1
|
Fantatto RR, Gomes AR, Constantini JVC, Rodero CF, Chorilli M, Chagas ACDS, Melero A, Pietro RCLR. Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract. Gels 2024; 10:658. [PMID: 39451311 PMCID: PMC11508096 DOI: 10.3390/gels10100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The Rhipicephalus microplus tick causes enormous economic losses in livestock farming around the world. Despite several promising studies carried out with plant extracts such as Achyrocline satureioides against this ectoparasite, a major obstacle is related to pharmaceutical presentation forms. There is no study showing xantan gum-based hydrogel and polycaprolactone nanoparticles containing A. satureioides extract against R. microplus larvae. The objective of this study was to incorporate A. satureioides extract to develop a nanoformulation (AScn) and a hydrogel (ASlh) and evaluate them against R. microplus larvae with the purpose of increasing the contact time of the extract with the larvae and improve the effectiveness. The ethanolic extracts were incorporated in polycaprolactone nanoparticles and characterized via analysis of the mean hydrodinamic diameter and polidispersity index. The xanthan gum-based hydrogel formulation was prepared with crude extract of A. satureioides 40 mg/mL, 0.25% xanthan gum, and 8% poloxamer, to determine the bioadhesiveness of the formulation in bovine leather and the flow rate of the formulation in the animal. The results in larvae demonstrated that when evaluated in the form of a hydrogel (ASlh), mortality was higher, with 91.48% mortality at a concentration of 20 mg/mL presenting itself as an interesting alternative for controlling this ectoparasite.
Collapse
Affiliation(s)
- Rafaela Regina Fantatto
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - Annelize Rodrigues Gomes
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - João Vitor Carvalho Constantini
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - Camila Fernanda Rodero
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Departament of Drugs and Medicines, São Paulo State University UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14800-903, Brazil
| | | | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | | |
Collapse
|
2
|
Mânica da Cruz IB, Chelotti ME, Turra BO, Cardoso de Afonso Bonotto N, Pulcinelli DF, Kerkhoff Escher AL, Klein C, de Azevedo Mello P, Bitencourt GR, Barbisan F. Achyrocline satureioides infusion, popularly prepared and consumed, has an in vitro protective effect on human neural cells exposed to rotenone. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118350. [PMID: 38763375 DOI: 10.1016/j.jep.2024.118350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional harvest of Achyrocline satureioides (AS) occurs at dawn on Good Friday in some South American countries. Inflorescences are traditionally used as infusions for several disorders, including neuropsychiatric disorders. Pillows and cushions are popularly filled with AS to attenuate the symptoms of depression, anxiety, and sleep disturbances. However, evidence for the potential beneficial effects of AS on human neural cells remains unclear. AIM OF THE STUDY An in vitro model of SH-SY5Y human neural cells was applied to evaluate the effect of AS infusion, prepared as commonly used, on cells exposed to rotenone and to investigate its potential for neuropsychiatric disorders. MATERIALS AND METHODS A hot aqueous extract was obtained from a traditionally prepared AS inflorescence infusion and chemically characterized by high-resolution mass spectrometry and spectrophotometric quantification of total polyphenols, tannins, and flavonoids. The SH-SY5Y cell cultures were treated with AS extract at concentrations of 1, 3, 5, 10, 50, 100, and 300 μL/mL to determine the potential cyto- and genotoxic effects of AS on neural cells using MTT, Neutral Red, and GEMO assays. Apoptosis modulation was assessed using flow cytometry and apoptosis-modulating genes were evaluated by qRT-PCR. The protective effect of AS on the neurotoxicity triggered by rotenone exposure (30 nM) was determined by analyzing cellular viability and oxidative markers such as lipid peroxidation and protein carbonylation, and DNA damage was assessed by micronucleus assay. RESULTS The AS extract, as traditionally prepared, had estimated concentrations of 409.973 ± 31.107 μg/mL, 0.1041 ± 0.0246 mg GAE/mL, and 63.309 ± 3.178 mg QE/mL of total tannins, total polyphenols, and flavonoids, respectively. At concentrations of 30 and 100 μl/mL, AS decreased apoptotic events, whereas the highest concentration (300 μl/mL) increased apoptosis compared to that in the control (p < 0.05). In cells exposed to rotenone, AS treatment induced cell proliferation, reduced DNA damage (as evaluated by micronuclei), and reduced lipid and protein oxidation. CONCLUSIONS The data indicate the non-cytotoxic and beneficial effects of AS extract on human neural cells by reducing cellular mortality and oxidative stress in neural cells triggered by rotenone exposure.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Maria Eduarda Chelotti
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Barbara Osmarin Turra
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Débora Felipetto Pulcinelli
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Laura Kerkhoff Escher
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Caroline Klein
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Paola de Azevedo Mello
- Departamento de Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Gustavo Rossato Bitencourt
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
Santos PA, Uczay M, Pflüger P, Lobo LAC, Rott MB, Fontenla JA, Rodrigues Siqueira I, Pereira P. Toxicological assessment of the Achyrocline satureioides aqueous extract in the Caenorhabditis elegans alternative model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:730-751. [PMID: 38904345 DOI: 10.1080/15287394.2024.2368618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.
