1
|
Huang Y, Li Z. Deriving exposure route-specific cancer slope factors of carcinogenic chemicals via PBK modeling. ENVIRONMENT INTERNATIONAL 2025; 199:109483. [PMID: 40252550 DOI: 10.1016/j.envint.2025.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/29/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Carcinogenic chemicals entering the body via different exposure routes result in varying internal doses and thus influence the tumors development. The internal doses can be quantified using biotransfer factors (BTF) simulated by the physiologically based kinetic (PBK) model. This study proposed a modeling method to analyze the quantitative relationships between BTF and cancer slope factors (CSFs). When the CSF for one exposure route is known, the CSF values for the other two routes can be derived using the relationships. A total of 45 carcinogenic chemicals were selected, and their oral CSF (CSForal) and BTF values were collected for analysis. The results demonstrated that route-specific CSFs of chemicals can be different due to their physicochemical properties. In addition, the derived route-specific CSFs are further utilized to conduct a comprehensive cancer risk assessment. The results revealed that cancer risk caused by most environmental chemical exposure exceeded 1 × 10-6, suggesting that long-term exposure to chemicals would pose certain human cancer risks. These findings highlight the importance of exposure route-specific CSFs for accurate cancer risk assessment and provide a scientific reference for environmental agencies to refine the risk assessment system.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen, Guangdong 518107, China; Research Center for Environmental and Health, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
2
|
Vryonidis E, Törnqvist M, Lignell S, Rosén J, Aasa J. Estimation of intake and quantification of hemoglobin adducts of acrylamide in adolescents in Sweden. Front Nutr 2024; 11:1371612. [PMID: 38887498 PMCID: PMC11180753 DOI: 10.3389/fnut.2024.1371612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Blood samples (n = 600) from participants in the Swedish dietary survey Riksmaten Adolescents 2016-17 were analyzed with respect to hemoglobin (Hb) adducts from acrylamide (AA) and its metabolite glycidamide (GA) as biomarkers of internal dose/exposure. The results are presented from statistical analyses of food consumption data (2-day dietary recall and questionnaires) and measured Hb adduct levels. The estimated exposure as well as consumption data were examined in relation to non-dietary factors such as sex, age (group medians of 12, 15, and 18 years), place of residence (urban/rural), smoking status, and parental education level. The median AA adduct level was estimated to be 34 pmol/g Hb (range 14-225). No significant difference was found for place of residence, parental education, sex, or age. A significant difference was found between the median adduct levels of daily smokers (n = 8) and never smokers (n = 323) in the older age groups, but not between occasional smokers (n = 47) and never smokers. The median differences between daily smokers and never smokers were 76, 40, and 128 pmol/g Hb for AA, GA, and AA + GA, respectively. The median AA intake for the whole group of adolescents, as estimated from dietary recall data combined with reported concentrations in food, was 0.40 μg/kg bw/day. The corresponding median intake estimated from measured Hb adduct levels of AA was 0.20 μg/kg bw/day. A significant, although low, positive Spearman correlation was found between the two intake estimates (p-value = 8 × 10-3; ρ = 0.11). From the estimated intake of AA from food frequency questionnaires, significance was found for the 15-year-old children with higher AA adduct levels observed at higher consumption frequencies of fried potatoes/French fries. AA is considered a genotoxic carcinogen. For the estimated intake of AA for any age group and method (dietary recall or AA adduct), both a calculated margin of exposure as well as lifetime quantitative cancer risk estimates indicate health concern. A future study on food consumption designed with respect to AA exposure would provide a better understanding of the correlation between consumption and exposure and should give a more reliable estimate of the contribution of dietary AA to the overall cancer risk.
