1
|
Zahir A, Ge Z, Khan IA. Public Health Risks Associated with Food Process Contaminants - A Review. J Food Prot 2025; 88:100426. [PMID: 39643160 DOI: 10.1016/j.jfp.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The increasing complexity of food production and processing has raised concerns regarding food process contaminants, which pose significant public health risks. Food process contaminants can be introduced during diverse phases of food processing such as drying, heating, grilling, and fermentation, resulting in the synthesis of harmful chemicals including acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan and its naturally occurring derivatives, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), 2-chloropropane-1,2-diol esters (2-MCPDE), and 3-chloropropane-1,2-diol esters (3-MCPDE), ethyl carbamate (EC), glycidyl esters (GE), and 4-methylimidazole (4-MEI), all of these are harmful to human health. Although these compounds can be somewhat prevented during processing, eliminating them can often be challenging due to their unknown formation mechanism. Moreover, prolonged exposure to these dangerous compounds might harm human health. There is limited understanding of the sources, formation processes, and hazards of food processing contaminants, and a lack of knowledge of the mechanisms involved in how to control their generation. In this review, we provide a comprehensive overview of the harmful effects associated with food process contaminants generated during thermal processing and fermentation, alongside elemental process contaminants and their potential threats to human health. Furthermore, this study identifies existing knowledge gaps proposes avenues for future inquiry and emphasizes the necessity of employing a multi-disciplinary approach to alleviate the public health risks posed by food process contaminants, advocating for cooperative initiatives among food scientists, public health officials, and regulatory entities to enhance food safety and protect consumer health.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar 3801, Afghanistan.
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Batool Z, Singla RK, Kamal MA, Shen B. Demystifying furan formation in foods: Implications for human health, detection, and control measures: A review. Compr Rev Food Sci Food Saf 2025; 24:e70087. [PMID: 39731718 DOI: 10.1111/1541-4337.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Furan (C₄H₄O), an unintended hazardous compound, is formed in various thermally processed foods through multiple pathways, raising concerns due to its potential carcinogenicity in humans. The aim of this comprehensive review was to synthesize and evaluate the latest research on furan, from its formation by different precursors to its presence in diverse food matrices, as well as the emerging methods for its detection and mitigation. Emphasizing the toxicity of furan, it explored evidence from in vitro and in vivo studies, including reproductive toxicity, carcinogenic effects, and related biomarkers. Additionally, this review focused on human risk assessments of furan exposure and discussed innovative research approaches to better understand its health risks. By consolidating current knowledge, this review provided a comprehensive perspective on furan's impact on human health and suggested future research directions to further research on furan.
Collapse
Affiliation(s)
- Zahra Batool
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K Singla
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Sydney, New South Wales, Australia
| | - Bairong Shen
- Center of High Altitude Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hibi D, Soma M, Suzuki Y, Takasu S, Ishii Y, Umemura T. Appearance of sex-determining region Y-box 9 (SOX9)- and glutathione S-transferase placental form (GST-P)-positive hepatocytes as possible carcinogenic events in the early stage of furan-induced hepatocarcinogenesis. J Appl Toxicol 2024; 44:1976-1985. [PMID: 39171654 DOI: 10.1002/jat.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Furan, the basic skeleton of various flavoring agents, induces cholangiocellular tumors with higher incidences in the caudate lobe and hepatocellular tumors without the lobe specificity in rats, but the mechanism is unclear. We investigated the lobe distribution of possible carcinogenic events. Furan caused proliferation/infiltration of oval and inflammatory cells prominently in the caudate lobe as early as 4 weeks and cholangiofibrosis in this lobe at 8 weeks. In vivo mutagenicity assays using DNA extracted from the caudate or left lateral lobe of male gpt delta rats, the reporter gene-transgenic rats, treated with 8 mg/kg furan for 4 or 8 weeks showed negative outcomes. The distribution of glutathione S-transferase placental form (GST-P)-positive or sex-determining region Y-box 9 (SOX9)-positive hepatocytes was examined. Significant increases in the number of GST-P-positive hepatocytes were observed in all lobes of furan-treated rats at 8 weeks. By contrast, SOX9-positive hepatocytes, liver injury-inducible progenitor cells, were also found in all lobes of treated rats, the incidences of which were by far the highest in the caudate lobe. In addition, some of these hepatocytes also co-expressed delta like 1 homolog (DLK1), a hepatoblast marker, particularly in areas with a predominant presence of inflammatory cells. Overall, furan induced liver injury, leading to the appearance of SOX9-positive hepatocytes, some of which were subjected to dedifferentiation in the inflammatory microenvironment of a cholangiocarcinoma-prone lobe. Thus, the appearance of SOX9-positive hepatocytes together with GST-P-positive hepatocytes could be initial events in furan-induced hepatocarcinogenesis via non-genotoxic mechanisms.