Collapse
Affiliation(s)
- Péterson Alves Santos
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Uczay
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pricila Pflüger
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Larissa Aline Carneiro Lobo
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose Angel Fontenla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ionara Rodrigues Siqueira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pereira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Pinheiro Machado GT, Veleirinho MB, Ferreira RG, Zuglianello C, Lemos-Senna E, Kuhnen S. Protection of bovine mammary epithelial cells by a nanoemulsion of the medicinal herb Achyrocline satureioides (Lam.) DC and its capacity of permeation through mammary epithelium. J DAIRY RES 2022; 89:1-6. [PMID: 35225191 DOI: 10.1017/s0022029922000139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The low levels of toxicity and cytoprotective effect attributed to Achyrocline satureioides (Lam.) DC, a medicinal plant native to South America, are of interest for bovine mastitis therapy. This research paper reports the hypothesis that a nanoemulsion of macela extract (Achyrocline satureioides) exerts protective effects on bovine mammary alveolar cells -T (MAC-T) and increases the permeation of flavonoid compounds through mammary epithelium. Extract-loaded nanoemulsions (2.5 mg/ml) (NE-ML) (n = 4) were prepared using high-pressure homogenization with varying concentrations of flaxseed oil and Tween 80. Permeation and retention of free and nanoencapsulated quercetin, 3-O-methylquercetin and luteolin were performed on mammary glandular epithelium using Franz diffusion cells. The cell viability was evaluated on mammary epithelial cells (MAC-T lineage) using the MTT method (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) after exposure to loaded and blank nanoemulsions (NE-ML and NE-BL). Necrotic or apoptotic cell death was evaluated by flow cytometry after exposure to nanoemulsions (NE-ML and NE-BL). Subsequently, the cell death was assessed by previously treating MAC-T cells with NE-ML for 23 h, followed by exposure to H2O2 (2 mM) for 1 h. Higher permeation of quercetin and 3-O-methylquercetin in NE-ML was found compared to that of free extract with a final permeated amount of 50.7 ± 3.2 and 111.2 ± 0.6 μg/cm2 compared to 35.0 ± 0.6 and 48.9 ± 1.2, respectively. For NE-BL, the IC50 was at least 1.3% (v/v), while for the NE-ML, it was at least 2.6% (v/v). After exposure to NE-ML (5 and 1.2%, v/v), the percentage of apoptotic cells was reduced (±30%). For the H2O2 assay, the percentage of cells in necrosis was reduced by 40% after exposure to NE-ML1% (v/v) + H2O2 2 mM. The protective effects and increased permeation of macela nanoemulsion make this a promising new candidate for bovine mastitis therapy.
Collapse
Affiliation(s)
- Gabriela T Pinheiro Machado
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Maria B Veleirinho
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Roberto G Ferreira
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Carine Zuglianello
- Pharmaceutical Technology Laboratory, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Elenara Lemos-Senna
- Pharmaceutical Technology Laboratory, Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| | - Shirley Kuhnen
- Biochemistry and Natural Products Laboratory (LABINAT), Federal University of Santa Catarina, Florianópolis88040-900, Brazil
| |
Collapse
|
5
|
Magnoli A, Poloni V, Cristofolini L, Merkis C, Escobar F, Torres C, Chiacchiera S, Cavaglieri L. Effects of aflatoxin B1 and monensin interaction on liver and intestine of poultry – influence of a biological additive (Pichia kudriavzevii RC001). WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the effects of aflatoxin B1 (AFB1) and monensin (MONS) interaction on the liver and intestinal histological changes in poultry, and the influence of Pichia kudriavzevii RC001. One-day-old commercial line (Ross 308) broilers (n=120) were individually weighed and randomly assigned to 8 treatments (15 broilers/treatment, 5 broilers per cage and 3 replicates/treatment). The experimental diets were: Group 1: basal diet (BD); Group 2: BD + MONS (50 mg/kg); Group 3: BD + P. kudriavzevii RC001 (1 g/kg); Group 4: BD + AFB1 (100 μg/kg); Group 5: BD + MONS + P. kudriavzevii RC001; Group 6: BD + AFB1 + P. kudriavzevii RC001; Group 7: BD + AFB1 + MONS + P. kudriavzevii RC001; Group 8: BD + AFB1 + MONS. When MONS was added, the typical AFB1 macroscopic and microscopic alterations were intensified. The P. kudriavzevii RC001 cytotoxicity and genotoxicity assays with Vero cells and with broiler chicken’s erythrocytes, demonstrated that P. kudriavzevii RC001 neither were non-cytotoxic nor genotoxic. When MONS was added in the presence of P. kudriavzevii RC001, the toxic effect of AFB1 on liver was not prevented. When P. kudriavzevii was present alone, the same prevention of the pathological damage was observed in the intestine of poultry fed with AFB1. The smallest apparent absorption area was obtained when AFB1 and MONS were added in the feed (P<0.05). AFB1 and MONS interaction demonstrated important toxic effects. Although P. kudriavzevii was effective in ameliorating the adverse effects of AFB1 alone on liver pathology and gut morphology, it was not able to diminish the toxic effects of AFB1 in presence of MONS. It suggests that P. kudriavzevii could be used as feed additive or counteracting the toxic effects of AFB1 in poultry production in the absence of MONS.
