1
|
Liu K, Li H, Chang AK, Pei Y, Li J, Ai J, Liu W, Wang T, Xu L, Li R, Yu Q, Zhang N, Wang N, Liu Y, Jiang Z, Chen L, Liang X. Evaluation of the Safety of Fenbuconazole Monomers via Enantioselective Toxicokinetics, Molecular Docking and Enantiomer Conversion Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9894-9905. [PMID: 40209038 DOI: 10.1021/acs.jafc.4c13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Fenbuconazole, a chiral triazole fungicide, is produced and used as a racemate. Previous toxicological research on fenbuconazole in nontarget organisms primarily used the racemate, necessitating an investigation into each enantiomer's distribution and elimination for safety assessment. In this study, the absolute configurations of fenbuconazole enantiomers were first confirmed by ECD, designating them as S-(+)-fenbuconazole and R-(-)-fenbuconazole based on their optical activity. The UHPLC-QQQ/MS method was selected to systematically study the toxicokinetics and enantiomer conversion of fenbuconazole enantiomers in mice. The results revealed significant enantioselectivity, with S-(+)-fenbuconazole exhibiting 15.11 times higher AUC0-∞ than R-(-)-fenbuconazole, indicating greater blood absorption. In the distribution experiment involving the 14 examined tissues, S-(+)-fenbuconazole consistently exceeded R-(-)-fenbuconazole levels, except in the stomach. Notably, S-(+)-fenbuconazole concentration in the liver was second only to the stomach and was 4.35 times higher than R-(-)-fenbuconazole, suggesting a greater propensity for hepatic accumulation. Molecular docking studies further demonstrated a stronger interaction between S-(+)-fenbuconazole and the CYP2B enzyme in the liver, implying higher hepatotoxic potential. Both enantiomers were rarely excreted in urine or feces, with a cumulative excretion rate below 2.5‰. Enantiomer conversion occurred unidirectionally (R → S) in mice, and the rates were generally low in most tissue. Thus, enantiomeric conversion was not the primary factor driving the enantioselectivity. In summary, R-(-)-fenbuconazole exhibited poor absorption, limited distribution, and a weak interaction with the CYP2B enzyme, which may be considered a low-risk product that could guide monomer development and promote the reduction of pesticide usage.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Haoran Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Ying Pei
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Jianxin Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Jiao Ai
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Wenbao Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Liuping Xu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Ruiyun Li
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Qing Yu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Nan Wang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Yuhui Liu
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Zhen Jiang
- Department of Analytical Chemistry, College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning Province, PR China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, P. R. China
| |
Collapse
|
2
|
Tang Y, Liu Y, Jin Y, Zhang F, Zhang W, Luo S, Zang J, Yang W, Chen Y. Toxicological risk assessment of triadimenol for human exposure, broiler health, and food safety. Food Chem Toxicol 2024; 194:115071. [PMID: 39486609 DOI: 10.1016/j.fct.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Triadimenol, a widely used triazole fungicide, leaves residues that pose risks to broiler health, food safety, and human health. Current studies focus on lab animals, leaving limited data regarding its impact on non-target organisms in agricultural ecosystems. Moreover, the doses in current studies often exceed typical agricultural pollution levels of triadimenol. Therefore, this study evaluates the toxic effects of triadimenol by exposing broilers to different concentrations (0.05-20 mg/kg) in their feed for 42 days, assessing growth performance, organ index, hematological parameters, histopathology, jejunum morphology, and tissue residues. The results show that triadimenol contamination at 0.05-20 mg/kg in feed does not significantly affect broiler growth performance. However, the significant changes in hematological parameters suggest the potential hematological toxicity of triadimenol in broilers. Triadimenol at 1 mg/kg or higher induces hepatotoxic and nephrotoxic effects, and significantly alters kidney organ index and histopathology in broilers. Additionally, when the triadimenol contamination level in feed exceeds 1 mg/kg, the residues in edible tissues of broilers exceed the limits set by the EU and China. Overall, our study indicates that even low-dose exposure to triadimenol poses potential risks, highlighting the need for strict regulation of its use in agriculture to protect food safety and human health.
