use of these herbal nutraceuticals can lead to hepatotoxicity, pulmonary toxicity, cytotoxicity, carcinogenicity, nephrotoxicity, hematotoxicity, and cardiac toxicity. Hence, this review concludes with a discussion of various regulatory aspects undertaken by the government agencies in order to minimize the adverse effects associated with herbal nutraceuticals.
Collapse
|
11
|
Shao Y, Peng Q, Wu Y, Peng C, Wang S, Zou L, Qi M, Peng C, Liu H, Li R, Xiong X, Yin Y. The Effect of an Essential Oil Blend on Growth Performance, Intestinal Health, and Microbiota in Early-Weaned Piglets. Nutrients 2023; 15:nu15020450. [PMID: 36678320 PMCID: PMC9862375 DOI: 10.3390/nu15020450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Essential oils (EO) are promising feed additives for their antibacterial, antioxidant, and immune-enhancing abilities with low toxicity. Carvacrol, thymol, and cinnamaldehyde are commonly used to synthesize EO. However, few studies focus on combining these three EO in early-weaned piglets. In the present study, 24 piglets weaned at 21 d of age were randomly divided into 2 groups (6 replicate pens per group, 2 piglets per pen). The piglets were fed a basal diet (the control group) and a basal diet supplemented with 400 mg/kg EO (a blend consisting of carvacrol, thymol, and cinnamaldehyde, the EO group) for 28 days. At the end of the experiment, one piglet per pen was randomly chosen to be sacrificed. Growth performance, hematology, plasma biochemical indices, antioxidant capacity, intestinal epithelial development and immunity, colonic volatile fatty acids (VFA), and microbiota were determined. The results indicated that the diet supplemented with EO significantly improved average daily feed intake (ADFI, p < 0.01) and average daily gain (ADG, p < 0.05) in the day 0 to 28 period. EO supplementation led to a significant decrease in plasma lysozyme (p < 0.05) and cortisol levels (p < 0.01). Additionally, EO significantly promoted jejunal goblet cells in the villus, jejunal mucosa ZO-1 mRNA expression, ileal villus height, and ileal villus height/crypt depth ratio in piglets (p < 0.05). The ileal mucosal TLR4 and NFκB p-p65/p65 protein expression were significantly inhibited in the EO group (p < 0.05). Colonic digesta microbiota analysis revealed that bacteria involving the Erysipelotrichaceae family, Holdemanella genus, Phascolarctobacterium genus, and Vibrio genus were enriched in the EO group. In conclusion, these findings indicate that the EO blend improves ADG and ADFI in the day 0 to 28 period, as well as intestinal epithelial development and intestinal immunity in early-weaned piglets, which provides a theoretical basis for the combined use of EO in weaned piglets.
Collapse
Affiliation(s)
- Yirui Shao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Qingyun Peng
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Yuliang Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Changfeng Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| | - Shanshan Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Zou
- Laboratory of Basic Biology, Hunan First Normal University, Changsha 410205, China
| | - Ming Qi
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Can Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hongnan Liu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Rui Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Correspondence:
| | - Xia Xiong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
12
|
Immune Defences: A View from the Side of the Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010435. [PMID: 36615625 PMCID: PMC9824899 DOI: 10.3390/molecules28010435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The use of essential oils is increasingly being investigated among new therapeutic approaches based on medicinal plants and their extracts. With the wide use of synthetic and semi-synthetic antimicrobial drugs, the spread of drug-resistant clinical isolates has increased, and research is directed towards natural products, such as essential oils, as useful antimicrobial resources. In the context of a prospective infection, we compared the impact of essential oils and common antimicrobial agents on the microbicidal activity of human phagocytes. Here, we present the results of our decades-long investigation into the effectiveness of thyme red oil (26.52% thymol chemotype), tea tree oil (TTO), and Mentha of Pancalieri [(Mentha x piperita (Huds) var. officinalis (Sole), form rubescens (Camus) (Lamiaceae)] essential oils on human polymorphonuclear leukocytes (PMNs) capacity to kill clinical strains of Candida albicans and C. krusei when compared to three antifungal drugs used to treat candidiasis (fluconazole, anidulafungin, and caspofungin) These essential oils demonstrate antifungal drug-like and/or superior efficacy in enhancing intracellular killing by PMNs, even at subinhibitory concentrations. Our results are compared with data in the literature on essential oils and immune system interactions. This comparison would aid in identifying therapeutic solutions to the increasingly prevalent antibiotic resistance as well as filling in any remaining knowledge gaps on the bioactivity of essential oils.
Collapse
|
13
|
Long Y, Li D, Yu S, Zhang YL, Liu SY, Wan JY, Shi A, Deng J, Wen J, Li XQ, Ma Y, Li N, Yang M. Natural essential oils: A promising strategy for treating cardio-cerebrovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115421. [PMID: 35659628 DOI: 10.1016/j.jep.2022.115421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EO) are volatile compounds obtained from different parts of natural plants, and have been used in national, traditional and folk medicine to treat various health problems all over the world. Records indicate that in history, herbal medicines rich in EO have been widely used for the treatment of CVDs in many countries, such as China. AIM OF THE STUDY This review focused on the traditional application and modern pharmacological mechanisms of herbal medicine EO against CVDs in preclinical and clinical trials through multi-targets synergy. Besides, the EO and anti-CVDs drugs were compared, and the broad application of EO was explained from the properties of drugs and aromatic administration routes. MATERIALS AND METHODS Information about EO and CVDs was collected from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The obtained data sets were sequentially arranged for better understanding of EO' potential. RESULTS The study showed that EO had significant application in CVDs at different countries or regions since ancient times. Aiming at the complex pathological mechanisms of CVDs, including intracellular calcium overload, oxidative stress, inflammation, vascular endothelial cell injury and dysfunction and dyslipidemia, we summarized the roles of EO on CVDs in preclinical and clinical through multi-targets intervention. Besides, EO had the dual properties of drug and excipients. And aromatherapy was one of the complementary therapies to improve CVDs. CONCLUSIONS This paper reviewed the EO on traditional treatment, preclinical mechanism and clinical application of CVDs. As important sources of traditional medicines, EO' remarkable efficacy had been confirmed in comprehensive literature reports, which showed that EO had great medicinal potential.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song-Yu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
14
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
15
|