Collapse
Affiliation(s)
- A.P. Magnoli
- Departamento de Producción Animal, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
| | - V. Poloni
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - L.A. Cristofolini
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Área de Microscopia Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - C.I. Merkis
- Área de Microscopia Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - F.M. Escobar
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - C.V. Torres
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - S.M. Chiacchiera
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Química, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| | - L. Cavaglieri
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Ma X, Hao C, Zhang Z, Jiang H, Zhang W, Huang J, Chen X, Yang W. Shenjinhuoxue Mixture Attenuates Inflammation, Pain, and Cartilage Degeneration by Inhibiting TLR-4 and NF- κB Activation in Rats with Osteoarthritis: A Synergistic Combination of Multitarget Active Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4190098. [PMID: 34777686 PMCID: PMC8589511 DOI: 10.1155/2021/4190098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023]
Abstract
Osteoarthritis (OA), a highly prevalent chronic joint disease, involves a complex network of inflammatory mediators that not only triggers pain and cartilage degeneration but also accelerates disease progression. Traditional Chinese medicinal shenjinhuoxue mixture (SHM) shows anti-inflammatory and analgesic effects against OA with remarkable clinical efficacy. This study explored the mechanism underlying anti-OA properties of SHM and evaluated its efficacy and safety via in vivo experiments. Through network pharmacology and published literature, we identified the key active phytochemicals in SHM, including β-sitosterol, oleanolic acid, licochalcone A, quercetin, isorhamnetin, kaempferol, morusin, lupeol, and pinocembrin; the pivotal targets of which are TLR-4 and NF-κB, eliciting anti-OA activity. These phytochemicals can enter the active pockets of TLR-4 and NF-κB with docking score ≤ -3.86 kcal/mol, as shown in molecular docking models. By using surface plasmon resonance assay, licochalcone A and oleanolic acid were found to have good TLR-4-binding affinity. In OA rats, oral SHM at mid and high doses (8.72 g/kg and 26.2 g/kg) over 6 weeks significantly alleviated mechanical and thermal hyperalgesia (P < 0.0001). Accordingly, the expression of inflammatory mediators (TLR-4, interleukin (IL-) 1 receptor-associated kinase 1 (IRAK1), NF-κB-p65, tumor necrosis factor (TNF-) α, IL-6, and IL-1β), receptor activator of the NF-κB ligand (RANKL), and transient receptor potential vanilloid 1 (TRPV1) in the synovial and cartilage tissue of OA rats was significantly decreased (P < 0.05). Moreover, pathological observation illustrated amelioration of cartilage degeneration and joint injury. In chronic toxicity experiment of rats, SHM at 60 mg/kg demonstrated the safety. SHM had an anti-inflammatory effect through a synergistic combination of active phytochemicals to attenuate pain and cartilage degeneration by inhibiting TLR-4 and NF-κB activation. This study provided the experimental foundation for the development of SHM into a more effective dosage form or new drugs for OA treatment.