Collapse
Affiliation(s)
- Yutong Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fude Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Guo M, Liang M, Gu J, Shen Y, Guo L, Wang Q, Ji G. Health risk assessment of triazole fungicides around a pesticide factory in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1021. [PMID: 39367949 DOI: 10.1007/s10661-024-13170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The environmental pollution and health effects caused by pesticide production have consistently garnered considerable research interest. In the present study, the concentrations of five triazole fungicides (TFs) in air, indoor dust, and diet were monitored around a pesticide factory in eastern China from November 2020 to May 2021. The levels of five TFs in each sample were determined via UPLC‒MS/MS. For a health risk assessment, the United States Environmental Protection Agency's deterministic method was applied. The findings revealed that the total concentrations of the five TFs around the monitoring area ranged from 0.29 to 5.85 ng/m3 in outdoor air, 287.4 to 9878.5 μg/kg in indoor dust, 0.0578 to 4.948 μg/kg in vegetables, and 0.447 to 3.00 μg/kg in rice. Notably, tebuconazole and hexaconazole had consistently high contributions over the years. For adults and children, the average daily doses (ADDs) were 1.32 × 10-5 and 2.69 × 10-5 mg/kg/day, respectively, in the monitoring area and 4.25 × 10-6 and 6.42 × 10-6 mg/kg/day, respectively, in the control area. In the control area, rice and vegetables were the primary media for exposure to TFs in children and adults, collectively accounting for more than 94% of the total TF exposure. Conversely, indoor dust is identified as the main medium of TF exposure in children residing near the pesticide factory, representing approximately 40% of the total exposure. The risks of noncarcinogenic effects on children and adults in the monitoring area were significantly greater than those in the control area, being approximately ten times greater for children, warranting increased attention. The carcinogenic risk to human health is relatively safe.
Collapse
Grants
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
- the Central Scientific Research Projects for Public Welfare Research Institutes Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China
Collapse
Affiliation(s)
- Min Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Liguo Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China
| | - Qian Wang
- Changzhou Environmental Monitoring Centre, Changzhou, 213004, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 201142, China.
| |
Collapse
|
4
|
Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, Geovana Leite Vacario B, da Silva JC, Scandolara TB, Gaboardi SC, Zanetti Pessoa Candiotto L, Mara Serpeloni J, Rodrigues Ferreira Seiva F, Panis C. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health 2023; 11:1130893. [PMID: 36908412 PMCID: PMC9992878 DOI: 10.3389/fpubh.2023.1130893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Pesticides pose a risk for cancer development and progression. People are continuously exposed to such substances by several routes, including daily intake of contaminated food and water, especially in countries that are highly pesticide consumers and have very permissive legislation about pesticide contamination as Brazil. This work investigated the relationship among pesticides, food contamination, and dietary cancer risk. Methods Analyzed two social reports from the Brazilian Government: the Program for Analysis of Residues of Pesticides in Food (PARA) and The National Program for Control of Waste and Contaminants (PNCRC). Results and discussion First, we characterized the main pesticide residues detected over the maximum limits allowed by legislation or those prohibited for use in food samples analyzed across the country. Based on this list, we estimated the dietary cancer risks for some of the selected pesticides. Finally, we searched for data about dietary cancer risks and carcinogenic mechanisms of each pesticide. We also provided a critical analysis concerning the pesticide scenario in Brazil, aiming to discuss the food contamination levels observed from a geographical, political, and public health perspective. Exposures to pesticides in Brazil violate a range of human rights when food and water for human consumption are contaminated.