Collapse
Affiliation(s)
- Daisuke Hibi
- Division of Pathology, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
| | - Meili Soma
- Division of Pathology, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
- Graduate School of Animal Health Technology, Yamazaki University of Animal Health Technology, Tokyo, Japan
| | - Yuta Suzuki
- Division of Pathology, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, Kawasaki-shi, Kanagawa, Japan
- Graduate School of Animal Health Technology, Yamazaki University of Animal Health Technology, Tokyo, Japan
| |
Collapse
|
4
|
Schäfer V, Stegmüller S, Becker H, Richling E. Reactivity of the 2-Methylfuran Phase I Metabolite 3-Acetylacrolein Toward DNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25319-25329. [PMID: 39494867 PMCID: PMC11565790 DOI: 10.1021/acs.jafc.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
2-Methylfuran (2-MF) is a well-known industrial chemical and also formed via thermal treatment of food. One main source of 2-MF in the human diet is coffee. 2-MF is known to form 3-acetylacrolein (AcA, 4-oxopent-2-enal) via cytochrome P 450 metabolism and further reacts with amino acids in vivo. Still the reactivity toward other biomolecules is rather scarce. Therefore, AcA was synthesized, and its reaction with 2'-deoxyadenosine (dA), 2'deoxyguanosine (dG), 2'deoxycytosine (dC), and 2'-deoxythymidine (dT) was tested. For this purpose, adduct formation was performed by acid hydrolysis of 2,5-dihydro-2,5-dimethoxy-2-methylfuran (DHDMMF) as well as pure AcA. The structures of these adducts were confirmed by UPLC-ESI+-MS/MS fragmentation patterns and 1H-/13CNMR spectra. Except for dT, which showed no reactivity, all adducts of AcA were characterized, which enabled the development of sensitive quantification methods via (U)HPLC-ESI±-MS/MS. Pure AcA was synthesized by oxidation of 2-MF using dimethyldioxirane (DMDO), and its behavior in aqueous medium was studied. Incubations of AcA and isolated DNA of primary rat hepatocytes (pRH) showed time- and dose-dependent formation of the identified DNA adducts dA-AcA, dG-AcA, or dC-AcA. In contrast, the DNA adducts dA-AcA, dG-AcA, or dC-AcA were not detected on a cellular level when pRH were incubated with 2-MF or AcA. This indicates an efficient detoxification or reaction with biomolecules in the cell, although the induction of other DNA damage, possibly also by other metabolites, cannot be ruled out in principle.
Collapse
Affiliation(s)
- Verena Schäfer
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Simone Stegmüller
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Hanna Becker
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Elke Richling
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
5
|
Peng W, Law JCF, Leung KSY. Chlorination of bisphenols in water: Understanding the kinetics and formation mechanism of 2-butene-1,4-dial and analogues. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132128. [PMID: 37515991 DOI: 10.1016/j.jhazmat.2023.132128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
While it is widely accepted that 2-butene-1,4-dial (BDA) is a toxic metabolite with genotoxic and carcinogenic properties, little is known about BDA and its analogues (BDAs) formation during water disinfection. In this study, the effects of different chlorination conditions on the formation of BDAs from bisphenol and its analogues (BPs analogues) were evaluated. A transformation pathway for the formation of BDAs upon chlorination of BPs analogues is proposed. The time profile of the transformation of BPs analogues into BDAs reveals that the generation of dichlorohydroquinone, dichloro-hydroxybenzenesulfonic acid and 2,4,6-trichlorophenol, are significantly associated with the formation of BDAs in the disinfected water. Owing to the different bridging groups contributing to the electrophilicity of BPs analogues in varying degrees, the stronger the electrophilicity of BPs analogues the more BDAs are formed. In addition, the type of BDAs produced is also affected. Four types of BDAs were detected in this study, one of which was newly identified. This study confirms that BPs analogues are an important source of BDAs and provides more insights into the formation of BDAs during chlorination. Greater attention should be given to the formation of BDAs in chlorinated water and their potential threat to humans and the ecosystem.