Collapse
Affiliation(s)
- Xiaoqin Ma
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Xi'an Children's Hospital, Xi'an, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiting Jiang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Sabini M, Cariddi L, Escobar F, Mañas F, Roma D, Candela FM, Bagnis G, Soria E, Sabini L, Dalcero A. Preventive effects of the antioxidant and antigenotoxic Achyrocline satureioides extract against zearalenone-induced mammal cytogenotoxicity and histological damage. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zearalenone (ZEN), a Fusarium’s mycotoxin, is immunotoxic, genotoxic, hepatonephrotoxic and, affects the reproductive system. ZEN induces toxic and genotoxic effects on humans and other animals. Achyrocline satureioides has several medicinal properties. Moreover, the aqueous extract of A. satureioides is a safe agent that exerts low cytotoxicity and no genotoxicity. This extract is a promissory candidate to counteract ZEN effects. The present study aimed to investigate the capacity of cold aqueous extract from A. satureioides to protect against ZEN multi-target toxicity in different experimental mammal models. Anticytotoxicity was evaluated by neutral red uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium reduction assays. Comet assay and micronuclei test, oxidative stress (TBARs), and histopathological damage were evaluated in Balb/C mice. Anticytotoxic studies indicated that cold aqueous extract (100 and 300 μg/ml) protected from damage induced by ZEN (50 μg/ml) on Vero cells. In vivo studies indicated that ZEN (40 mg/kg body weight) induced an increase of genotoxicity: micronuclei (34 MNPCE/1000 PCE) and increase of damage (tail moment) in blood cells. Also, it increased lipid peroxidation in liver and kidneys and generated several histopathological alterations in both organs. Cold aqueous extract (100 mg/kg body weight) protected from genotoxicity induced by ZEN in both tests. Cold aqueous extract, also, reduced the lipid peroxidation and histopathological damage in liver and kidneys. In conclusion, the cold aqueous extract of A. satureioides that contains bioactive flavonoids prevents the multi-target toxicity induced by ZEN improving all the parameters evaluated in vitro and in vivo, which is a valuable and original finding in order to develop future treatments for human and veterinary medicine.
Collapse
Affiliation(s)
- M.C. Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, FCM, Córdoba, Argentina
| | - L.N. Cariddi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F.M. Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F. Mañas
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - D. Roma
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F. Menis Candela
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - G. Bagnis
- Cátedra de Histología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - E.A. Soria
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Universidad Nacional de Córdoba, CONICET, FCM, Córdoba, Argentina
| | - L.I. Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - A.M. Dalcero
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| |
Collapse
|
8
|
Machado GTP, Veleirinho MB, Honorato LA, Kuhnen S. Formulation and evaluation of anti-MRSA nanoemulsion loaded with Achyrocline satureioides: a new sustainable strategy for the bovine mastitis. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abbcac] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes mastitis in dairy cattle with serious economic and public health significance. This study developed nanoemulsions of Linum usitatissimun oil loaded with Achyrocline satureioides (macela) extract and investigated their in vitro antimicrobial activity against MRSA. Macela-nanoemulsions (NE-ML) were prepared using high-pressure homogenization (HPH) with different proportions of flaxseed oil, Tween 80 and crude extract. Four majoritarian flavonoids were identified in the macela extract: 3-O methylquercetin, achyrobichalcone, quercetin and luteolin (187.3 ± 0.1, 155.4 ± 11.6, 76.3 ± 0.1 and 30.4 ± 0.0 μg ml−1, respectively). NE-ML nanoemulsions were successfully obtained by the HPH method and showed a milky aspect with yellowish color. The mean particle size was around 200 nm with monodisperse distribution (PdI < 0.2), remaining stable for 160 days at room temperature. When analyzed on a LUMiSizer high-end dispersion analyzer, low values were found (≤0.5), indicating high stability index, mainly for NE-ML1:5 (0.2). The encapsulation efficiency of macela-nanoemulsions was greater than 94%, considering the four chemical compounds from extract. Minimum inhibitory concentration (MIC) against planktonic bacteria, inhibition of biofilm formation (MBIC), and eradication of MRSA biofilms (MBEC) were determined through in vitro tests on microplates. The MIC of NE-ML against planktonic MRSA showed values ranging from 1.2 to 10% (v/v), while blank-nanoemulsions (NE-B, without macela extract) showed values ranging from 6 to 50% (v/v). MBIC and MBEC of NE-ML were 25 and 80% (v/v), respectively. MBIC showed a mass reduction greater than 64%, and MBEC showed a mass reduction greater than 73%. Macela-nanoemulsions (NE-ML), mainly NE-ML1:5, showed high antimicrobial activity and appeared to represent a new alternative of sustainable antimicrobial product for the control of MRSA. Since this innovative nanoemulsion can impact animal health, future research should include in vitro and in vivo studies to evaluate intramammary therapy and control of MRSA infections in organic and agroecological milk production systems.