Plati F, Paraskevopoulou A. Micro- and Nano-encapsulation as Tools for Essential Oils Advantages’ Exploitation in Food Applications: the Case of Oregano Essential Oil. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02746-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Hosny KM, Rizg WY, Alfayez E, Elgebaly SS, Alamoudi AJ, Felimban RI, Tayeb HH, Mushtaq RY, Safhi AY, Alharbi M, Almehmady AM. Preparation and optimization of aloe ferox gel loaded with Finasteride-Oregano oil nanocubosomes for treatment of alopecia. Drug Deliv 2022; 29:284-293. [PMID: 35019794 PMCID: PMC8757594 DOI: 10.1080/10717544.2022.2026534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alopecia areata is a skin disorder characterized by scarless, localized hair loss that is usually managed by topical treatments that might further worsen the condition. Therefore, the current study aimed to develop nano-cubosomes loaded with finasteride (FI) and oregano oil (Or) to improve drug solubility and permeation through skin and then incorporate it into an aloe ferox gel base. An l-optimal coordinate exchange design was adopted to optimize nano-cubosomes. Phytantriol and Alkyl Acrylate were employed as the lipid material, and surfactant respectively for cubosomes manufacture. The produced formulations were assessed for their particle size, entrapment efficiency (EE%), FI steady-state flux (Jss) and minimum inhibitory concentration (MIC) against Pro-pionibacterium acnes. Optimal FI-Or-NCu had a particle size of 135 nm, EE% equals 70%, Jss of 1.85 μg/cm2.h, and MIC of 0.44 μg/ml. The optimum formulation loaded gel gained the highest drug release percent and ex vivo skin permeation compared to FI aqueous suspension, and pure FI loaded gel. Aloe ferox and oregano oil in the optimized gel formulation had a synergistic activity on the FI permeation across the skin and against the growth of p. acne bacteria which could favor their use in treating alopecia. Thus, this investigation affirms the ability of FI-Or-NCu loaded aloe ferox gel could be an effective strategy that would enhance FI release and permeation through skin and maximize its favorable effects in treating alopecia.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar S Elgebaly
- Department of Clinical Biochemistry, Cairo Laboratories for clinical pathology, Cairo, Egypt
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and toxicology, Faculty of Pharmacy, King Abdulaziz University, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam H Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Vladić J, Duarte ARC, Radman S, Simić S, Jerković I. Enzymatic and Microwave Pretreatments and Supercritical CO 2 Extraction for Improving Extraction Efficiency and Quality of Origanum vulgare L. spp. hirtum Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 11:54. [PMID: 35009059 PMCID: PMC8747452 DOI: 10.3390/plants11010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The goal of the study was to establish a procedure for improving the efficiency of supercritical carbon dioxide (scCO2) extraction of Origanum vulgare L. spp. hirtum (Greek oregano) and enhancing the quality of obtained extracts. Microwave and enzymatic pretreatments of the plant material were applied prior to the scCO2 extraction. It was determined that the microwave pretreatment with irradiation power 360 W during 2 min accelerated the extraction of lipophilic compounds and provided a twofold higher extraction yield compared to the control. Moreover, this pretreatment also led to an increase in oxygenated monoterpenes content and the most dominant component carvacrol, as well as the extracts' antioxidant activity. The enzymatic pretreatment caused a significant increase in the extraction yield and the attainment of the extract with the most potent antioxidant properties. Coupling the pretreatments with scCO2 extraction improves the process of obtaining high value lipophilic products of oregano in terms of utilization of the plant material, acceleration of the extraction with the possibility to adjust its selectivity and quality of extracts, and enhancement of biological activity.
Collapse
Affiliation(s)
- Jelena Vladić
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Ana Rita C. Duarte
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Sanja Radman
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (S.R.); (I.J.)
| | - Siniša Simić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (S.R.); (I.J.)
| |
Collapse
|
18
|
Leigh-de Rapper S, Viljoen A, van Vuuren S. Essential Oil Blends: The Potential of Combined Use for Respiratory Tract Infections. Antibiotics (Basel) 2021; 10:antibiotics10121517. [PMID: 34943729 PMCID: PMC8698682 DOI: 10.3390/antibiotics10121517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
This study investigated the potential efficacy of 369 commercial essential oil combinations for antimicrobial, anti-toxic and anti-inflammatory activity with the aim of identifying synergy among essential oils commonly used in combination by aromatherapists for respiratory purposes. Essential oil combinations were assessed for their antimicrobial activities using a panel of Gram-positive, Gram-negative, and yeast strains associated with respiratory tract infections. The antimicrobial activity was measured by determining the minimal inhibitory concentration (MIC) of microbial growth. The fractional inhibitory concentration index (ΣFIC) was calculated to determine the antimicrobial interactions between the essential oils in the combination. The toxicity of the essential oil combinations was tested in vitro using the brine shrimp lethality assay, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on RAW 264.7 mouse macrophage cells and A549 lung cancer cell lines. In addition, an inflammatory response was evaluated measuring nitric oxide production. The essential oils, when in combination, demonstrated an increased antimicrobial effect, a reduction in toxicity and provided improved anti-inflammatory outcomes. Five distinct combinations [Cupressus sempervirens (cypress) in combination with Melaleuca alternifolia (tea tree), Hyssopus officinalis (hyssop) in combination with Rosmarinus officinalis (rosemary), Origanum marjorana (marjoram) in combination with M. alternifolia, Myrtus communis (myrtle) in combination with M. alternifolia and Origanum vulgare (origanum) in combination with M. alternifolia] were found to be the most promising, demonstrating antimicrobial activity, reduced cytotoxicity and improved anti-inflammatory effects. With the increased prevalence of respiratory tract infections and the growing antimicrobial resistance development associated with antimicrobial treatments, this study provides a promising complementary alternative for the appropriate use of a selection of essential oil combinations for use in the respiratory tract.
Collapse
Affiliation(s)
- Stephanie Leigh-de Rapper
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa;
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa;
- Correspondence:
| |
Collapse
|
19
|
Efficacy of Oregano Essential Oil Extract in the Inhibition of Bacterial Lipopolysaccharide (LPS)-Induced Osteoclastogenesis Using RAW 264.7 Murine Macrophage Cell Line—An In-Vitro Study. SEPARATIONS 2021. [DOI: 10.3390/separations8120240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gram-negative, anaerobic bacterias are predominate in periapical infections. The bacterial lipopolysaccharide (LPS) initiates the process of inflammation and periapical bone resorption. Usage of various medicaments retards or inactivates the bacterial endotoxin (LPS). However, the results are not highly effective. In recent years, owing to antimicrobial resistance, the shift from conventional agents to herbal agents has been increased tremendously in research. Keeping this in mind, the present study was formulated to evaluate the efficacy of oregano essential oil in inhibiting bacterial LPS- induced osteoclastogenesis. Four different concentrations (0 ng/mL, 25 ng/mL, 50 ng/mL, and 100 ng/mL) of oregano essential oil extract were added into 96-well culture plate. Under light microscope, quantification of osteoclast cells was performed. One-way ANOVA with post-hoc Tukey test was carried out on SPSS v21. A significant reduction (p < 0.001) in the osteoclast was observed in the experimental groups compared to no oregano essential oil extract (control). A dose-dependent significant reduction (p < 0.001) in osteoclast formation was observed among the experimental groups, with lesser osteoclast seen in group IV with 100 ng/mL of oregano essential oil extract. Thus, it can be concluded that oregano essential oil extract can be utilized as a therapeutic agent that can target bacterial LPS-induced osteoclastogenesis. However, randomized controlled studies should be conducted to assess the potential use of this extract in the periapical bone resorption of endodontic origin.