Collapse
Affiliation(s)
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Sanna Lignell
- Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | - Johan Rosén
- Division of Laboratory Investigation and Analysis, Swedish Food Agency, Uppsala, Sweden
| | - Jenny Aasa
- Division of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| |
Collapse
|
3
|
Vryonidis E, Törnqvist M, Myhre O, Dirven H, Husøy T. Dietary intake of acrylamide in the Norwegian EuroMix biomonitoring study: Comparing probabilistic dietary estimates with haemoglobin adduct measurements. Food Chem Toxicol 2023; 180:114031. [PMID: 37696467 DOI: 10.1016/j.fct.2023.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Acrylamide is a probable human carcinogen with widespread exposure via food. The present study compared acrylamide intake measurements obtained from haemoglobin adduct levels and self-registered dietary consumption data in a group of 144 Norwegian healthy adults. Acrylamide adducts to N-terminal valine in haemoglobin were measured and used to estimate the intake via the internal dose approach which showed a median (interquartile range) of 0.24 (0.19-0.30) μg/kg bw/day. Data from weighed food records and food frequency questionnaires from the same individuals were used for probabilistic modelling of the intake of acrylamide. The median acrylamide intake was calculated to be 0.26 (0.16-0.39) and 0.30 (0.23-0.39) μg/kg bw/day, respectively from the two sources of self-registered dietary consumption data. Overall, a relatively good agreement was observed between the methods in pairwise comparison in Bland-Altman plots, with the methods disagreeing with 7% or less of the values. The intake estimates obtained with the two dietary consumption methods and one biomarker method are in line with earlier dietary estimates in the Norwegian population. The Margin of Exposure indicate a possible health risk concern from dietary acrylamide. This is the first study with a comparison in the same individuals of acrylamide intake estimates obtained with these methods.
Collapse
Affiliation(s)
- Efstathios Vryonidis
- Department of Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Chemical Toxicology, Norwegian Institute of Public Health, NO-0456, Oslo, Norway
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health, NO-0456, Oslo, Norway
| | - Trine Husøy
- Department of Food Safety, Norwegian Institute of Public Health, NO-0456, Oslo, Norway.
| |
Collapse
|
4
|
Lin YS, Morozov V, Kadry AR, Caffrey JL, Chou WC. Reconstructing population exposures to acrylamide from human monitoring data using a pharmacokinetic framework. CHEMOSPHERE 2023; 331:138798. [PMID: 37137393 PMCID: PMC12035573 DOI: 10.1016/j.chemosphere.2023.138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Acrylamide toxicity involves several metabolic pathways. Thus, a panel of blood and urinary biomarkers for the evaluation of acrylamide exposure was deemed appropriate. OBJECTIVE The study was designed to evaluate daily acrylamide exposure in US adults via hemoglobin adducts and urinary metabolites using a pharmacokinetic framework. METHODS A cohort of 2798 subjects aged 20-79 was selected from the National Health and Nutrition Examination Survey (NHANES, 2013-2016) for analysis. Three acrylamide biomarkers including hemoglobin adducts of acrylamide in blood and two urine metabolites, N-Acetyl-S-(2-carbamoylethyl)cysteine (AAMA) and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA) were used to estimate daily acrylamide exposure using validated pharmacokinetic prediction models. Multivariate regression models were also used to examine key factors in determining estimated acrylamide intake. RESULTS The estimated daily acrylamide exposure varied across the sampled population. Estimated acrylamide daily exposure was comparable among the three different biomarkers (median: 0.4-0.7 μg/kg/d). Cigarette smoking emerged as the leading contributor to the acquired acrylamide dose. Smokers had the highest estimated acrylamide intake (1.20-1.49 μg/kg/d) followed by passive smokers (0.47-0.61) and non-smokers (0.45-0.59). Several covariates, particularly, body mass index and race/ethnicity, played roles in determining estimated exposures. DISCUSSION Estimated daily acrylamide exposures among US adults using multiple acrylamide biomarkers were similar to populations reported elsewhere providing additional support for using the current approach in assessing acrylamide exposure. This analysis assumes that the biomarkers used indicate intake of acrylamide into the body, which is consistent with the substantial known exposures due to diet and smoking. Although this study did not explicitly evaluate background exposure arising from analytical or internal biochemical factors, these findings suggest that the use of multiple biomarkers may reduce uncertainties regarding the ability of any single biomarker to accurately represent actual systemic exposures to the agent. This study also highlights the value of integrating a pharmacokinetic approach into exposure assessments.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Office of Research and Development, US Environmental Protection Agency, Washington, DC, 20460, USA.