Collapse
Affiliation(s)
- Weiyu Peng
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, P. R. China.
| |
Collapse
|
6
|
Batool Z, Chen JH, Liu B, Chen F, Wang M. Review on Furan as a Food Processing Contaminant: Identifying Research Progress and Technical Challenges for Future Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5093-5106. [PMID: 36951248 DOI: 10.1021/acs.jafc.3c01352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A wide range of food processing contaminants (FPCs) are usually formed while thermal processing of food products. Furan is a highly volatile compound among FPCs and could be formed in a variety of thermally processed foods. Therefore, identification of possible reasons of furan occurrence in different thermally processed foods, identification of the most consequential sources of furan exposure, factors impacting its formation, and its detection by specific analytical approaches are necessary to indicate gaps and challenges for future research findings. Furthermore, controlling furan formation in processed foods on a factory scale is also challenging, and research advancements are still ongoing in this context. Meanwhile, understanding adverse effects of furan on human health on a molecular level is necessary to gain insights into human risk assessment.
Collapse
Affiliation(s)
- Zahra Batool
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Bin Liu
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
7
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Vevang KR, Zhang L, Grill AE, Hatsukami DK, Meier E, Nomura SO, Robien K, Peterson LA. Furan Metabolites Are Elevated in Users of Various Tobacco Products and Cannabis. Chem Res Toxicol 2023; 36:157-161. [PMID: 36716352 PMCID: PMC10035786 DOI: 10.1021/acs.chemrestox.2c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Humans are exposed to furan, a toxicant and possible human carcinogen, through multiple sources including diet and tobacco smoke. The urinary metabolites of furan are derived from the reaction of its toxic metabolite with protein nucleophiles and are biomarkers of exposure and potential harm. An established isotopic dilution liquid-chromatography mass spectrometry method was used to measure these biomarkers in urine from users of e-cigarettes, cannabis, and/or combustible tobacco with/without reduced nicotine levels. Amounts of furan mercapturic acid metabolites were higher in these individuals relative to nonsmokers, indicating that they may be at risk for potential furan-derived toxicities.
Collapse
Affiliation(s)
- Karin R. Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alex E. Grill
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dorothy K. Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN,55455, USA
| | - Ellen Meier
- Department of Psychology, University of Wisconsin-Stevens Point, Stevens Point, WI, USA
| | - Sarah Oppeneer Nomura
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kim Robien
- Department of Exercise and Nutrition Sciences, George Washington University, Washington, DC 20052, USA
| | - Lisa A. Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
9
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
10
|
Kuroda K, Ishii Y, Takasu S, Matsushita K, Kijima A, Nohmi T, Umemura T. Toxicity, genotoxicity, and carcinogenicity of 2-methylfuran in a 90-day comprehensive toxicity study in gpt delta rats. Food Chem Toxicol 2022; 168:113365. [PMID: 35970270 DOI: 10.1016/j.fct.2022.113365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
2-Methylfuran (2-MF) exists naturally in foods and is used as a flavoring agent. Furan, the core structure of 2-MF, possesses hepatocarcinogenicity in rodents. Accumulation of toxicological information on furan derivatives is needed to elucidate their carcinogenic mode of action. In the current study, we examined the comprehensive toxicological studies of 2-MF using gpt delta rats. 2-MF was intragastrically administered to groups of 10 male and 10 female Sprague-Dawley gpt delta rats at a dose of 0, 1.2, 6, or 30 mg/kg/day for 13 weeks. Effects of 2-MF on the hepatobiliary system including an increase in serum alkaline phosphatase were observed in the 6 and 30 mg/kg groups, and cholangiofibrosis was found in the 30 mg/kg group. The no observed adverse effect level was set at 1.2 mg/kg/day for both sexes and 1.14 mg/kg/day was determined as the benchmark dose low. The acceptable daily intake was calculated to be 11.4 μg/kg/day. Increases in the number and areas of glutathione S-transferase placental form-positive foci in the 30 mg/kg group were apparent, suggesting the hepatocarcinogenicity of 2-MF in rats. By contrast, the lack of increase in in vivo mutagenicity in the liver implied that 2-MF hepatocarcinogenesis may not involve genotoxic mechanisms.