Collapse
|
20
|
Cinnamon and Eucalyptus Oils Suppress the Inflammation Induced by Lipopolysaccharide In Vivo. Molecules 2021; 26:molecules26237410. [PMID: 34885991 PMCID: PMC8659246 DOI: 10.3390/molecules26237410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.
Collapse
|
21
|
de Jesús Calva-Cruz O, Badillo-Larios NS, De León-Rodríguez A, Espitia-Rangel E, González-García R, Turrubiartes-Martinez EA, Castro-Gallardo A, Barba de la Rosa AP. Lippia graveolens HBK oleoresins, extracted by supercritical fluids, showed bactericidal activity against multidrug resistance Enterococcus faecalis and Staphylococcus aureus strains. Drug Dev Ind Pharm 2021; 47:1546-1555. [PMID: 34791982 DOI: 10.1080/03639045.2021.2008417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this work was to characterize Lippia graveolens oleoresins, obtained by Supercritical Fluid Extraction (SFE), from crops collected at different locations in Mexico. The antimicrobial effect of oleoresins was tested in reference strains and clinical isolates of susceptible and multidrug resistant (MDR) strains of Enterococcus faecalis and Staphylococcus aureus. SIGNIFICANCE The increasing of MDR strains is becoming a global public health problem that has led to the search for new treatments, and essential oils have resurged as a source of compounds with bactericidal functions. Oregano essential oil has attracted attention recently, however, this oil is mainly obtained by hydro-distillation (uses large amounts of water) or solvents extraction (potential contaminant). SFE has gained popularity as it represents an environmentally friendly technology. METHODS L. graveolens oleoresins were obtained by SFE, total phenol contents were quantified by Folin-Ciocalteu method, the identification of compounds and thymol and carvacrol quantification was carried out by GC-MS. The antimicrobial activity was tested by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). RESULTS SFE showed higher yields compared with the hydro-distillation process. L. graveolens grown in different Mexican locations showed differences in oleoresin composition and a slightly different antimicrobial capacity against clinical isolates. CONCLUSIONS It was demonstrated that SFE is an efficient technology for extracting L. graveolens oleoresins. Additionally, the solvent-free extraction method and the observed antimicrobial effect, increases the applications of these oleoresins in fields such as cosmetics, food industry, medicine, amongst others.
Collapse
Affiliation(s)
- Oscar de Jesús Calva-Cruz
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| | - Nallely S Badillo-Larios
- CICSaB, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S.L.P., C.P. 78212, México
| | - Antonio De León-Rodríguez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| | - Eduardo Espitia-Rangel
- INIFAP, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Valle de México, km 13.5 Carr. Los Reyes-Texcoco, Coatlinchán, Texcoco Estado de México, C.P. 56250, México
| | - Raúl González-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, S.L.P., C.P. 78210, México
| | - Edgar Alejandro Turrubiartes-Martinez
- CICSaB, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S.L.P., C.P. 78212, México.,Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, S.L.P., C.P. 78210, México
| | - Arnulfo Castro-Gallardo
- Centro de Investigación para los Recursos Naturales, Antigua Normal Rural de Salaices, Municipio de López, Chihuahua, C.P. 33943, México
| | - Ana Paulina Barba de la Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| |
Collapse
|
22
|
Currently Applied Extraction Processes for Secondary Metabolites from Lippia turbinata and Turnera diffusa and Future Perspectives. SEPARATIONS 2021. [DOI: 10.3390/separations8090158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The poleo (Lippia turbinata Griseb.) and damiana (Turnera diffusa Wild) are two of the most valued species in the Mexican semidesert due to their medicinal uses. The conventional essential oil extraction process is hydrodistillation, and for the extraction of antioxidants, the use of organic solvents. However, these techniques are time-consuming and degrade thermolabile molecules, and the efficiency of the process is dependent on the affinity of the solvent for bioactive compounds. Likewise, they generate solvent residues such as methanol, hexane, petroleum ether, toluene, chloroform, etc. Therefore, in recent years, ecofriendly alternatives such as ohmic heating, microwaves, ultrasound, and supercritical fluids have been studied. These methodologies allow reducing the environmental impact and processing times, in addition to increasing yields at a lower cost. Currently, there is no up-to-date information that provides a description of the ecofriendly trends for the recovery process of essential oils and antioxidants from Lippia turbinata and Turnera diffusa. This review includes relevant information on the most recent advancements in these processes, including conditions and methodological foundation.
Collapse
|
23
|
Proteomic Analysis of Leishmania donovani Membrane Components Reveals the Role of Activated Protein C Kinase in Host-Parasite Interaction. Pathogens 2021; 10:pathogens10091194. [PMID: 34578226 PMCID: PMC8465321 DOI: 10.3390/pathogens10091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/05/2022] Open
Abstract
Visceral leishmaniasis (VL), mainly caused by the Leishmania donovani parasitic infection, constitutes a potentially fatal disease, for which treatment is primarily dependent on chemotherapy. The emergence of a resistant parasite towards current antileishmanial agents and increasing reports of relapses are the major concerns. Detailed research on the molecular interaction at the host-parasite interface may provide the identification of the parasite and the host-related factors operating during disease development. Genomic and proteomic studies highlighted several essential secretory and cytosolic proteins that play vital roles during Leishmania pathogenesis. The aim of this study was to identify membrane proteins from the Leishmania donovani parasite and the host macrophage that interact with each other using 2-DE/MALDI-TOF/MS. We identified membrane proteins including activated protein C kinase, peroxidoxin, small myristoylated protein 1 (SMP-1), and cytochrome C oxidase from the parasite, while identifying filamin A interacting protein 1(FILIP1) and β-actin from macrophages. We further investigated parasite replication and persistence within macrophages following the macrophage-amastigote model in the presence or absence of withaferin (WA), an inhibitor of activated C kinase. WA significantly reduced Leishmania donovani replication within host macrophages. This study sheds light on the important interacting proteins for parasite proliferation and virulence, and the establishment of infection within host cells, which can be targeted further to develop a strategy for chemotherapeutic intervention.
Collapse
|
24
|
Abstract
The plants from genus Origanum are common folk Chinese herbs used to treat a variety of diseases. They are also used as a spice, a seasoning, and an ornament. Origanum plants are rich in essential oils and also have other compounds including terpenoids, flavonoids, organic acids, and sterols. They have a variety of biological activities such as antispasmodic, anti-inflammatory, growth-promoting, antibacterial, antioxidant, and anticancer properties. The chemical components and biological effects of genus Origanum were summarized by different scientific databases such as Web of Science, SciFinder, Baidu Scholar, PubMed, ScienceDirect, and SpringerLink. In conclusion, recent studies were mainly focused on the activities of their essential oils. The research studies for nonvolatile constituents and their pharmacological activities are few. Therefore, research on compounds in genus Origanum plants can be strengthened and their application prospect can be explored so as to make better use of the resources of these plants.