Collapse
Affiliation(s)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Mariane Okamoto Ferreira
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| | | | | | - Milena Cremer Souza
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
- Instituto Federal Catarinense, Blumenau, Brazil
| | | | - Juliana Mara Serpeloni
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| |
Collapse
|
5
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
6
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
7
|
Bae SDW, Nguyen R, Qiao L, George J. Role of the constitutive androstane receptor (CAR) in human liver cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188516. [PMID: 33529650 DOI: 10.1016/j.bbcan.2021.188516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily (subfamily 1, group I, member 3, also known as NR1I3) that is almost exclusively expressed in the liver. CAR interacts with key signalling pathways such as those involved in drug, energy and bilirubin metabolism. In mouse models, activation of CAR leads to tumorigenesis by inducing pro-proliferative and anti-apoptotic signalling. However, many previous reports have shown species differences between CAR activity in animal models and humans. Recent studies have demonstrated that the mode of action of CAR in rodent liver tumorigenesis is not applicable to humans. Despite this, many studies still continue to study the role of CAR in animal models, hence, there is a need to further explore the role of CAR in human diseases particularly cancers. While there is limited evidence for a role of CAR in human cancers, some studies have proposed a tumour-suppressive role of CAR in liver cancer. In addition, recent studies exploring CAR in human livers demonstrated a hepato-protective role for CAR in and more specifically, its ability to drive differentiation and liver regeneration. This review will discuss the role of CAR in liver cancer, with a focus on species differences and its emerging, tumour-suppressive role in liver cancer and its role in the regulation of liver cancer stem cells.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
8
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
9
|
Niehoff NM, Zabor EC, Satagopan J, Widell A, O'Brien TR, Zhang M, Rothman N, Grimsrud TK, Van Den Eeden SK, Engel LS. Prediagnostic serum polychlorinated biphenyl concentrations and primary liver cancer: A case-control study nested within two prospective cohorts. ENVIRONMENTAL RESEARCH 2020; 187:109690. [PMID: 32474310 PMCID: PMC7317661 DOI: 10.1016/j.envres.2020.109690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/28/2020] [Accepted: 05/14/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) were used in electrical equipment and a range of construction materials. Although banned in the United States and most of Europe in the 1970s, they are highly persistent in the environment and bioaccumulate. Whether PCBs are associated with liver cancer risk at general population levels is unknown. METHODS This study consisted of 136 incident liver cancer cases and 408 matched controls from the Kaiser Permanente Northern California Multiphasic Health Checkup (MHC) cohort and 84 cases and 252 matched controls from the Norwegian Janus cohort. Sera collected in the 1960s-1980s were measured for 37 PCB congeners and markers of hepatitis B (HBV) and C (HCV) infection. Odds ratios (OR) and 95% confidence intervals (CI) for tertiles of each lipid-adjusted PCB were estimated from conditional logistic regression. We also examined the molar sum of congeners in groups: total PCBs; low, medium, and high chlorination; and Wolff functional groups. RESULTS Concentrations of individual congeners from the 1960s/1970s sera ranged from 1.3-123.0 and 1.4-116.0 ng/g lipid among MHC cases and controls, respectively, and from 1.9-258.0 and 1.9-271.0 ng/g lipid among Janus cases and controls, respectively. Among MHC participants with sera from the 1960s, collected an average of 27 years before diagnosis among cases, the top tertile of PCBs 151, 170, 172, 177, 178, 180, and 195 was significantly associated with elevated odds of liver cancer (OR range = 2.01-2.38); most of these congeners demonstrated exposure-response trends. For example, ORtertile 3vs1 = 2.38 (95% CI: 1.22-4.64, p-trend = 0.01) for PCB 180. As a group, Wolff group 1b congeners, which are biologically persistent and weak phenobarbital inducers, were associated with increased odds. In MHC participants, ever vs. never HBV or HCV infection modified the PCB-liver cancer associations. There was little evidence of an association between PCBs and odds of liver cancer among the Janus cohort. DISCUSSION We observed associations between a number of PCB congeners and increased odds of liver cancer among MHC, but not Janus, participants with sera from the 1960s/1970s.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Emily C Zabor
- Department of Quantitative Health Sciences, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaya Satagopan
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers- the State University of New Jersey, Piscataway, NJ, USA
| | - Anders Widell
- Department of Medical Microbiology, Lund University, Malmö, Sweden
| | - Thomas R O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Mingdong Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | | | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells 2020; 9:cells9051192. [PMID: 32403288 PMCID: PMC7290820 DOI: 10.3390/cells9051192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed.