Collapse
Affiliation(s)
- Ken Kuroda
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan; Yamazaki University of Animal Health, Technology, Tokyo, Japan.
| |
Collapse
|
11
|
Gouveia-Fernandes S, Rodrigues A, Nunes C, Charneira C, Nunes J, Serpa J, Antunes AMM. Glycidamide and cis-2-butene-1,4-dial (BDA) as potential carcinogens and promoters of liver cancer - An in vitro study. Food Chem Toxicol 2022; 166:113251. [PMID: 35750087 DOI: 10.1016/j.fct.2022.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Carolina Nunes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - Jacinta Serpa
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal.
| |
Collapse
|
12
|
Marron EL, Van Buren J, Cuthbertson AA, Darby E, von Gunten U, Sedlak DL. Reactions of α,β-Unsaturated Carbonyls with Free Chlorine, Free Bromine, and Combined Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3305-3312. [PMID: 33565865 PMCID: PMC9255599 DOI: 10.1021/acs.est.0c07660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical disinfectants employed in water and wastewater treatment can produce a variety of transformation products, including carbonyl compounds (e.g., saturated and unsaturated aldehydes and ketones). Experiments conducted under conditions relevant to chlorination at drinking water treatment plants and residual chlorine application in distribution systems indicate that α,β-unsaturated carbonyl compounds readily react with free chlorine and free bromine over a wide pH range but react slowly with combined chlorine (i.e., NH2Cl). For nearly all of the 11 α,β-unsaturated carbonyl compounds studied, the apparent second-order rate constants for the reaction with free chlorine increased in a linear manner with hypochlorite (OCl-) concentrations, yielding species-specific second-order rate constants for the reaction with OCl- ranging from 0.21 to 12 M-1 s-1. Predictions based on the second-order rate constants indicate that a substantial fraction (i.e., >60%) of several of the more prominent α,β-unsaturated carbonyls (e.g., acrolein, crotonaldehyde) will be transformed to an appreciable extent in distribution systems by free chlorine. Products from the reaction of chlorine with acrolein, crotonaldehyde, and methyl vinyl ketone were tentatively identified using nuclear magnetic resonance (NMR) and gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-HRT-MS). These products lacked unsaturated carbons and, in some cases, contained multiple halogens.