| | - Viktor Morozov
- Office of Research and Development, US Environmental Protection Agency, Washington, DC, 20460, USA
| | - Abdel-Razak Kadry
- School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - James L Caffrey
- Institute of Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Wei-Chun Chou
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
5
|
Bandeira LC, Pinto L, Carneiro CM. Pharmacometrics: The Already-Present Future of Precision Pharmacology. Ther Innov Regul Sci 2023; 57:57-69. [PMID: 35984633 DOI: 10.1007/s43441-022-00439-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
The use of mathematical modeling to represent, analyze, make predictions or providing information on data obtained in drug research and development has made pharmacometrics an area of great prominence and importance. The main purpose of pharmacometrics is to provide information relevant to the search for efficacy and safety improvements in pharmacotherapy. Regulatory agencies have adopted pharmacometrics analysis to justify their regulatory decisions, making those decisions more efficient. Demand for specialists trained in the field is therefore growing. In this review, we describe the meaning, history, and development of pharmacometrics, analyzing the challenges faced in the training of professionals. Examples of applications in current use, perspectives for the future, and the importance of pharmacometrics for the development and growth of precision pharmacology are also presented.
Collapse
Affiliation(s)
- Lorena Cera Bandeira
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Leonardo Pinto
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
6
|
Trends of Exposure to Acrylamide as Measured by Urinary Biomarkers Levels within the HBM4EU Biomonitoring Aligned Studies (2000–2021). TOXICS 2022; 10:toxics10080443. [PMID: 36006122 PMCID: PMC9415341 DOI: 10.3390/toxics10080443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014–2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000–2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.
Collapse
|
7
|
Li Y, Jiang J, Wang Q, Zhu L, Jia W, Chen X, Zhang Y. The construction and application of physiologically based toxicokinetic models for acrylamide, glycidamide and their biomarkers in rats and humans. CHEMOSPHERE 2022; 292:133458. [PMID: 34971622 DOI: 10.1016/j.chemosphere.2021.133458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (AA), a class 2A probable carcinogen to humans classified by the International Agency for Research on Cancer, has attracted extensive attention worldwide since it was widely used in industrial and domestic water treatment and detected in thermal processing foods. The metabolic adducts of AA and its primary metabolite glycidamide (GA) have been served as biomonitoring markers of AA intake, but the physiologically based toxicokinetics (PBTK) models to estimate internal dosimetry still remain unclear. An updated PBTK model for AA, GA and their metabolic biomarkers in rats and humans was developed and extended with time-course datasets from both literatures and our experiments. With adjustments to the model parameters, linear regression correlation coefficient (R2) between the fitting values and the validation datasets of rats and humans was greater than 0.76. The current model fits well with the experimental datasets of urinary N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA) and (N-(R,S)-acetyl-S-(carbamoyl-2-hydroxyethyl)-l-cysteine) (GAMA) of rats exposed to AA from 0.1 to 50 mg/kg b.w. and humans exposed to AA from 0.0005 to 0.020 mg/kg b.w., indicating the robustness of the current models. Parameters for adduct of AA with N-terminal valine of hemoglobin (AAVal) were extended to humans and validated. Kinetic parameters for rats were assessed and validated based upon fit to the experimental datasets for liver N3-(2-carbamoyl-2-hydroxyethyl)-adenine (N3-GA-Ade) and N7-(2-carbamoyl-2-hydroxyethyl)-guanine (N7-GA-Gua) adducts. Compared with the previous model, the developed model included the correlation between AA intake and its mercapturic acid adducts, AAMA and GAMA, in a larger dose range with new experimental data, and parameters for AAVal, N3-GA-Ade and N7-GA-Gua were improved and verified. The current multi-component PBTK models provide a superior foundation for the estimation of short-term to medium and long-term intake levels of human exposure to AA.