Collapse
|
9
|
Ormazabal P, Herrera K, Cifuentes M, Paredes A, Morales G, Cruz G. Protective effect of the hydroalcoholic extract from Lampaya medicinalis Phil. (Verbenaceae) on palmitic acid- impaired insulin signaling in 3T3-L1 adipocytes. Obes Res Clin Pract 2020; 14:573-579. [PMID: 33208251 DOI: 10.1016/j.orcp.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Obesity is strongly associated with insulin resistance (IR). IR at the molecular level may be defined as a diminished activation of insulin signaling-related molecules (IRS-1/Akt/AS160) as well as reduced glucose uptake. Subject with obesity have elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which triggers insulin signaling disruption in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in folk medicine of Northern Chile to counteract inflammatory diseases. Hydroethanolic extracts of lampaya (HEL) contain considerable amounts of flavonoids that may explain the biological activity of the plant. The aim of this study was to assess whether HEL exposure protects against PA-disrupted insulin signaling and glucose uptake in adipocytes. METHODS Cytotoxicity of a range of HEL concentrations (0.01-10 μg/mL) was evaluated in 3T3-L1 adipocytes. Cells were exposed or not to 0.1 μg/mL of HEL before adding 0.65 mM PA or vehicle and incubated with 100 nM insulin (or vehicle) for 15 min. Phosphorylation of Tyr-IRS-1, Ser-Akt, Thr-AS160 was evaluated by Western blot. Glucose uptake was assessed using the 2-NBDG analogue. RESULTS HEL was not cytotoxic at any concentration assessed. PA-induced reduction in insulin-stimulated phosphorylation of IRS-1, Akt and AS160 and glucose uptake were abolished by co-treatment with HEL. CONCLUSION These findings give new insights about the effect of HEL ameliorating PA- impaired IRS-1/Akt/AS160 pathway and glucose uptake in adipocytes. More studies should focus on lampaya, since might represent a preventive approach in individuals whose circulating PA levels contribute to IR.
Collapse
Affiliation(s)
- Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000 Rancagua, Chile; Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile.
| | - Karin Herrera
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, 2360102 Valparaíso, Chile
| |
Collapse
|
10
|
Bianchi SE, Pegues MA, Dias CK, Mascia F, Doneda E, Pittol V, Rao VA, Klamt F, Bassani VL. Achyrocline satureioides compounds, achyrobichalcone and 3-O-methylquercetin, induce mitochondrial dysfunction and apoptosis in human breast cancer cell lines. IUBMB Life 2020; 72:2133-2145. [PMID: 32710804 DOI: 10.1002/iub.2348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022]
Abstract
Natural products are a valuable source of new molecules and are important for drug discovery. Many chemotherapeutics currently in clinical use were originated from natural sources and are effective cytotoxic agents. In this study, we investigated the cytotoxic and pro-apoptotic effects of achyrobichalcone (ACB) and 3-O-methylquercetin (3OMQ), two novel compounds isolated from the Achyrocline satureioides plant. Because extracts from this plant have been shown to have anticancer activity in vitro, we evaluated ACB and 3OMQ using a human breast cancer cell line, MDA-MB-231, and a nontumorigenic human breast epithelial cell line, MCF-12A. We found that ACB demonstrates cytotoxic effects on MDA-MB-231 cells, but not MCF-12A cells. 3OMQ also demonstrated cytotoxic effects on MDA-MB-231 cells, but with lower selectivity compared to treated MCF-12A cells. Cell death by both compounds was associated with caspase-9 and caspase-3/7 activation. Using high-resolution respirometry, we found that ACB and 3OMQ were able to cause acute mitochondrial dysfunction in MDA-MB-231-treated cells. These results suggest that apoptosis in MDA-MB-231 cells is induced through the activation of the mitochondrial-dependent pathway. Collectively, these findings suggest that ACB is a strong candidate for further anticancer in vivo tests.
Collapse
Affiliation(s)
- Sara E Bianchi
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Melissa A Pegues
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Camila K Dias
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francesca Mascia
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Eduarda Doneda
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vanessa Pittol
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Science Technology Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq), Porto Alegre, Brazil
| | - Valquiria L Bassani
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
11
|
Martínez-Busi M, Arredondo F, González D, Echeverry C, Vega-Teijido MA, Carvalho D, Rodríguez-Haralambides A, Rivera F, Dajas F, Abin-Carriquiry JA. Purification, structural elucidation, antioxidant capacity and neuroprotective potential of the main polyphenolic compounds contained in Achyrocline satureioides (Lam) D.C. (Compositae). Bioorg Med Chem 2019; 27:2579-2591. [DOI: 10.1016/j.bmc.2019.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
|
12
|
Maciel MD, Inocêncio LCL, Rechsteiner MS, Jorge BC, Balin PDS, Kassuya RM, Heredia-Vieira SC, Cardoso CAL, Vieira MDC, Kassuya CAL, Arena AC. Effects of exposure to ethanolic extract from Achyrocline satureioides (Lam.) D.C. flowers on reproductive and developmental parameters in Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:321-330. [PMID: 30940006 DOI: 10.1080/15287394.2019.1593904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Achyrocline satureioides (LAM) D.C. is a species plant used in folk medicine with several medicinal properties; however, few studies have focused on its potential adverse effects. The aim of this study was to examine the effects of ethanolic extract of A. satureioides flowers administered during pre-mating, mating, pregnancy and postpartum period on reproductive and developmental parameters in rats. Male and female rats received by gavage 0, 250, 500 or 750 mg/kg of extract. The animals were treated from pre-mating until 13 days post-partum. Phytochemical analysis revealed the presence of important flavonoids (quercetin, luteolin, caffeic acid, rutin, and ferulic acid). In females, biochemical, hematological or gestational parameters were not markedly altered by the extract. However, an increase in calcium and thyroid stimulating hormone (TSH) levels was found in treated-dams. Although TSH and T4 levels were not significantly altered in pups, there was a rise in body weight of pups whose mothers were treated with the extract. All males treated were able to successfully copulate with treated-females. However, rats exposed to 500 and 750 mg/kg of extract exhibited a significant decrease in daily testicular sperm production and delay in sperm transit time in the epididymis. The ethanolic extract of A. satureioides flowers produced adverse effects in the male reproductive system as evidenced by diminished sperm production and transport. In addition, the extract elevated TSH levels of exposed mothers which may consequently affect the development of pups but this requires further evaluation.