Collapse
Affiliation(s)
- Emily L. Marron
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt)
| | - Jean Van Buren
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
| | - Amy A. Cuthbertson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
| | - Emily Darby
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt)
- corresponding author:
| |
Collapse
|
13
|
Owumi SE, Bello SA, Idowu TB, Arunsi UO, Oyelere AK. Protocatechuic acid protects against hepatorenal toxicities in rats exposed to Furan. Drug Chem Toxicol 2021; 45:1840-1850. [PMID: 33645375 DOI: 10.1080/01480545.2021.1890109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Furan formed in processed food is hepatotoxic and likely carcinogenic in humans. We investigated protocatechuic acid (PCA) protective role in rats' hepatorenal function treated with furan. Rats were grouped and treated as follows: Control, PCA (50 mg/kg), furan alone (8 mg/kg), furan + PCA1 (25 + 8 mg/kg), and furan + PCA2 (50 + 8 mg/kg). Upon sacrifice, evaluation of hepatorenal function, oxidative stress status, reactive oxygen and nitrogen species (RONS), lipid peroxidation (LPO), myeloperoxidase (MPO) activity, among nitric oxide (NO) levels were performed. Cytokine levels (IL-10, IL-1ß, TNF-alpha), Caspase 3 and 9 activities, and histopathological examination were also assessed. We found that the final body and relative liver weights changed significantly (p < 0.05) in treated groups. Hepatic transaminases, urea, and creatinine increased (p < 0.05) in furan only treated group, and reduced in PCA co-treated groups. The furan-induced decrease in antioxidant status increased RONS, and LPO levels were alleviated (p < 0.05) by PCA co-treatment. Furthermore, furan-mediated increase in NO, IL-1ß, TNF-alpha levels, MPO, Cas-3, and 9 activities and suppressed IL-10 levels was reversed accordingly in rats' kidney and liver co-treated with PCA. The extent of furan-mediated hepatorenal lesions was lessened in PCA co-treated rats. Our findings suggest that PCA protects against oxido-inflammatory pathways, enhanced caspases 3 and 9 activations induced by furan in rat hepatorenal system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Samuel A Bello
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Temitope B Idowu
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
14
|
Batool Z, Xu D, Zhang X, Li X, Li Y, Chen Z, Li B, Li L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit Rev Food Sci Nutr 2020; 61:395-406. [PMID: 32146825 DOI: 10.1080/10408398.2020.1734532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Furan (C4H4O) is a volatile, heterocyclic and carcinogenic heterocyclic chemical compound occurring in a wide range of thermally processed foods. Several studies have been conducted to analyze the formation conditions, triggering furan formation via model systems. Furan can be encountered via various pathways including thermal degradation, oxidation of polyunsaturated fatty acids, thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids. Furan has been proven to cause cancer in experimental animal models and classified as a possible human carcinogen by International agency for research on cancer based on sufficient evidences. Thus, different strategies should be developed to reduce furan contents in commercially available food stuffs while food processing. This review summarizes some current evidences of furan formation from different precursors, analytical methods for its detection, and its toxicity that might lead to carcinogenicity and genotoxicity with human risk assessment. In addition, furan occurrence in different thermally processed foods entailed by several recent studies as well as furan mitigation strategies during food processing have also been illustrated in this review.
Collapse
Affiliation(s)
- Zahra Batool
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dan Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuting Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhiyi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
15
|
Prasse C, von Gunten U, Sedlak DL. Chlorination of Phenols Revisited: Unexpected Formation of α,β-Unsaturated C 4-Dicarbonyl Ring Cleavage Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:826-834. [PMID: 31904937 PMCID: PMC7665061 DOI: 10.1021/acs.est.9b04926] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite decades of research on the fate of phenolic compounds when water is disinfected with hypochlorous acid (HOCl), there is still considerable uncertainty regarding the formation mechanisms and identity of ring cleavage products, especially at higher chlorine doses. This study focuses on the formation of electrophilic ring cleavage products-a class of compounds that poses potential health risks at relatively low concentrations-from