Collapse
|
11
|
Pham B, Arons AB, Vincent JG, Fernandez EJ, Shen T. Regulatory Mechanics of Constitutive Androstane Receptors: Basal and Ligand-Directed Actions. J Chem Inf Model 2019; 59:5174-5182. [PMID: 31714771 DOI: 10.1021/acs.jcim.9b00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Constitutive androstane receptor (CAR) is a nuclear hormone receptor that primarily functions in sensing and metabolizing xenobiotics. The basal activity of this receptor is relatively high, and CAR is deemed active in the absence of ligand. The (over)activation can promote drug toxicity and tumor growth. Thus, therapeutic treatments seek inverse agonists to inhibit or modulate CAR activities. To advance our understanding of the regulatory mechanisms of CAR, we used computational and experimental approaches to elucidate three aspects of CAR activation and inactivation: (1) ligand-dependent actions, (2) ligand-orthologue specificity, and (3) constitutive activity. For ligand-dependent actions, we examined the ligand-bound simulations and identified two sets of ligand-induced contacts promoting CAR activation via coactivator binding (H11-H12 contact) or inactivation via corepressor binding (H4-H11 contact). For orthologue specificity, we addressed a puzzling fact that murine CAR (mCAR) and human CAR (hCAR) respond differently to the same ligand (CITCO), despite their high sequence homology. We found that the helix H7 of hCAR is responsible for a stronger binding of the ligand CITCO compared to mCAR, hence a stronger CITCO-induced activation. For basal activity, we reported computer-generated unliganded CAR structures and critical mutagenesis (mCAR's V209A and N333D) results of a cell-based transcription assay. Our results reveal that the basal conformation of CAR shares prominent features with the agonist-bound form, and helix HX has an important contribution to the constitutive activity. These findings altogether can be useful for the understanding of constitutively active receptors and the design of drug molecules targeting them.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Avery Bancroft Arons
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Jeremy G Vincent
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
12
|
Qiu L, Jia K, Huang L, Liao X, Guo X, Lu H. Hepatotoxicity of tricyclazole in zebrafish (Danio rerio). CHEMOSPHERE 2019; 232:171-179. [PMID: 31154177 DOI: 10.1016/j.chemosphere.2019.05.159] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Tricyclazole is widely used in agriculture as a pesticide, but its toxicity in vertebrates is currently poorly evaluated. In this study, we used zebrafish to assess the toxicity of tricyclazole. We found that tricyclazole induces liver damage, or hepatotoxicity, in zebrafish, during both development and adulthood. In embryos, we found that tricyclazole affected the liver development rather than other endodermal tissues such as gut and pancreas. In both embryos and adult zebrafish livers, tricyclazole disrupted the relationship between oxidant and antioxidant system and resulted in reactive oxygen species (ROS) overload. Meanwhile, it triggered hepatocyte apoptosis and disturbed carbohydrate/lipid metabolism and energy demand systems. These results suggested that tricyclazole could cause severe consequences for vertebrate hepatic development and function.
Collapse
Affiliation(s)
- Lingyu Qiu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Lirong Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinchun Guo
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China.
| |
Collapse
|
13
|
Peffer RC, Cowie DE, Currie RA, Minnema DJ. Sedaxane-Use of Nuclear Receptor Transactivation Assays, Toxicogenomics, and Toxicokinetics as Part of a Mode of Action Framework for Rodent Liver Tumors. Toxicol Sci 2019; 162:582-598. [PMID: 29244179 DOI: 10.1093/toxsci/kfx281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental data demonstrate a mode of action (MOA) for liver tumors in male rats and mice treated with sedaxane that starts with activation of CAR, followed by altered expression of CAR-responsive genes, increased cell proliferation, and eventually clonal expansion of preneoplastic cells, leading to the development of altered foci and tumors. This MOA is nonrelevant to human risk assessments. Methods and results in the MOA work for sedaxane illustrate promising directions that future MOA studies may be able to employ, in the spirit of "Tox21" and reduction of in vivo animal use: (1) currently available in vitro CAR and PXR reporter assays demonstrated that sedaxane is a direct CAR activator in mice and rats, and a weak PXR activator in rats; (2) mouse liver microarray results compared with a published CAR biomarker signature (based on 83 genes) showed a clear, statistical match, and a lack of correlation to similar biomarker signatures for AhR, PPARα, and STAT5B; (3) Ki67 immunohistochemistry and zonal image analysis showed significant increases in this marker of cell proliferation in mouse liver, without the need to dose a DNA labeling agent; and (4) toxicokinetic analysis of Cmax levels of sedaxane in blood showed a marked species difference between mice and rats that helps to explain differences in sensitivity to sedaxane. Incorporating these tools into the study plan for a new agrochemical or drug during development offers a promising alternative to the traditional need to conduct later, specialized MOA studies after the results of chronic bioassays are known.