Collapse
Affiliation(s)
- Marcela Dias Maciel
- a School of Health Sciences , Federal University of Grande Dourados , Dourados , Mato Grosso do Sul State , Brazil
| | - Leonardo Cesar Lima Inocêncio
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Mayra Schmidt Rechsteiner
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Barbara Campos Jorge
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Paola da Silva Balin
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Roberto Mikio Kassuya
- a School of Health Sciences , Federal University of Grande Dourados , Dourados , Mato Grosso do Sul State , Brazil
| | | | - Claudia Andrea Lima Cardoso
- d Center of Studies on Natural Resources , Mato Grosso do Sul State University (UEMS) , Dourados , Mato Grosso do Sul State , Brazil
| | - Maria do Carmo Vieira
- a School of Health Sciences , Federal University of Grande Dourados , Dourados , Mato Grosso do Sul State , Brazil
| | | | - Arielle Cristina Arena
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| |
Collapse
|
13
|
Supplementation with Achyrocline satureioides Inflorescence Extracts to Pregnant and Breastfeeding Rats Induces Tissue-Specific Changes in Enzymatic Activity and Lower Neonatal Survival. Biomedicines 2017; 5:biomedicines5030053. [PMID: 29093434 PMCID: PMC5618311 DOI: 10.3390/biomedicines5030053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
Achyrocline satureioides (AS, family Asteraceae) is a plant widely used in traditional medicine for stomach, digestive, and gastrointestinal disorders during pregnancy. Studies regarding the indiscriminate use of plant infusions during pregnancy are limited. Recent reports have shown that chronic flavonoid supplementation induces toxicity in vivo and raises the mortality rates of healthy subjects. Therefore, we investigated whether supplementation of pregnant and lactating Wistar rats with two AS inflorescence extracts, consisting of an aqueous (AQ) extract similar to a tea (47 mg·kg-1·day) and a hydroethanolic (HA) extract (35 mg·kg-1·day-1) with a higher flavonoid content, could induce redox-related side effects. Total reactive antioxidant potential (TRAP), thiobarbituric reactive species (TBARS), and total reduced thiol (SH) content were evaluated. Superoxide dismutase (SOD) and catalase (CAT) activities were additionally quantified. Our data suggest that both AQ and HA of AS inflorescence extracts may induce symptoms of toxicity in concentrations of (47 mg·kg-1·day) and (35 mg·kg-1·day-1), respectively, in mothers regarding the delivery index and further decrease of neonatal survival. Of note, significant tissue-specific changes in maternal (liver, kidney, heart, and hippocampus) and pups (liver and kidney) biochemical oxidative parameters were observed. Our findings provide evidence that may support the need to control supplementation with the AQ of AS inflorescence extracts during gestation due to potential toxicity in vivo, which might be related, at least in part, to changes in tissue-specific redox homeostasis and enzymatic activity.