the reactions of phenols with chlorine. By monitoring the formation of products of reactions between ring cleavage products and the model nucleophile N-α-acetyl-lysine, we identified the α,β-unsaturated dialdehyde 2-butene-1,4-dial (BDA) and its chlorinated analogue, chloro-2-butene-1,4-dial (Cl-BDA), after the chlorination of phenol, para- and ortho-substituted chlorophenols (2-Cl, 4-Cl, 2,4-diCl-, 2,6-diCl, and 2,4,6-triCl-phenol), and 3,5-di-Cl-catechol. Maximum yields of BDA were observed when chlorine was present in large excess (HOCl/phenol ratios of 30:1 to 50:1), with yields ranging from 18% for phenol to 46% for 3,5-diCl-catechol. BDA and Cl-BDA formation was also observed during the chlorination of brominated phenols. For methyl-substituted phenols, the presence of methyl substituents in both positions ortho to the hydroxy group inhibited BDA and Cl-BDA formation, but the chlorination of cresols and 2,3-dimethylphenol yielded methyl- and dimethyl-BDA species. This study provides new insights into the formation of reactive and toxic electrophiles during chlorine disinfection. It also provides evidence for the importance of phenoxy radicals produced by one-electron transfer reactions initiated by chlorine in the production of dicarbonyl ring cleavage products.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Tăbăran AF, O’Sullivan MG, Seabloom DE, Vevang KR, Smith WE, Wiedmann TS, Peterson LA. Inhaled Furan Selectively Damages Club Cells in Lungs of A/J Mice. Toxicol Pathol 2019; 47:842-850. [PMID: 31426723 PMCID: PMC6814549 DOI: 10.1177/0192623319869306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Furan, a possible human carcinogen, is a product of incomplete combustion and is present in cigarette smoke, engine exhaust, and processed food. Oral administration induces liver toxicity and carcinogenesis in F344 rats and B6C3F1 mice. To assess possible adverse effects from inhalation, A/J mice were nose-only exposed for 3 hours to furan (0, 30, 75, 150, 300, or 600 ppmv) and euthanized after 24 hours, 48 hours, or 1 week. Histopathology evaluation revealed bronchiolar club cell necrosis (diffuse, marked) with airway denudation following exposure to 300 and 600 ppmv furan with evidence of club cell regeneration and partial repair after 1 week. Initial signs of hepatotoxicity were observed in the 150 ppmv furan-exposed group. Acute necrosis and mineralization were observed in livers at 24 and 48 hours with hepatocyte regeneration by 1-week postexposure in mice exposed to 300 and 600 ppmv furan; the 300 ppmv exposed group had multifocal mineralization that evoked a mild granulomatous response. Measurement of urinary furan metabolites confirmed that the mice metabolized furan to the toxic intermediate, cis-2-butene-1,4-dial. These observations indicate that inhaled furan is toxic to lungs with club cells as the target as well as liver.
Collapse
Affiliation(s)
- Alexandru-Flaviu Tăbăran
- College of Veterinary Medicine, University of Minnesota,
St. Paul, Minnesota, USA
- Comparative Pathology Shared Resource, Masonic Cancer
Center, University of Minnesota, St. Paul, Minnesota, USA
| | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota,
St. Paul, Minnesota, USA
- Comparative Pathology Shared Resource, Masonic Cancer
Center, University of Minnesota, St. Paul, Minnesota, USA
| | - Donna E. Seabloom
- AeroCore Testing Service, Department of Otolaryngology,
University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
| | - Karin R. Vevang
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
| | - William E. Smith
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota,
Minneapolis, Minnesota, USA
| | - Lisa A. Peterson
- Masonic Cancer Center, University of Minnesota,
Minneapolis, Minnesota, USA
- Division of Environmental Health Sciences, University of
Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck NR, O’ Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, Weck M, Vinci C, Sobieraj M, Stadler RH. Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Compr Rev Food Sci Food Saf 2019; 18:738-752. [DOI: 10.1111/1541-4337.12433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Beate Kettlitz
- FoodDrinkEurope (FDE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Gabriele Scholz
- Nestlé ResearchVers‐chez‐les‐Blanc 1000 Lausanne 26 Switzerland
| | - Viviane Theurillat
- Nestlé Research & Development Rte de Chavornay 3 CH‐1350 Orbe Switzerland
| | - Jörg Cselovszky
- Cereal Partners Worldwide S.A. Rte de Chavornay 7 CH‐1350 Orbe Switzerland
| | - Neil R. Buck
- General Mills Inc. Ave. Reverdil 12–14 CH‐1260 Nyon Switzerland
| | - Sue O’ Hagan
- Pepsico Beaumont Park, 4 Leycroft Rd., Leiecster LE4 1ET United Kingdom
| | - Eva Mavromichali
- Specialised Nutrition Europe (SNE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Katja Ahrens