Collapse
Affiliation(s)
- Richard C Peffer
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27419-8300
| | - David E Cowie
- Syngenta Ltd., Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Richard A Currie
- Syngenta Ltd., Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Daniel J Minnema
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27419-8300
| |
Collapse
|
14
|
The azole fungicide tebuconazole affects human CYP1A1 and CYP1A2 expression by an aryl hydrocarbon receptor-dependent pathway. Food Chem Toxicol 2018; 123:481-491. [PMID: 30458266 DOI: 10.1016/j.fct.2018.11.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Abstract
Tebuconazole, a member of the triazole group of fungicides, exerts hepatotoxicity in rodent studies. Knowledge on the molecular mechanisms underlying tebuconazole toxicity is limited. Previous studies suggest that activation of xenobiotic-sensing nuclear receptors plays a role in triazole fungicide-mediated hepatotoxicity. This study aimed to characterize the ability of tebuconazole to activate gene expression via the aryl hydrocarbon receptor (AHR). Results demonstrate a statistically significant induction of the AHR target genes CYP1A1 and CYP1A2 in HepG2 and HepaRG human liver cells in vitro at concentrations corresponding to tebuconazole tissue levels reached under subtoxic conditions in vivo. CYP1A1 and CYP1A2 induction was abolished in the presence of an AHR antagonist or in AHR-knockout HepaRG cells, substantiating the importance of the AHR for the observed effects. Although the results indicate that tebuconazole is a weak inducer of AHR-dependent genes, combined exposure of HepaRG cells to tebuconazole and the previously identified AHR agonist propiconazole showed additive effects on CYP1A1 and CYP1A2 expression. In summary, we demonstrate that AHR-downstream gene expression is affected by tebuconazole in an AHR-dependent manner. Data indicate that dose addition may be assumed for the assessment of AHR-related effects of triazole fungicide mixtures.
Collapse
|
15
|
Wang P, Zhao Y, Wang X, Yu GW, Wang J, Li ZG, Lee MR. Microwave-assisted-demulsification dispersive liquid-liquid microextraction for the determination of triazole fungicides in water by gas chromatography with mass spectrometry. J Sep Sci 2018; 41:4498-4505. [DOI: 10.1002/jssc.201800860] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Peng Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou P. R. China
| | - Yiping Zhao
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou P. R. China
| | - Xiajun Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou P. R. China
| | - Guo-Wei Yu
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jian Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou P. R. China
| | - Zu-Guang Li
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou P. R. China
| | - Maw-Rong Lee
- Department of Chemistry; National Chung-Hsing University; Taichung Taiwan
| |
Collapse
|
16
|
Mackowiak B, Hodge J, Stern S, Wang H. The Roles of Xenobiotic Receptors: Beyond Chemical Disposition. Drug Metab Dispos 2018; 46:1361-1371. [PMID: 29759961 PMCID: PMC6124513 DOI: 10.1124/dmd.118.081042] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has been extensively characterized and well documented. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the most attention since they regulate the expression of numerous proteins important to drug metabolism and clearance and formulate a central defensive mechanism to protect the body against xenobiotic challenges. However, accumulating evidence has shown that these xenobiotic sensors also control many cellular processes outside of their traditional realms of xenobiotic metabolism and disposition, including physiologic and/or pathophysiologic responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, immune response, and cancer development. This review will highlight recent advances in studying the noncanonical functions of xenobiotic receptors with a particular focus placed on the roles of CAR and PXR in energy homeostasis and cancer development.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jessica Hodge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
17
|
Luckert C, Braeuning A, de Sousa G, Durinck S, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg AACM, Rahmani R, Rajkovic A, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla S, Wollscheid B, Zucchini-Pascal N, Lampen A. Adverse Outcome Pathway-Driven Analysis of Liver Steatosis in Vitro: A Case Study with Cyproconazole. Chem Res Toxicol 2018; 31:784-798. [DOI: 10.1021/acs.chemrestox.8b00112] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Claudia Luckert
- Department Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Georges de Sousa
- INRA Unit 1331, TOXALIM, French National Institute for Agricultural Research, 180 chemin de Tournefeuille - BP.93173 F-31027 TOULOUSE cedex 3, France
| | - Sigrid Durinck
- Faculty of Bioscience Engineering, Department of Food Technology, Food Safety and Health, Ghent University, 9000 Ghent, Belgium
| | | | | | | | | | | | - Roger Rahmani