Collapse
|
25
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
26
|
Cappelli K, Sabino M, Trabalza-Marinucci M, Acuti G, Capomaccio S, Menghini L, Verini-Supplizi A. Differential Effects of Dietary Oregano Essential Oil on the Inflammation Related Gene Expression in Peripheral Blood Mononuclear Cells From Outdoor and Indoor Reared Pigs. Front Vet Sci 2021; 8:602811. [PMID: 33718464 PMCID: PMC7946822 DOI: 10.3389/fvets.2021.602811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive farming systems represent a stressful environment for pigs and negatively influence neuroendocrine functions, behavior, and performance. Outdoor farming is an alternative option, which is thought to imply several beneficial effects for the animal. Dietary essential oils are known to be an innovative strategy to improve pig health and performance, and oregano essential oil (ORE) possesses beneficial effects due to its antimicrobial, anti-fungal, and antioxidant properties. We tested the effect of dietary ORE on peripheral blood mononuclear cells (PBMCs) in 36 growing pigs, either reared under indoor or outdoor conditions. Quantitative real-time PCR (RT-qPCR) assay was used to evaluate the effect of diet (control vs. ORE) and the time of sampling (T1-120 days vs. T2-190 days) on the expression of inflammatory and immune-related genes (TNF, IL1β, IL8, IL18, IL10, IL1RN, STAT3, HSP90, ICAM-1, and NFKB1). Under outdoor condition, the majority of transcripts were upregulated (p < 0.05), assuming a general inflammatory status (TNF, HSP90, NFKB1, IL1β, and STAT3). However, an interaction between diet and the farming system was observed: HSP90, NFKB1, and STAT3 were downregulated (p < 0.05) in the outdoor reared pigs when fed the ORE diet. Our study showed that bioactive compounds of ORE exert their activity, especially when the animals are exposed to stressful stimuli. Dietary ORE can be an acceptable strategy to help pigs tolerate the stress related to the harsh, outdoor, rearing conditions.
Collapse
Affiliation(s)
- Katia Cappelli
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Marcella Sabino
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | | | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Luigi Menghini
- Dipartimento di Farmacia, University of Chieti, Chieti, Italy
| | | |
Collapse
|
27
|
Composition, antioxidant capacity, intestinal, and immunobiological effects of oregano (Lippia palmeri Watts) in goats: preliminary in vitro and in vivo studies. Trop Anim Health Prod 2021; 53:101. [PMID: 33417070 DOI: 10.1007/s11250-020-02450-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/15/2020] [Indexed: 10/22/2022]
Abstract
This study investigated Lippia palmeri Watt (oregano) phytochemical compounds, their antioxidant capacity, and immunological effects on goat peripheral blood leukocytes (PBL), and on the presence of intermediate polar compounds in goat feces fed dietary oregano. The polar and nonpolar fractions of L. palmeri W. were characterized and phytochemical contents and antioxidant capacity were determined. Twelve healthy Anglo-Nubian goats were used for the in vivo trials, which were randomly assigned to control fed with basal diet, or oregano group fed with basal diet + 2.6% (DM basis) dried oregano leaves. Goat peripheral blood leukocytes (PBL) were isolated for the in vitro study, and PBL were stimulated with oregano extracts at 100 and 150 μg/mL after 24 h. For the in vivo trial, dietary oregano (2.6% on DM basis) was evaluated in the goats for 90 days. Relatively high abundance of carvacrol and thymol phytochemical compounds was found in oregano. The highest antioxidant capacity of oregano extracts was detected at 100 and 150 μg/mL. Nitric oxide production, phagocytosis, and superoxide dismutase activities increased (p < 0.05) in stimulated PBL with oregano extracts, whereas the pro-inflammatory (TNF-α and IL-1β) transcription and antioxidant (CAT and GPX-4) genes downregulated. In the in vivo experiment, dietary oregano enabled the detection of nine compounds found in goat feces, from which caproic (C6) was in a high relative quantity compared with the control group. Oregano has phytochemical compounds with strong antioxidant capacity that protect cells against oxidative stress damage and could modulate immune response and feces composition in goats.
Collapse
|
28
|
Virga G, Sabatino L, Licata M, Tuttolomondo T, Leto C, La Bella S. Effects of Irrigation with Different Sources of Water on Growth, Yield and Essential Oil Compounds in Oregano. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1618. [PMID: 33233856 PMCID: PMC7699947 DOI: 10.3390/plants9111618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
Aromatic plants can benefit from the use of treated wastewater to satisfy their water requirements, but the effects on the essential oil yield and quality need an assessment. The aims of this study were to assess the effects of freshwater and treated wastewater obtained from a Sicilian (Italy) pilot-scale horizontal subsurface flow constructed wetland system on plant growth and yield, essential oil yield and composition of oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) and soil characteristics. The system had a total surface area of 100 m2 and was planted with giant reed and umbrella sedge. An experimental open field of oregano was set up close to the system. Two years and two different sources of irrigation water were tested in a split-plot design for a two-factor experiment. Treated wastewater was characterized by higher values of mineral and organic constituents than freshwater. The results highlight that short-term irrigation with freshwater and treated wastewater, in both years, led to increased plant growth, dry weight and essential oil yield of oregano plants. However, it did not significantly affect the essential oil content and composition in comparison with the control. Furthermore, the year and source of irrigation water did not significantly vary the chemical composition of the soil. Our results suggest that treated wastewater can be considered an alternative to freshwater for the cultivation of oregano due to the fact that it does not greatly influence the yield quality and quantity of this species in the short-term.
Collapse
Affiliation(s)
- Giuseppe Virga
- Research Consortium for the Development of Innovative Agro-Environmental Systems (Corissia), Via della Libertà 203, 90143 Palermo, Italy; (G.V.); (C.L.)
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale delle Scienze 13, Building 4, 90128 Palermo, Italy; (L.S.); (S.L.B.)
| | - Mario Licata
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale delle Scienze 13, Building 4, 90128 Palermo, Italy; (L.S.); (S.L.B.)
| | - Teresa Tuttolomondo
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale delle Scienze 13, Building 4, 90128 Palermo, Italy; (L.S.); (S.L.B.)
| | - Claudio Leto
- Research Consortium for the Development of Innovative Agro-Environmental Systems (Corissia), Via della Libertà 203, 90143 Palermo, Italy; (G.V.); (C.L.)
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale delle Scienze 13, Building 4, 90128 Palermo, Italy; (L.S.); (S.L.B.)