- German Federation for Food Law and Food Science Claire‐Waldoff‐Str. 7 10117 Berlin Germany
| | - Karin Kraehenbuehl
- Société des Produits Nestlé S.A. Entre‐deux‐Villes 10–12 1814 La Tour‐de‐Peilz Switzerland
| | - Gabriella Scozzi
- European Breakfast Cereal Assn. Ave. des Nerviens 9–31 B‐1040 Brussels Belgium
| | - Markus Weck
- CULINARIA Europe Reuterstraße 151 D‐53113 Bonn Germany
| | - Claudia Vinci
- European Assn. of Fruit and Vegetable Processors (Profel) Av. De Tervueren 188A B‐1150 Brussels Belgium
| | - Marta Sobieraj
- European Fruit Juice Assn. (AIJN) Rue de la Loi 221 box 5 B‐1040 Brussels Belgium
| | | |
Collapse
|
18
|
Alizadeh M, Barati M, Saleh-Ghadimi S, Roshanravan N, Zeinalian R, Jabbari M. Industrial furan and its biological effects on the body systems. J Food Biochem 2018. [DOI: 10.1111/jfbc.12597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Meisam Barati
- Faculty of Nutrition and Food Sciences, Student Research Committee, Cellular and Molecular Nutrition Department; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Sevda Saleh-Ghadimi
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Neda Roshanravan
- Cardiovascular Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Reihaneh Zeinalian
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Masoumeh Jabbari
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
19
|
Rietjens IMCM, Dussort P, Günther H, Hanlon P, Honda H, Mally A, O'Hagan S, Scholz G, Seidel A, Swenberg J, Teeguarden J, Eisenbrand G. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch Toxicol 2018; 92:15-40. [PMID: 29302712 PMCID: PMC5773647 DOI: 10.1007/s00204-017-2143-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - P Dussort
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| | - Helmut Günther
- Mondelēz International, Postfach 10 78 40, 28078, Bremen, Germany
| | - Paul Hanlon
- Abbott Nutrition, 3300 Stelzer Road, Dept. 104070, Bldg. RP3-2, Columbus, OH, 43219, USA
| | - Hiroshi Honda
- KAO Corporation, R&D Safety Science Research, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321 3497, Japan
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Sue O'Hagan
- PepsiCo Europe, 4 Leycroft Road, Leicester, LE4 1ET, UK
| | - Gabriele Scholz
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens Prof. Dr. Gernot Grimmer-Foundation, Lurup 4, 22927, Grosshansdorf, Germany
| | - James Swenberg
- Environmental Science and Engineering, UNC-Chapel Hill Cancer Genetics, 253c Rosenau Hall, Chapel Hill, NC, USA
| | - Justin Teeguarden
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| |
Collapse
|
20
|
de Conti A, Beland FA, Pogribny IP. The role of epigenomic alterations in furan-induced hepatobiliary pathologies. Food Chem Toxicol 2017; 109:677-682. [DOI: 10.1016/j.fct.2017.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
|
21
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
22
|
Erhitzungsbedingte Kontaminanten in Lebensmitteln. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:737-744. [DOI: 10.1007/s00103-017-2564-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Von Tungeln LS, Walker NJ, Olson GR, Mendoza MCB, Felton RP, Thorn BT, Marques MM, Pogribny IP, Doerge DR, Beland FA. Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study. Food Chem Toxicol 2017; 99:170-181. [PMID: 27871980 PMCID: PMC5375162 DOI: 10.1016/j.fct.2016.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023]
Abstract
Furan is a volatile organic chemical that is a contaminant in many common foods. Furan is hepatocarcinogenic in mice and rats; however, the risk to humans from dietary exposure to furan cannot be estimated accurately because the lowest tested dose of furan in a 2-year bioassay in rats gave nearly a 100% incidence of cholangiocarcinoma. To provide bioassay data that can be used in preparing risk assessments, the carcinogenicity of furan was determined in male F344/N Nctr rats administered 0, 0.02, 0.044, 0.092, 0.2, 0.44, 0.92, and 2 mg furan/kg body weight (BW) by gavage 5 days/week for 2 years. Exposure to furan was associated with the development of malignant mesothelioma on membranes surrounding the epididymis and on the testicular tunics, with the increase being significant at 2 mg furan/kg BW. There was also a dose-related increase in the incidence of mononuclear cell leukemia, with the increase in incidence being significant at 0.092, 0.2, 0.92, and 2 mg furan/kg BW. Dose-related non-neoplastic liver lesions included cholangiofibrosis, mixed cell foci, basophilic foci, biliary tract hyperplasia, oval cell hyperplasia, regenerative hyperplasia, and cytoplasmic vacuolization. The most sensitive non-neoplastic lesion was cholangiofibrosis, the frequency of which increased significantly at 0.2 mg furan/kg BW.