- INRA Unit 1331, TOXALIM, French National Institute for Agricultural Research, 180 chemin de Tournefeuille - BP.93173 F-31027 TOULOUSE cedex 3, France
| | - Andreja Rajkovic
- Faculty of Bioscience Engineering, Department of Food Technology, Food Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Deborah Rijkers
- RIKILT Wageningen University and Research, 6708 WB Wageningen, The Netherlands
| | | | | | - Geert Stoopen
- RIKILT Wageningen University and Research, 6708 WB Wageningen, The Netherlands
| | | | | | - Nathalie Zucchini-Pascal
- INRA Unit 1331, TOXALIM, French National Institute for Agricultural Research, 180 chemin de Tournefeuille - BP.93173 F-31027 TOULOUSE cedex 3, France
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
18
|
Yamada T. Case examples of an evaluation of the human relevance of the pyrethroids/pyrethrins-induced liver tumours in rodents based on the mode of action. Toxicol Res (Camb) 2018; 7:681-696. [PMID: 30090614 PMCID: PMC6062351 DOI: 10.1039/c7tx00288b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Rodent carcinogenicity studies are useful for screening for human carcinogens but they are not perfect. Some modes of action (MOAs) lead to cancers in both experimental rodents and humans, but others that lead to cancers in rodents do not do so in humans. Therefore, analysing the MOAs by which chemicals produce tumours in rodents and determining the relevance of such tumour data for human risk are critical. Recently, experimental data were obtained as case examples of an evaluation of the human relevance of pyrethroid (metofluthrin and momfluorothrin)- and pyrethrins-induced liver tumours in rats based on MOA. The MOA analysis, based on the International Programme on Chemical Safety (IPCS) framework, concluded that experimental data strongly support that the postulated MOA for metofluthrin-, momfluorothrin- and pyrethrins-produced rat hepatocellular tumours is mediated by constitutive androstane receptor (CAR) activation. Since metofluthrin and momfluorothrin are close structural analogues, reproducible outcomes for both chemicals provide confidence in the MOA findings. Furthermore, cultured human hepatocyte studies and humanized chimeric mouse liver studies demonstrated species difference between human hepatocytes (refractory to the mitogenic effects of these compounds) and rat hepatocytes (sensitive to their mitogenic effects). These data strongly support the hypothesis that the CAR-mediated MOA for liver tumorigenesis is of low carcinogenic risk for humans. In this research, in addition to cultured human hepatocyte studies, the usefulness of the humanized chimeric liver mouse models was clearly demonstrated. These data substantially influenced decisions in regulatory toxicology. In this review I comprehensively discuss the human relevance of the CAR-mediated MOA for rodent liver tumorigenesis based on published information, including our recent molecular research on CAR-mediated MOA.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
19
|
Yang JD, Liu SH, Liao MH, Chen RM, Liu PY, Ueng TH. Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:899-907. [PMID: 29923317 DOI: 10.1002/tox.22575] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 05/19/2023]
Abstract
The major objective of the present study was to determine the ability of a triazole fungicide tebuconazole to induce cytochrome P450-dependent monooxygenases, oxidative stress, and endocrine-disrupting activity using male rats treated with tebuconazole at 10, 25, and 50 mg/kg p.o. once daily for 28 days. In liver, tebuconazole dose-dependently increased microsomal contents of cytochrome P450 and cytochrome b5 and the activities of NADPH-cytochrome P450 reductase, 7-ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, pentoxyresorufin O-dealkylase, 7-ethoxycoumarin O-deethylase, aniline hydroxylase, and erythromycin N-demethylase. In kidney, tebuconazole increased 7-ethoxycoumarin O-deethylase activity without affecting other monooxygenase activities. In marked contrast to liver and kidney, tebuconazole decreased testicular 7-ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, 7-ethoxycoumarin O-deethylase, aniline hydroxylase, and erythromycin N-demethylase activities. The results of immunoblot analysis of liver microsomes of controls and tebuconazole-treated rats revealed that tebuconazole induced CYP1A1/2, CYP2B1/2, CYP2E1, and CYP3A proteins in liver. Additions of tebuconazole to liver microsomes inhibited microsomal 7-ethoxycoumarin O-deethylase activity in vitro (IC50 = 1.50-1.69 µM). Treatment of rats with tebuconazole decreased glutathione content and increased glutathione S-transferase, superoxide dismutase, catalase, and glutathione peroxidase activities in liver; increased superoxide dismutase activities in kidney and testis; but decreased glutathione S-transferase activity in testis. Treatments with tebuconazole decreased serum testosterone concentration and cauda epididymal sperm count. The present study demonstrates that tebuconazole induces a multiplicity of CYPs and oxidative stress in liver; inhibits testicular P450 and glutathione S-transferase activities; and produces anti-androgenic effects in male rats.