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences, Università Degli Studi di Palermo, Viale delle Scienze 13, Building 4, 90128 Palermo, Italy; (L.S.); (S.L.B.)
| |
Collapse
|
29
|
Antioxidant and Antibacterial Capacities of Origanum vulgare L. Essential Oil from the Arid Andean Region of Chile and its Chemical Characterization by GC-MS. Metabolites 2020; 10:metabo10100414. [PMID: 33081116 PMCID: PMC7602849 DOI: 10.3390/metabo10100414] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to characterize the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil, as well as its chemical composition. To our best knowledge, there are few studies on oregano grown in the arid Andes region, but none on the metabolites produced and their bioactivity. This work identified fifty metabolites by Gas Chromatography–Mass Spectrometry (GC-MS)—monoterpene hydrocarbons, oxygenated monoterpenes, phenolic monoterpenes, sesquiterpene hydrocarbons, and oxygenated sesquiterpenes—present in the essential oil of oregano collected in the Atacama Desert. The main components of essential oregano oil were thymol (15.9%), Z-sabinene hydrate (13.4%), γ-terpinene (10.6%), p-cymene (8.6%), linalyl acetate (7.2%), sabinene (6.5%), and carvacrol methyl ether (5.6%). The antibacterial tests showed that the pathogenic bacteria Staphylococcus aureus and Salmonella enterica and the phytopathogenic bacteria Erwinia rhapontici and Xanthomonas campestris were the most susceptible to oregano oil, with the lowest concentrations of oil necessary to inhibit their bacterial growth. Moreover, oregano oil showed antibacterial activity against bacteria associated with food poisoning. In conclusion, O. vulgare from the arid Andean region possesses an important antibacterial activity with a high potential in the food industry and agriculture.
Collapse
|
30
|
Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult Sci 2020; 99:6481-6492. [PMID: 33248563 PMCID: PMC7810918 DOI: 10.1016/j.psj.2020.08.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
To study the effects of antibacterial peptides (ABPs) on feeding broilers, this experiment compared the 2 combinations of ABP with antibiotics by separately adding the supplement to the diet of 818 broilers as follows—antibiotics, Pratt and Full-tide, and Pratt and plant essential oil—and then the effect of them on production performance, immune function, antioxidant capacity, serum biochemical indicators, and microorganisms of the experimental flocks was investigated and compared. It was found that the aforementioned indicators among the 2 groups of ABP and the antibiotic group were close to or even better than those of antibiotics, and the combination added with plant essential oils had generally better effects. These results indicated that ABPs could improve economic benefits by promoting growth, preventing disease, and reducing the rate of death. This study deepened the research on the action mechanism of ABPs and not only explored the feasibility of ABPs as a novel feed additive for broilers but also provided experimental data and theoretical basis for the application of ABPs.
Collapse
|
31
|
Sharifi-Rad M, Berkay Yılmaz Y, Antika G, Salehi B, Tumer TB, Kulandaisamy Venil C, Das G, Patra JK, Karazhan N, Akram M, Iqbal M, Imran M, Sen S, Acharya K, Dey A, Sharifi-Rad J. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother Res 2020; 35:95-121. [PMID: 32789910 DOI: 10.1002/ptr.6785] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name "oregano" or "pizza-spice." Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure-activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Gitishree Das
- Research Institute of Biotechnology & medical Converged Science, Dongguk University, Goyang-si, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & medical Converged Science, Dongguk University, Goyang-si, Republic of Korea
| | - Natallia Karazhan
- Department of Pharmacognosy, Pharmaceutical Faculty of the EE VSMU, Vitebsk, Belarus
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India.,Department of Botany, Fakir Chand College, Diamond Harbour, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
32
|
Avola R, Granata G, Geraci C, Napoli E, Graziano ACE, Cardile V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem Toxicol 2020; 144:111586. [PMID: 32679285 DOI: 10.1016/j.fct.2020.111586] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
Skin acts as a protective barrier between the body and the external environment. Skin wounds are a common inflammatory disorder for the solution of which plants and essential oils have been applied as a medical option for centuries. Origanum vulgare essential oil (OEO) is largely used in folk medicine, but its molecular mechanisms of action are not fully known. In this study, we evaluated the anti-inflammatory/antioxidant activity as well as wound healing capacity of a well-characterized OEO on human keratinocytes NCTC 2544 treated with interferon-gamma (IFN-γ) and histamine (H) or subjected to a scratch test. The expression of pro-inflammatory mediators such as reactive oxygen species (ROS), inter-cellular adhesion molecule (ICAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 were verified. The DNA damage was shown by the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) and activation of proliferating cell nuclear antigen (PCNA). Moreover, the abnormal modification of extracellular matrix components (ECM) was examined by determining matrix metalloproteinase (MMP)-1, and -12. Compared to untreated control, OEO showed efficacy in supporting and enhancing the cell motility. In IFN-γ and H treated cells, OEO displayed a significant reduction of ROS, ICAM-1, iNOS, COX-2, 8-OHdG, MMP-1, and MMP-12. OEO proved useful to treat inflammation and support cell motility during wound healing.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy; Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Giuseppe Granata
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Corrada Geraci
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy.
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy.
| |
Collapse
|
33
|
Supercritical CO2 extraction of Aloysia gratissima leaves and evaluation of anti-inflammatory activity. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region. Molecules 2020; 25:molecules25051101. [PMID: 32121614 PMCID: PMC7179194 DOI: 10.3390/molecules25051101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
Origanum vulgare L. has been used as a culinary ingredient worldwide. This study revealed the cosmeceutical potential of O. vulgare essential oil as a skin-ageing retardant. The O. vulgare essential oil from a highland area of a tropical country (HO), obtained by hydrodistillation was investigated and compared to a commercial oil from the Mediterranean region (CO). Their chemical compositions were investigated by gas chromatography–mass spectrometry. Antioxidant activities were investigated by ferric reducing antioxidant power, 1,1-diphenyl-2-picrylhydrazyl, and ferric thiocyanate assay. Anti-skin-ageing activities were determined by means of collagenase, elastase, and hyaluronidase inhibition. Carvacrol was the major component in both oils, but a higher amount was detected in HO (79.5%) than CO (64.6%). HO possessed comparable radical scavenging activity to CO (IC50 = 1.8 ± 0.8 mg/mL) but significantly higher lipid peroxidation inhibition (38.0 ± 0.8%). Carvacrol was remarked as the major compound responsible for the reducing power of both oils. Interestingly, HO possessed significant superior anti-skin-ageing activity than ascorbic acid (P < 0.01), with inhibition against collagenase, elastase, and hyaluronidase of 92.0 ± 9.7%, 53.1 ± 13.3%, and 16.7 ± 0.3%, at the concentration of 67, 25, and 4 µg/mL, respectively. Since HO possessed comparable anti-hyaluronidase activity to CO and superior anti-collagenase and anti-elastase (P < 0.01), HO was suggested to be used as a natural skin-ageing retardant in a cosmetic industry.