Collapse
|
14
|
Salgueiro ACF, Folmer V, da Rosa HS, Costa MT, Boligon AA, Paula FR, Roos DH, Puntel GO. In vitro and in silico antioxidant and toxicological activities of Achyrocline satureioides. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:6-14. [PMID: 27575777 DOI: 10.1016/j.jep.2016.08.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyrocline satureioides ("macela or marcela") is a medicinal plant, traditionally collected in "Good Friday" before sunrise. In traditional medicine, dried flowers of A. satureioides are used as anti-dyspeptic, antispasmodic and anti-inflammatory. AIM OF THE STUDY To evaluate the phytochemical profile and to present an in vitro and in silico approach about toxicity and antioxidant potential of A. satureioides flowers extract and its major phytoconstituents. MATERIALS AND METHODS Plant were collected according to the popular tradition. Extract were obtained by infusion and analyzed from high-performance liquid chromatography. Toxicity was evaluated in Artemia salina and human lymphocytes. Extract antioxidant activity was determined with total antioxidant capacity, DPPH• and ABTS+• scavenging, ferric reducing antioxidant power, deoxyribose degradation assay, and thiobarbituric acid reactive substances (TBA-RS) assay. TBA-RS inhibitions were evaluated in brain of rats for A. satureioides extract and its major phytoconstituents. Predictions of activity spectra for substances and in silico toxicity evaluation from major phytoconstituents were performed via computer simulation. RESULTS Chromatographic data indicated isoquercitrin, quercetin and caffeic acid as main compounds in flowers extract. Toxicity tests demonstrated a very low toxic potential of A. satureioides. Extract exhibited antioxidant activities in low concentrations. Both extract and major phytochemicals standards showed protection against lipid peroxidation in brain of rats. Computer simulations pointed some biological activities in agreement with traditional use, as well as some experimental results found in this work. Moreover, in silico toxic predictions showed that the A. satureioides major compounds had low probability for toxic risk. CONCLUSION Our results indicate that A. satureioides infusion possesses low toxicological potential and an effective antioxidant activity. These findings confirm the traditional use of this plant in the folk medicine.
Collapse
Affiliation(s)
- Andréia C F Salgueiro
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Vanderlei Folmer
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Hemerson S da Rosa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Márcio T Costa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Aline A Boligon
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fávero R Paula
- Curso de Farmácia, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Daniel H Roos
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Gustavo O Puntel
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil; Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Cui F, Zan X, Li Y, Sun W, Yang Y, Ping L. Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells. Nutr Cancer 2016; 68:267-79. [PMID: 27040446 DOI: 10.1080/01635581.2016.1134599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GFG-3a is a novel glycoprotein previously purified from the fermented mycelia of Grifola frondosa with novel sugar compositions and protein sequencing. The present study aims to investigate its effects on the cell cycle, differential proteins expression, and apoptosis of human gastric cancer SGC-7901 cells. Our findings revealed that GFG-3a induced the cell apoptosis and arrested cell cycle at S phase. GFG-3a treatment resulted in the differential expression of 21 proteins in SGC-7901 cells by upregulating 10 proteins including RBBP4 associated with cell cycle arrest and downregulating 11 proteins including RUVBL1, NPM, HSP90AB1, and GRP78 involved in apoptosis and stress response. qRT-PCR and Western blot analysis also suggested that GFG-3a could increase the expressions of Caspase-8/-3, p53, Bax, and Bad while decrease the expressions of Bcl2, Bcl-xl, PI3K, and Akt1. These results indicated that the stress response, p53-dependent mitochondrial-mediated, Caspase-8/-3-dependent, and PI3k/Akt pathways were involved in the GFG-3a-induced apoptosis process in SGC-7901 cells. These findings might provide a basis to prevent or treat human gastric cancer with GFG-3a and understand the tumor-inhibitory molecular mechanisms of mushroom glycoproteins.
Collapse
Affiliation(s)
- Fengjie Cui
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China.,b Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production , Dexing , China
| | - Xinyi Zan
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China
| | - Yunhong Li
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China
| | - Wenjing Sun
- a School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China.,b Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production , Dexing , China
| | - Yan Yang
- c National Engineering Research Center of Edible Fungi, Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Lifeng Ping
- d State Key Lab Breeding Base for Quality and Safety of Agro-products, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,e School of Civil Engineering and Architecture, Zhejiang University of Science and Technology , Hangzhou , China
| |
Collapse
|
16
|
Alerico GC, Beckenkamp A, Vignoli-Silva M, Buffon A, von Poser GL. Proliferative effect of plants used for wound healing in Rio Grande do Sul state, Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:305-310. [PMID: 26549272 DOI: 10.1016/j.jep.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/20/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wounds are normally resolved in a few days, but chronic wounds represent a major burden because of economic and social factors. Thereby, the search for new agents is ongoing and natural products become a great target. Also, Brazil as a consumer of herbal medicines with rich social diversity is promising for ethnopharmacological studies. AIMS OF THE STUDY The study aims to find the plants popularly used for wound healing purposes in Rio Grande do Sul state, and test the traditional knowledge through an in vitro screening. MATERIALS AND METHODS Ethnobotanical studies from state of Rio Grande do Sul were analyzed to find the most used plants to treat wounds. The selected species were collected, identified and ethanolic and aqueous extracts were prepared. After, proliferative capacity was accessed by MTT assay in a keratinocyte cell line (HaCaT). RESULTS The survey comprehended almost all state regions and led to 117 plant species from 85 genera, from which 14 were selected for in vitro testing. Aqueous extracts from Achyrocline satureioides DC Lam., Matricaria recutita L., Melia azedarach L. and Mirabilis jalapa L. demonstrated the ability to stimulate keratinocyte growth up to 120% in concentrations of 25 µg/mL and 50 µg/mL. The ethanolic extract of A. satureioides was able to stimulate keratinocyte and fibroblast proliferation on the lower concentration tested, 1 µg/mL, being the most promising species. CONCLUSIONS The traditional knowledge collected from the ethnobotanical studies was accessed by in vitro investigation and extracts from Achyrocline satureioides, Matricaria recutita, Melia azedarach and Mirabilis jalapa can influence positively cell proliferation.