Collapse
Affiliation(s)
- Jr-Di Yang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Pei-Yu Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzuu-Huei Ueng
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Knebel C, Neeb J, Zahn E, Schmidt F, Carazo A, Holas O, Pavek P, Püschel GP, Zanger UM, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicol Sci 2018; 163:170-181. [DOI: 10.1093/toxsci/kfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Elisabeth Zahn
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Flavia Schmidt
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | | | - Ondej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology
| | - Gerhard P Püschel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, and Eberhard-Karls-University, Tuebingen, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | | | - Philip Marx-Stoelting
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | | |
Collapse
|
21
|
Nie J, Chen F, Song Z, Sun C, Li Z, Liu W, Lee M. Large volume of water samples introduced in dispersive liquid-liquid microextraction for the determination of 15 triazole fungicides by gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 2016; 408:7461-71. [PMID: 27580608 DOI: 10.1007/s00216-016-9835-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
A novel method of large volume of water samples directly introduced in dispersive liquid-liquid microextraction was developed, which is based on ultrasound/manual shaking-synergy-assisted emulsification and self-generating carbon dioxide gas (CO2) breaking down the emulsion for the determination of 15 triazole fungicides by gas chromatography-tandem mass spectrometry. This technique makes low-density extraction solvent toluene (180 μL) dissolve in 200 mL of samples containing 0.05 mol L(-1) of HCl and 5 % of NaCl (w/v) to form a well emulsion by synergy of ultrasound and manual shaking, and injects NaHCO3 solution (1.0 mol L(-1)) to generate CO2 achieving phase separation with the assistance of ultrasound. The entire process is accomplished within 8 min. The injection of NaHCO3 to generate CO2 achieves phase separation that breaks through the centrifugation limited large volume aqueous samples. In addition, the device could be easily cleaned, and this kind of vessel could be reconfigured for any volume of samples. Under optimal conditions, the low limits of detection ranging from 0.7 to 51.7 ng L(-1), wide linearity, and enrichment factors obtained were in the range 924-3669 for different triazole fungicides. Southern end of the Beijing-Hangzhou Grand Canal water (Hangzhou, China) was used to verify the applicability of the developed method. Graphical Abstract Flow chart of ultrasound/manual shaking-synergy-assisted emulsification and self-generating carbon dioxide gas breaking down the emulsion.