Collapse
|
35
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
36
|
Bauer BW, Gangadoo S, Bajagai YS, Van TTH, Moore RJ, Stanley D. Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay. PLoS One 2019; 14:e0216853. [PMID: 31821320 PMCID: PMC6903721 DOI: 10.1371/journal.pone.0216853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
Food borne illnesses have a world-wide economic impact and industries are continuously developing technologies to reduce the spread of disease caused by microorganisms. Antimicrobial growth promoters (AGPs) have been used to decrease microbiological infections in animals and their potential transfer to humans. In recent years there has been a global trend to remove AGPs from animal feed in an attempt to reduce the spread of antimicrobial resistant genes into the human population. Phytobiotics, such as oregano powder, are one of the potential replacements for AGPs due to their well-established antimicrobial components. 16S rRNA gene amplicons were used to determine the effect of oregano powder (1% w/v) on the microbiota of mixed bacterial cell cultures, which were obtained from the ceca of traditionally grown meat chickens (broilers). Oregano powder had a mild effect on the microbial cell cultures increasing Enterococcus faecium, rearranging ratios of members in the genus Lactobacillus and significantly reducing the genus Streptococcus (p = 1.6e-3). Beneficial short chain fatty acids (SCFA), acetic and butyric acid, were also significantly increased in oregano powder supplemented cultures. These results suggest that oregano powder at a concentration of 1% (w/v) may have beneficial influences on mixed microbial communities and SCFA production.
Collapse
Affiliation(s)
- Benjamin W. Bauer
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Sheeana Gangadoo
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Yadav Sharma Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Thi Thu Hao Van
- RMIT University, School of Science, Bundoora, Victoria, Australia
| | - Robert J. Moore
- RMIT University, School of Science, Bundoora, Victoria, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
- * E-mail:
| |
Collapse
|
37
|
Es-haghi A, Aseyd Nezhad S. The Anti-oxidant and Anti-inflammatory Properties of Cerium Oxide Nanoparticles Synthesized Using Origanum majorana L. Leaf Extract. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019. [DOI: 10.15171/ijbsm.2019.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Free radicals have singlet electron in their outer layer rendering them high reactivity against biomolecules (i.e., DNA, carbohydrates, proteins, and lipids). Oxidative stress is created when the production of free radicals exceeds their removal by antioxidant systems and is involved in the pathogenesis of several diseases such as diabetes, arthritis, inflammatory conditions, and various cancers. Regarding the therapeutic potential of nanoparticles (NPs) in human diseases, the purpose of this study was to synthesize cerium oxide NPs using Origanum majorana leaf extract. Methods: Cerium oxide nanoparticles (CeO2 -NPs) were synthesized using aqueous leaf extract of O. majorana. The sizes of NPs were characterized by a particle size analyzer. The antioxidant properties of the CeO2 -NPs were determined by Ferric-reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the NPs were also determined by measuring gene expressions of IL-1β and IL-10 using real-time polymerase chain reaction (PCR). Results: The CeO2 -NPs were successfully synthesized using O. majorana leaf extract. The results of FRAP assay showed that the anti-oxidant activities of CeO2 -NPs at concentrations of 50, 100, and 400 μg/mL were 75%, 77.1%, and 94.5%, respectively. Moreover, interleukin 10 (IL-10) gene expressions increased by 4.6 folds while the expression of IL-1β gene decreased by 0.75-fold in HUVECs. Conclusion: The CeO2 -NPs synthesized using the aqueous extract of O. majorana demonstrated antioxidant and anti-inflammatory properties. Therefore, these NPs can be used as potential therapeutic agents in medicine.
Collapse
Affiliation(s)
- Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saynaz Aseyd Nezhad
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
38
|
Pereira Dos Santos E, Nicácio PHM, Coêlho Barbosa F, Nunes da Silva H, Andrade ALS, Lia Fook MV, de Lima Silva SM, Farias Leite I. Chitosan/Essential Oils Formulations for Potential Use as Wound Dressing: Physical and Antimicrobial Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2223. [PMID: 31295876 PMCID: PMC6678229 DOI: 10.3390/ma12142223] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
Film-forming emulsions and films, prepared by incorporating different concentrations of clove essential oil (CEO) and melaleuca essential oil (MEO) into chitosan (CS) were obtained and their properties were evaluated. Film-forming emulsions were characterized in terms of qualitative assessment, hydrogen potential and in vitro antibacterial activity, that was carried by the agar diffusion method, and the growth inhibition effects were tested on the Gram-positive microorganism of Staphylococcus aureus, Gram-negative microorganisms of Escherichia coli, and against isolated fungi such as Candida albicans. In order to study the impact of the incorporation of CEO and MEO into the CS matrix, the appearance and thickness of the films were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, a swelling test, scanning electron microscopy and a tensile test were carried out. Results showed that the film-forming emulsions had translucent aspect with cloudy milky appearance and showed antimicrobial properties. The CEO had the highest inhibition against the three strains studied. As regards the films' properties, the coloration of the films was affected by the type and concentration of bioactive used. The chitosan/CEO films showed an intense yellowish coloration while the chitosan/MEO films presented a slightly yellowish coloration, but in general, all chitosan/EOs films presented good transparency in visible light besides flexibility, mechanical resistance when touched, smaller thicknesses than the dermis and higher wettability than chitosan films, in both distilled water and phosphate-buffered saline (PBS). The interactions between the chitosan and EOs were confirmed by. The chitosan/EOs films presented morphologies with rough appearance and with EOs droplets in varying shapes and sizes, well distributed along the surface of the films, and the tensile properties were compatible to be applied as wound dressings. These results revealed that the CEO and MEO have a good potential to be incorporated into chitosan to make films for wound-healing applications.
Collapse
Affiliation(s)
| | | | - Francivandi Coêlho Barbosa
- Materials Engineering Department, Federal University of Campina Grande, Campina Grande PB 58429-140, Brazil
| | - Henrique Nunes da Silva
- Materials Engineering Department, Federal University of Campina Grande, Campina Grande PB 58429-140, Brazil
| | - André Luís Simões Andrade
- Materials Engineering Department, Federal University of Campina Grande, Campina Grande PB 58429-140, Brazil
| | - Marcus Vinícius Lia Fook
- Materials Engineering Department, Federal University of Campina Grande, Campina Grande PB 58429-140, Brazil
| | | | - Itamara Farias Leite
- Materials Engineering Department, Federal University of Paraíba, João Pessoa PB 58051-900, Brazil.