Collapse
Affiliation(s)
- Gabriela C Alerico
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Aline Beckenkamp
- Laboratório de Análises Bioquímicas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Márcia Vignoli-Silva
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, RS 90050-170, Brazil
| | - Andréia Buffon
- Laboratório de Análises Bioquímicas, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Gilsane L von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
17
|
Gil AG, Arbillaga L, López de Cerain A. Non-clinical toxicity studies on bioactive compounds within the framework of nutritional and health claims. Int J Food Sci Nutr 2015; 66 Suppl 1:S13-21. [PMID: 26241007 DOI: 10.3109/09637486.2015.1042844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The growing presence of products on the market with added value in terms of health makes essential their regulation and harmonization in critical aspects such as safety. The toxicology applied to the bioactive compounds should demonstrate the absence of toxic effects at doses advised for consumption, as well as evaluate the potential toxic effects in the assumption that the products are used in quantities superior to those recommended. The specific strategy should be defined case by case; therefore, prior to any toxicological development, it is essential to study all the information regarding the bioactive compounds (BACs) characterization, nutridynamics and nutrikinetics, that is available. In this guideline, a general strategy to be applied in the development of BACs is proposed. It includes a first in vitro phase to discard genotoxicity and endocrine effects and a second in vivo phase with different possibilities regarding the duration and the extension of the studies.
Collapse
Affiliation(s)
- Ana Gloria Gil
- Department of Pharmacology and Toxicology, University of Navarra , Pamplona , Spain and
| | | | | |
Collapse
|
18
|
In Vitro and In Vivo Cytogenotoxic Effects of Hot Aqueous Extract of Achyrocline satureioides (Lam.) DC. BIOMED RESEARCH INTERNATIONAL 2015; 2015:270973. [PMID: 26078941 PMCID: PMC4442415 DOI: 10.1155/2015/270973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/01/2015] [Accepted: 02/01/2015] [Indexed: 11/17/2022]
Abstract
In this work we extend the toxicological studies of hot aqueous extract of A. satureioides (As-HAE) evaluating cytotoxic and apoptotic effects on human peripheral blood mononuclear cells (PBMCs). We also determine genotoxic action of this extract in vivo. In addition, the extract was chemically characterized. Finally, we established a comparison with previous data of cold aqueous extract. The As-HAE induced cytotoxicity on PBMCs determined by trypan blue dye exclusion (CC50 = 653 μg/mL) and MTT (CC50 = 588 μg/mL) assays being more toxic than cold extract. However, As-HAE as well as cold extract did not induce apoptosis measured by Hoechst 33258 staining, TUNEL assay, and DNA fragmentation analysis. The in vivo micronucleus test showed that As-HAE exerted cytogenotoxic effects on bone marrow of mice, contrary to what was observed with cold extract. The chemical study of As-HAE allowed identifying the flavonoids found in cold extract: luteolin, quercetin, and 3-O-methylquercetin, but at higher concentrations. We suggest that toxic effects induced by As-HAE could be due to high concentrations of these flavonoids. Given that As-HAE is the most used in folkloric medicine, its administration should be controlled in order to prevent potential cell damage.
Collapse
|
19
|
González Pereyra M, Dogi C, Torres Lisa A, Wittouck P, Ortíz M, Escobar F, Bagnis G, Yaciuk R, Poloni L, Torres A, Dalcero A, Cavaglieri L. Genotoxicity and cytotoxicity evaluation of probiotic Saccharomyces cerevisiae
RC016: a 60-day subchronic oral toxicity study in rats. J Appl Microbiol 2014; 117:824-33. [DOI: 10.1111/jam.12552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- M.L. González Pereyra
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - C. Dogi
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - A. Torres Lisa
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - P. Wittouck
- Departamento de Patología animal; Facultad de Agronomía y Veterinaria; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - M. Ortíz
- Departamento de Ciencias Naturales; Facultad de Ciencias Exactas, Fisico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - F. Escobar
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - G. Bagnis
- Departamento de Patología animal; Facultad de Agronomía y Veterinaria; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - R. Yaciuk
- Departamento de Patología animal; Facultad de Agronomía y Veterinaria; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - L. Poloni
- Departamento de Ciencias Naturales; Facultad de Ciencias Exactas, Fisico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - A. Torres
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - A.M. Dalcero
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - L.R. Cavaglieri
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| |
Collapse
|