Collapse
Affiliation(s)
- Yaoran Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiahao Jiang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Li Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
8
|
Felter SP, Bhat VS, Botham PA, Bussard DA, Casey W, Hayes AW, Hilton GM, Magurany KA, Sauer UG, Ohanian EV. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit Rev Toxicol 2022; 51:653-694. [DOI: 10.1080/10408444.2021.2003295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - David A. Bussard
- U.S. Environmental Protection Agency, Office of the Science Advisor, Policy and Engagement, Washington, DC, USA
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gina M. Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | - Edward V. Ohanian
- United States Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
9
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Diamond GL, Skoulis NP, Jeffcoat AR, Nash JF. A Physiological-Based Pharmacokinetic Model For The Broad Spectrum Antimicrobial Zinc Pyrithione: II. Dermal Absorption And Dosimetry In The Rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:609-631. [PMID: 33886436 DOI: 10.1080/15287394.2021.1912678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The broad spectrum antimicrobial/antifungal zinc pyrithione (ZnPT) is used in products ranging from antifouling paint to antidandruff shampoo. The hazard profile of ZnPT was established based upon comprehensive toxicological testing, and products containing this biocide have been safely used for years. The purpose of this study was to create a dermal physiologically based pharmacokinetic (PBPK) model for ZnPT in the rat for improving dose-response analysis of ZnPT-induced toxicity where reversible hindlimb weakness was the endpoint used as the basis for ZnPT risk assessments. Previously, we developed a PBPK model which simulated the kinetics of pyrithione (PT) and its major metabolites 2-(methylsulfonyl)pyridine and S-glucuronide conjugates in blood and tissues of rats following oral ZnPT administration. The dermal model was optimized utilizing in vitro dermal penetration investigations conducted with rat skin and with historical data from a dermal repeat dose study using rats. The model replicated the observed temporal patterns and elimination kinetics of [14C]PT equivalents in blood and urine during and following repeated dermal dosing and replicated the observed dose-dependencies of absorption, blood [14C]PT equivalents and plasma PT concentrations. The model provided internal dosimetry predictions for a benchmark dose analysis of hindlimb weakness in rats that combined dermal, gavage and dietary studies into a single internal dose-response model with area-under-the-curve (AUC) for plasma PT, the toxic moiety in the rat, as the internal dose metric. This PBPK model has predictive validity for calculating internal doses of PT and/or [14C]PT equivalents from different routes of exposure in the rat.
Collapse
Affiliation(s)
| | - Nicholas P Skoulis
- SFA Toxicology & Risk Management Services., Glastonbury, Connecticut, USA
| | | | - J Frank Nash
- The Procter & Gamble Company, Global Product Stewardship, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Lindeman B, Johansson Y, Andreassen M, Husøy T, Dirven H, Hofer T, Knutsen HK, Caspersen IH, Vejrup K, Paulsen RE, Alexander J, Forsby A, Myhre O. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reprod Toxicol 2021; 101:93-114. [PMID: 33617935 DOI: 10.1016/j.reprotox.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
Collapse
Affiliation(s)
- Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Trine Husøy
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle K Knutsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine Vejrup
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jan Alexander
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
12
|
Wang B, Guerrette Z, Whittaker MH, Ator J. Derivation of a No significant risk level (NSRL) for acrylamide. Toxicol Lett 2020; 320:103-108. [PMID: 31816332 DOI: 10.1016/j.toxlet.2019.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
Acrylamide is included on the State of California's Proposition 65 list as a carcinogen. Acrylamide is found in cigarette smoke and in many types of foods, including breads, cereals, coffee, cookies, French fries, and potato chips. In 1990, California's Office of Environmental Health Hazard Assessment (OEHHA) established a no significant risk level (NSRL) of 0.2 μg/day for acrylamide. Since then, multiple cancer studies have been published. In this report, we developed an updated NSRL for acrylamide. Using benchmark dose modeling and a weight-of-evidence, non-threshold approach to identify the most sensitive species, cancer slope factors (CSFs) were derived based on combined incidences of statistically significant neoplastic lesions in the Harderian gland, lung, and stomach in male mice. We then used a toxicokinetic (TK)-based scaling approach to convert the animal CSF to a human equivalent CSF, which served as the basis for the NSRL of 1.1 μg/day at the cancer risk level of 1 in 100,000. This NSRL can be used in quantitative exposure assessments to assess compliance with Proposition 65 to ascertain either the need for or exemption from the Proposition 65 labeling requirement and drinking water discharge prohibition.