| |
Collapse
|
39
|
De Santis F, Poerio N, Gismondi A, Nanni V, Di Marco G, Nisini R, Thaller MC, Canini A, Fraziano M. Hydroalcoholic extract from Origanum vulgare induces a combined anti-mycobacterial and anti-inflammatory response in innate immune cells. PLoS One 2019; 14:e0213150. [PMID: 30830942 PMCID: PMC6398838 DOI: 10.1371/journal.pone.0213150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/17/2019] [Indexed: 01/25/2023] Open
Abstract
In nature, many plants or their extracted compounds have been found to possess anti-inflammatory features and therapeutic properties against infectious as well as non-infectious diseases, including cancer. In this study, we analysed the immunomodulatory effects on innate immune cells of hydroalcoholic extract from Origanum vulgare L. ssp. hirtum (HyE-Ov), a plant traditionally known for its anti-oxidative properties. The effects of HyE-Ov were tested on human monocyte derived dendritic cells (DC), type-1 (M1) and type-2 macrophages (M2) infected with M. bovis Bacille Calmette-Guérin (BCG), used as a model of persistent intracellular bacterium. DC, M1 and M2 treated with HyE-Ov significantly enhanced their mycobactericidal activity, which was associated with phagosomal acidification in M1 and M2 and increase of phagosomal, but not mitochondrial ROS production in M1, M2, and DC. Treatment of BCG-infected DC with HyE-Ov significantly reduced TNF-α and IL-12 production and increased TGF-β synthesis. Finally, experiments were repeated using eight different HPLC fractions of HyE-Ov. Results showed that the capability to activate anti-microbial and anti-inflammatory response is shared by different fractions, suggesting that diverse bioactive molecules are present within the hydroalcoholic extract. Altogether, these results show that HyE-Ov promotes anti-mycobacterial innate immunity and limits inflammatory response in vitro and suggest that this plant extract may be exploitable as phytocomplex or nutraceutical for novel host-directed therapeutic approaches.
Collapse
Affiliation(s)
| | - Noemi Poerio
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Valentina Nanni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gabriele Di Marco
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Nisini
- Department of infectious diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Antonella Canini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- * E-mail:
| |
Collapse
|
40
|
Bahmani M, Taherikalani M, Khaksarian M, Rafieian-Kopaei M, Ashrafi B, Nazer M, Soroush S, Abbasi N, Rashidipour M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci OA 2019; 5:FSO371. [PMID: 30906567 PMCID: PMC6426173 DOI: 10.4155/fsoa-2018-0096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022] Open
Abstract
AIM This study was designed to evaluate the synergistic activities of hydroalcoholic extracts of medicinal plants Origanum vulgare and Hypericum perforatum and their active components, carvacrol and hypericin against Staphylococcus aureus. METHODS The synergistic effects of the plants, as well as carvacrol and hypericin, were examined using a checkered method against S. aureus (ATCC 12600). RESULTS A fractional inhibitory concentration of 0.5 was obtained for combination of O. vulgare and H. perforatum and 0.49 for combination of the active ingredients carvacrol and hypericin, both of which indicated a synergistic effect. CONCLUSION This preliminary evaluation demonstrated a synergistic property of O. vulgare and H. perforatum extracts in treating S. aureus infection. This study indicates that combination of the plants, as well as combination of carvacrol and hypericin, might be used as a new antibacterial strategy against S. aureus.
Collapse
Affiliation(s)
- Mahmoud Bahmani
- Razi Herbal Medicines Research Center, Department of Medicinal Plants, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Morovat Taherikalani
- Razi Herbal Medicines Research Center & Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicines Research Center & Physiology Department, School of Medicine, Lorestan University of Medical Sciences, Khorrmabad, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Department of Pharmacology, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Behnam Ashrafi
- Razi Herbal Medicines Research Center, Department of Medicinal Plants, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammadreza Nazer
- Razi Herbal Medicines Research Center, Department of Medicinal Plants, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Setareh Soroush
- Razi Herbal Medicines Research Center & Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Naser Abbasi
- Biotechnology & Medicinal Plants Research Center, Department of Pharmacology, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Department of Medicinal Plants, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
41
|
García-Pérez JS, Cuéllar-Bermúdez SP, Cruz-Quiroz RDL, Arévalo-Gallegos A, Esquivel-Hernandez DA, Rodríguez-Rodríguez J, García-García R, Iqbal HMN, Parra-Saldivar R. Supercritical CO 2-based tailor made valorization of Origanum vulgare L extracts: A green approach to extract high-value compounds with applied perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:796-802. [PMID: 30529867 DOI: 10.1016/j.jenvman.2018.11.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 02/08/2023]
Abstract
In this study, the supercritical CO2-based extraction approach was used from the green technologies to extract Oregano oil (Origanum vulgare L.). A Taguchi experimental design was applied to evaluate the effect of pressure, temperature and ethanol as co-solvent. High yield of oregano oil (13.40%) was obtained at 40 °C, 100 bar and 8 g min-1 of co-solvent flow. Fatty acids profile include α-linolenic, palmitic, oleic and linoleic that contribute to 70.9-76.8% of total fatty acids. Volatile compounds including carvacrol (29.99%), heneicosane (8.21%), nonacosane (11.78%), docosane (7.18%), borneol (4.35%) and thymol (4.51%) were the main compounds identified. Antimicrobial activity assays showed that extracts obtained at 40 °C were highly efficient against S. aureus, E. coli, and C. albicans. Highest antioxidant activities on DPPH and FRAP assays were reached under 8 g min-1 of co-solvent flow (6.08 and 6.89 μmol TE g-1 extract, respectively). On the other hand, antioxidant activity (35.76 μmol TE g-1) on ABTS assay was improved at 40 °C, 100 bar, and 4 g min-1 of co-solvent flow.
Collapse
Affiliation(s)
- J Saúl García-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Sara P Cuéllar-Bermúdez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Reynaldo de la Cruz-Quiroz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Diego A Esquivel-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Rebeca García-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| |
Collapse
|
42
|
Lu M, Dai T, Murray CK, Wu MX. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates. Front Microbiol 2018; 9:2329. [PMID: 30344513 PMCID: PMC6182053 DOI: 10.3389/fmicb.2018.02329] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Development of non-antibiotic alternatives to treat infections caused by multidrug-resistant (MDR) microbes represents one of the top priorities in healthcare and community settings, especially in the care of combat trauma-associated wound infections. Here, we investigate efficacy of oregano oil against pathogenic bacteria including MDR isolates from the combat casualties in vitro and in a mouse burn model. Oregano oil showed a significant anti-bacterial activity against 11 MDR clinical isolates including four Acinetobacter baumannii, three Pseudomonas aeruginosa, and four methicillin-resistant Staphylococcus aureus (MRSA) obtained from combat casualties and two luminescent strains of PA01 and MRSA USA300, with a MIC ranging from 0.08 mg/ml to 0.64 mg/ml. Oregano oil also effectively eradicated biofilms formed by each of the 13 pathogens above at similar MICs. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that oregano oil damaged bacterial cells and altered the morphology of their biofilms. While efficiently inactivating bacteria, there was no evidence of resistance development after up to 20 consecutive passages of representative bacterial strains in the presence of sublethal doses of oregano oil. In vivo study using the third-degree burn wounds infected with PA01 or USA300 demonstrated that oregano oil, topically applied 24 h after bacterial inoculation, sufficiently reduced the bacterial load in the wounds by 3 log10 in 1 h, as measured by drastic reduction of bacterial bioluminescence. This bactericidal activity of oregano oil concurred with no significant side effect on the skin histologically or genotoxicity after three topical applications of oregano oil at 10 mg/ml for three consecutive days. The investigation suggests potentials of oregano oil as an alternative to antibiotics for the treatment of wound-associated infections regardless of antibiotic susceptibility.