Collapse
Affiliation(s)
- Jing Nie
- College of Chemical Engineering, Zhejiang University of Technology, Xiacheng District, Hangzhou, Zhejiang, 310014, China
| | - Fujiang Chen
- College of Chemical Engineering, Zhejiang University of Technology, Xiacheng District, Hangzhou, Zhejiang, 310014, China
| | - Zhiyu Song
- College of Chemical Engineering, Zhejiang University of Technology, Xiacheng District, Hangzhou, Zhejiang, 310014, China
| | - Caixia Sun
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China.,Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture, Hangzhou, Zhejiang, 310021, China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
| | - Wenhan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
| | - Mawrong Lee
- Department of Chemistry, National Chung-Hsing University, Taichung, 40227, ROC, Taiwan
| |
Collapse
|
22
|
Kuwata K, Inoue K, Ichimura R, Takahashi M, Kodama Y, Shibutani M, Yoshida M. Involvement of Mouse Constitutive Androstane Receptor in Acifluorfen-Induced Liver Injury and Subsequent Tumor Development. Toxicol Sci 2016; 151:271-85. [DOI: 10.1093/toxsci/kfw040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
23
|
Kuwata K, Inoue K, Ichimura R, Takahashi M, Kodama Y, Yoshida M. Constitutive active/androstane receptor, peroxisome proliferator-activated receptor α, and cytotoxicity are involved in oxadiazon-induced liver tumor development in mice. Food Chem Toxicol 2016; 88:75-86. [DOI: 10.1016/j.fct.2015.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
24
|
Tamura K, Inoue K, Takahashi M, Matsuo S, Kodama Y, Yoshida M. A crucial role of constitutive androstane receptor (CAR) in liver tumor development by imazalil in mice. J Toxicol Sci 2016; 41:801-811. [DOI: 10.2131/jts.41.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kei Tamura
- Division of Pathology, National Institute of Health Sciences
- Toxicology Research Department, Pharmaceutical Development Research Laboratories, Teijin Pharma Limited
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine Azabu University
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences
- Present address: Food Safety Commission Secretariat, Cabinet Office
| | - Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences
| | - Saori Matsuo
- Division of Pathology, National Institute of Health Sciences
| | - Yukio Kodama
- Division of Toxicology, National Institute of Health Sciences
| | | |
Collapse
|
25
|
Lin W, Yang L, Chai SC, Lu Y, Chen T. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor. Eur J Med Chem 2015; 108:505-528. [PMID: 26717202 DOI: 10.1016/j.ejmech.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Yan Lu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, TN 38105, United States.
| |
Collapse
|
26
|
Cherian MT, Chai SC, Chen T. Small-molecule modulators of the constitutive androstane receptor. Expert Opin Drug Metab Toxicol 2015; 11:1099-114. [PMID: 25979168 DOI: 10.1517/17425255.2015.1043887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The constitutive androstane receptor (CAR) induces drug-metabolizing enzymes for xenobiotic metabolism. AREAS COVERED This review covers recent advances in elucidating the biological functions of CAR and its modulation by a growing number of agonists and inhibitors. EXPERT OPINION Extrapolation of animal CAR function to that of humans should be carefully scrutinized, particularly when rodents are used in evaluating the metabolic profile and carcinogenic properties of clinical drugs and environmental chemicals. Continuous efforts are needed to discover novel CAR inhibitors, with extensive understanding of their inhibitory mechanism, species selectivity, and discriminating power against other xenobiotic sensors.
Collapse
Affiliation(s)
- Milu T Cherian
- Postdoctoral fellow, St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | |
Collapse
|
27
|
Hadj Mokhtar H, Boukoussa B, Hamacha R, Bengueddach A, El Abed D. CuCO3–CuO nanocomposite as a novel and environmentally friendly catalyst for triazole synthesis. RSC Adv 2015. [DOI: 10.1039/c5ra17224a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper focuses on the use of natural sources for the preparation of efficient and low cost catalysts for triazole synthesis.
Collapse
Affiliation(s)
- Halima Hadj Mokhtar
- Laboratoire de Chimie Fine L.C.F
- Université d’Oran 1 Ahmed Ben Bella
- 31100 Oran
- Algeria
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (C.R.A.P.C)
| | - Bouhadjar Boukoussa
- Laboratoire de Chimie des Matériaux L.C.M
- Université d’Oran1 Ahmed Ben Bella
- 31000 Oran
- Algeria
- Centre Universitaire Ain Témouchent
| | - Rachida Hamacha
- Laboratoire de Chimie des Matériaux L.C.M
- Université d’Oran1 Ahmed Ben Bella
- 31000 Oran
- Algeria
| | - Abdelkader Bengueddach
- Laboratoire de Chimie des Matériaux L.C.M
- Université d’Oran1 Ahmed Ben Bella
- 31000 Oran
- Algeria
| | - Douniazad El Abed
- Laboratoire de Chimie Fine L.C.F
- Université d’Oran 1 Ahmed Ben Bella
- 31100 Oran
- Algeria
| |
Collapse
|