Collapse
Affiliation(s)
- Bingxuan Wang
- ToxServices LLC, 1367 Connecticut Ave, NW Suite 300, Washington, D.C., 20036, US.
| | - Zach Guerrette
- ToxServices LLC, 1367 Connecticut Ave, NW Suite 300, Washington, D.C., 20036, US
| | - Margaret H Whittaker
- ToxServices LLC, 1367 Connecticut Ave, NW Suite 300, Washington, D.C., 20036, US
| | - Jennifer Ator
- ToxServices LLC, 1367 Connecticut Ave, NW Suite 300, Washington, D.C., 20036, US
| |
Collapse
|
13
|
Choi SY, Ko A, Kang HS, Hwang MS, Lee HS. Association of urinary acrylamide concentration with lifestyle and demographic factors in a population of South Korean children and adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18247-18255. [PMID: 31041702 DOI: 10.1007/s11356-019-05037-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Acrylamide (AA) has been identified as probably carcinogenic to humans and thus represents a potential public health threat. This study aimed to determine the urinary concentrations of AA and N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) in a nationally representative sample (n = 1025) of children and adolescents (age range 3-18 years) in South Korea. The AA and AAMA detection rates and geometric mean concentrations were 97%, 19.1 ng/mL, and 98.7%, 26.4 ng/mL, respectively. Although urinary AA levels did not vary widely by age (17.2 ng/mL at 3-6 years, 19.9 ng/mL at 7-18 years), the urinary concentration of AAMA increased with age (18.3 ng/mL at 3-6 years, 30.4 ng/mL at 7-18 years). A multiple linear regression analysis revealed that the urinary levels of AA and AAMA varied significantly by sex, with the adjusted proportional changes indicating rates of 1.47- to 1.48-fold higher at 3-6 years and 1.36- to 1.68-fold higher at 7-18 years among males relative to females. Furthermore, the urinary levels of AA and AAMA correlated with the consumption of certain foods (doughnuts, hotdogs, popcorn, and nachos) among male subjects aged 7-18 years. The urinary concentrations of AA and AAMA increased significantly with the smoking status and passive smoking exposure, with adjusted proportional changes of 1.51 to 1.71-fold higher among smokers relative to non-smokers in the age range of 7-18 years. Exposure to smoking for > 30 min led to adjusted proportional increases in AA and AAMA of 1.51 and 1.77 times in the non-smoking group aged 3-6 years and a 1.52-fold increase in AAMA in the non-smoking group aged 7-18 years. In conclusion, the urinary levels of AA and AAMA were found to associate with age, sex, smoking, and food consumption in a population of Korean children and adolescents.
Collapse
Affiliation(s)
- Soo Yeon Choi
- Pesticide and Veterinary Drugs Residue Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea
| | - Ahra Ko
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea
| | - Hui-Seung Kang
- Pesticide and Veterinary Drugs Residue Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea.
| | - Myung-Sil Hwang
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea
| | - Hee-Seok Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Osong, Cheongju, Chungcheongbuk-do, 361-709, Republic of Korea.
| |
Collapse
|
14
|
Tan YM, Worley RR, Leonard JA, Fisher JW. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. Toxicol Sci 2019; 162:341-348. [PMID: 29385573 DOI: 10.1093/toxsci/kfy010] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has thus far occurred for only a few environmental chemicals. In order to encourage decision-makers to embrace the critical role of PBPK modeling in risk assessment, several important challenges require immediate attention from the modeling community. The objective of this contemporary review is to highlight 3 of these challenges, including: (1) difficulties in recruiting peer reviewers with appropriate modeling expertise and experience; (2) lack of confidence in PBPK models for which no tissue/plasma concentration data exist for model evaluation; and (3) lack of transferability across modeling platforms. Several recommendations for addressing these 3 issues are provided to initiate dialog among members of the PBPK modeling community, as these issues must be overcome for the field of PBPK modeling to advance and for PBPK models to be more routinely applied in support of public health decision-making.