Collapse
Affiliation(s)
- Min Lu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Clinton K Murray
- First Area Medical Laboratory, JBSA-Fort Sam Houston, Houston, TX, United States
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Guldiken B, Ozkan G, Catalkaya G, Ceylan FD, Ekin Yalcinkaya I, Capanoglu E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem Toxicol 2018; 119:37-49. [DOI: 10.1016/j.fct.2018.05.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 02/08/2023]
|
44
|
Cheng C, Zou Y, Peng J. Oregano Essential Oil Attenuates RAW264.7 Cells from Lipopolysaccharide-Induced Inflammatory Response through Regulating NADPH Oxidase Activation-Driven Oxidative Stress. Molecules 2018; 23:molecules23081857. [PMID: 30049950 PMCID: PMC6222776 DOI: 10.3390/molecules23081857] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Oregano is an aromatic plant widely distributed throughout the Mediterranean area and in Asia. Recent studies have revealed that the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. This study determined whether oregano essential oil (OEO) exerts an anti-inflammatory effect on lipopolysaccharide (LPS)-treated murine macrophage cells (RAW264.7 cells) in vitro and elucidated the possible underlying molecular mechanisms. The results showed that OEO (2.5–10 μg/mL) inhibited the expression and secretion of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in RAW264.7 cells treated with LPS (1 μg/mL). Consistent with the pro-inflammatory gene expression, the OEO treatment efficiently reduced the LPS-induced activation of mitogen-activated protein kinase, protein kinase B, and nuclear factor κB in RAW264.7 cells. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition in Nox2 protein-silenced cells attenuated the mRNA expression of IL-1β, IL-6, and TNF-α in the LPS-induced RAW264.7 cells. The OEO inhibited the LPS-induced elevation of NADPH oxidase and oxidative stress. This result suggests that LPS induces RAW264.7 cell inflammation through the NADPH oxidase-mediated production of reactive oxygen species (ROS). In conclusion, OEO protects against the LPS-induced RAW264.7 cell inflammatory response through the NADPH oxidase/ROS pathway.
Collapse
Affiliation(s)
- Chuanshang Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Zou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
45
|
Benavente P, Cárdenas-Lizana F, Keane MA. Promotional effect of water in the clean continuous production of carvacrol from carvone. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.09.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, Del Mar Contreras M, Salehi B, Soltani-Nejad A, Rajabi S, Tajbakhsh M, Sharifi-Rad J. Carvacrol and human health: A comprehensive review. Phytother Res 2018; 32:1675-1687. [PMID: 29744941 DOI: 10.1002/ptr.6103] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Carvacrol (CV) is a phenolic monoterpenoid found in essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild bergamot (Citrus aurantium bergamia), and other plants. Carvacrol possesses a wide range of bioactivities putatively useful for clinical applications such antimicrobial, antioxidant, and anticancer activities. Carvacrol antimicrobial activity is higher than that of other volatile compounds present in essential oils due to the presence of the free hydroxyl group, hydrophobicity, and the phenol moiety. The present review illustrates the state-of-the-art studies on the antimicrobial, antioxidant, and anticancer properties of CV. It is particularly effective against food-borne pathogens, including Escherichia coli, Salmonella, and Bacillus cereus. Carvacrol has high antioxidant activity and has been successfully used, mainly associated with thymol, as dietary phytoadditive to improve animal antioxidant status. The anticancer properties of CV have been reported in preclinical models of breast, liver, and lung carcinomas, acting on proapoptotic processes. Besides the interesting properties of CV and the toxicological profile becoming definite, to date, human trials on CV are still lacking, and this largely impedes any conclusions of clinical relevance.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, 61663-335, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, School of Pharmacy, University of Concepcion, Concepcion, Chile
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - María Del Mar Contreras
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Bioregión Building, Avenida del Conocimiento s/n, Granada, Spain
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Soltani-Nejad
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
47
|
Ferreira PMF, Caldas DW, Salaro AL, Sartori SSR, Oliveira JM, Cardoso AJS, Zuanon JAS. Intestinal and liver morphometry of the Yellow Tail Tetra (Astyanax altiparanae) fed with oregano oil. AN ACAD BRAS CIENC 2018; 88:911-22. [PMID: 27331801 DOI: 10.1590/0001-3765201620150202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/20/2015] [Indexed: 04/03/2023] Open
Abstract
This study aimed to evaluate the effect of oregano oil on the intestinal and liver morphometry of yellow tail tetra, Astyanax altiparanae. Fish (1.46 ± 0.09 g) were kept in a 60-L aquaria, at a stocking density of 0.5 fi sh L-1. Six diets containing varying amounts of oregano oil were evaluated (0.0; 0.5; 1.0; 1.5; 2.0 and 2.5 g of oregano oil kg-1). At the end of 90 days, the fi sh were euthanised. Four intestines and four livers were collected per treatment, which were fi xed in Bouin and embedded in resin. For height and width folds, the absorption surface area and thickness of the muscular layer a positive linear effect of oregano oil was observed. A decrescent linear effect on the total number of goblet cells was also observed. For the cytoplasmic percentage of hepatocytes and liver glycogen, a positive linear effect of oregano oil was observed. There was a decreasing linear effect on the percentage of nuclei in the hepatocytes and capillaries. Thus, the oregano essential oil promotes increased absorption areas, modulates the amount of goblet cells involved in protecting the intestinal mucosa and promotes cytoplasmic increase with greater deposition of liver glycogen in yellow tail tetra.
Collapse
Affiliation(s)
- Pollyanna M F Ferreira
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| | - Débora W Caldas
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| | - Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| | - Sirlene S R Sartori
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| | - Jerusa M Oliveira
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| | - Alex J S Cardoso
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| | - Jener A S Zuanon
- Departamento de Biologia Animal, Universidade Federal de Viçosa/UFV, Av. PH Rolfs, s/n, 36570-900 Viçosa, MG, Brasil, Universidade Federal de Viçosa, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa MG , Brazil
| |
Collapse
|
48
|
Cytotoxicity and genotoxicity of thymol verified in murine macrophages (RAW 264.7) after antimicrobial analysis in Candida albicans, Staphylococcus aureus, and Streptococcus mutans. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Essential Oils for Food Application: Natural Substances with Established Biological Activities. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1948-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|