Collapse
Affiliation(s)
- Yu-Mei Tan
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Rachel R Worley
- Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30341
| | - Jeremy A Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | - Jeffrey W Fisher
- National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arizona 72079
| |
Collapse
|
15
|
Abramsson-Zetterberg L. Strongly heated carbohydrate-rich food is an overlooked problem in cancer risk evaluation. Food Chem Toxicol 2018; 121:151-155. [DOI: 10.1016/j.fct.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
16
|
Finding synergies for 3Rs – Toxicokinetics and read-across: Report from an EPAA partners' Forum. Regul Toxicol Pharmacol 2018; 99:5-21. [DOI: 10.1016/j.yrtph.2018.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 08/16/2018] [Indexed: 01/11/2023]
|
17
|
Li M, Gehring R, Riviere JE, Lin Z. Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations. Toxicol Sci 2018; 164:85-100. [DOI: 10.1093/toxsci/kfy067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
18
|
Parallelogram based approach for in vivo dose estimation of genotoxic metabolites in humans with relevance to reduction of animal experiments. Sci Rep 2017; 7:17560. [PMID: 29242644 PMCID: PMC5730592 DOI: 10.1038/s41598-017-17692-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
When employing metabolism studies of genotoxic compounds/metabolites and cancer tests for risk estimation, low exposure doses in humans are roughly extrapolated from high exposure doses in animals. An improvement is to measure the in vivo dose, i.e. area under concentration-time curve (AUC), of the causative genotoxic agent. In the present work, we propose and evaluate a parallelogram based approach for estimation of the AUC of genotoxic metabolites that incorporates in vitro metabolic data and existing knowledge from published in vivo data on hemoglobin (Hb) adduct levels, using glycidamide (GA) as a case study compound that is the genotoxic metabolite of acrylamide (AA). The estimated value of AUC of GA per AUC of AA from the parallelogram approach vs. that from Hb adduct levels measured in vivo were in good agreement; 0.087 vs. 0.23 in human and 1.4 vs. 0.53 in rat, respectively. The described parallelogram approach is simple, and can be useful to provide an approximate estimation of the AUC of metabolites in humans at low exposure levels for which sensitive methods for analyzing the metabolites are not available, as well as aid in reduction of animal experiments for metabolism studies that are to be used for cancer risk assessment.
Collapse
|
19
|
Diamond GL, Skoulis NP, Jeffcoat AR, Nash JF. A physiologically based pharmacokinetic model for the broad-spectrum antimicrobial zinc pyrithione: I. Development and verification. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:69-90. [PMID: 28085645 DOI: 10.1080/15287394.2016.1245123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/27/2016] [Indexed: 05/19/2023]
Abstract
The broad-spectrum antimicrobial zinc pyrithione (ZnPT) is used in numerous products ranging from in-can preservative/mildicide in paints to antidandruff shampoo. Although products containing ZnPT have a long history of safe use, regulatory agencies routinely set limits of exposure based upon toxicological considerations. The objective of this study was to create a physiologically based pharmacokinetic (PBPK) model for ZnPT in the rat for improving dose-response analysis of ZnPT-induced toxicity, reversible hindlimb weakness, the endpoint that has been used as the basis for ZnPT risk assessments. A rat oral PBPK model was developed that includes compartments for plasma, liver, kidneys, muscle, brain, and rapidly and slowly perfused tissues. Pyrithione metabolism to 2-(methylsulfonyl)pyridine (MSP) and glucuronide conjugates was incorporated into the model. The model was parameterized and optimized based upon data from single-dose intravenous (iv) and oral gavage pharmacokinetic studies of radiolabeled pyrithione ([14C]PT) administered as zinc [14C]-pyrithione (Zn-[14C]PT) to adult female rats. It was further evaluated and refined using data from repeated, multidose oral gavage and dietary studies of Zn[14C]PT in the adult female rat that included measurements of plasma PT concentration, the putative toxic species. The model replicated the observed short-term elimination kinetics of PT in plasma and [14C]PT in whole blood following single doses and longer term temporal patterns of plasma and blood concentrations during repeated dosing schedules. The model also accounted for production and rapid elimination of S-glucuronide conjugates (SG) of 2-pyridinethiol and 2-pyridinethiol-1-oxide in urine, as well as production and slower elimination of MSP, the major [14C]PT species in blood within several hours following administration of ZnPT. The model provided internal dosimetry predictions for a benchmark dose (BMD) analysis of hindlimb weakness in rats, and was used to combine gavage and dietary studies into a single internal dose-response model with area under the curve (AUC) for plasma PT as the internal dose metric. This PBPK model has predictive validity for calculating internal doses of PT and/or [14C]PT from different routes of exposure in the rat.
Collapse
Affiliation(s)
| | | | | | - J Frank Nash
- d The Procter & Gamble Company , Cincinnati , Ohio , USA
| |
Collapse
|
20
|
|