Collapse
Affiliation(s)
- Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Nigel J Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Greg R Olson
- Toxicologic Pathology Associates, Jefferson, AR 72079, United States
| | - Maria C B Mendoza
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Robert P Felton
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Brett T Thorn
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| |
Collapse
|
24
|
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98:2-10. [DOI: 10.1016/j.fct.2016.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 02/09/2023]
|
25
|
Webster AF, Lambert IB, Yauk CL. Toxicogenomics Case Study: Furan. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Development of pragmatic methodologies for human health risk assessment is required to address current regulatory challenges. We applied three toxicogenomic approaches—quantitative, predictive, and mechanistic—to a case study in mice exposed for 3 weeks to the hepatocarcinogen furan. We modeled the dose response of a variety of transcriptional endpoints and found that they produced benchmark doses similar to the furan-dependent cancer benchmark doses. Meta-analyses showed strong similarity between furan-dependent gene expression changes and those associated with several hepatic pathologies. Molecular pathways facilitated the development of a molecular mode of action for furan-induced hepatocellular carcinogenicity. Finally, we compared transcriptomic profiles derived from formalin-fixed and paraffin-embedded (FFPE) samples with those from high-quality frozen samples to evaluate whether archival samples are a viable option for toxicogenomic studies. The advantage of using FFPE tissues is that they are very well characterized (phenotypically); the disadvantage is that formalin degrades biomacromolecules, including RNA. We found that FFPE samples can be used for toxicogenomics using a ribo-depletion RNA-seq protocol. Our case study demonstrates the utility of toxicogenomics data to human health risk assessment, the potential of archival FFPE tissue samples, and identifies viable strategies toward the reduction of animal usage in chemical testing.
Collapse
Affiliation(s)
- A. Francina Webster
- Department of Biology, Carleton University 1125 Colonel By Drive Ottawa ON Canada
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture 50 Colombine Driveway Ottawa ON Canada
| | - Iain B. Lambert
- Department of Biology, Carleton University 1125 Colonel By Drive Ottawa ON Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture 50 Colombine Driveway Ottawa ON Canada
| |
Collapse
|
26
|
Tryndyak V, de Conti A, Doerge DR, Olson GR, Beland FA, Pogribny IP. Furan-induced transcriptomic and gene-specific DNA methylation changes in the livers of Fischer 344 rats in a 2-year carcinogenicity study. Arch Toxicol 2016; 91:1233-1243. [PMID: 27387713 DOI: 10.1007/s00204-016-1786-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Furan is a significant food contaminant and a potent hepatotoxicant and rodent liver carcinogen. The carcinogenic effect of furan has been attributed to genotoxic and non-genotoxic, including epigenetic, changes in the liver; however, the mechanisms of the furan-induced liver tumorigenicity are still unclear. The goal of the present study was to investigate the role of transcriptomic and epigenetic events in the development of hepatic lesions in Fischer (F344) rats induced by furan treatment in a classic 2-year rodent tumorigenicity bioassay. High-throughput whole-genome transcriptomic analysis demonstrated distinct alterations in gene expression in liver lesions induced in male F344 rats treated with 0.92 or 2.0 mg furan/kg body weight (bw)/day for 104 weeks. Compared to normal liver tissue, 1336 and 1541 genes were found to be differentially expressed in liver lesions in rats treated with 0.92 and 2.0 mg furan/kg bw/day, respectively, among which 1001 transcripts were differentially expressed at both doses. Pairing transcriptomic and next-generation bisulfite sequencing analyses of the common differentially expressed genes identified 42 CpG island-containing genes in which the methylation level was correlated inversely with gene expression. Forty-eight percent of these genes (20 genes, including Areg, Jag1, and Foxe1) that exhibited the most significant methylation and gene expression changes were involved in key pathways associated with different aspects of liver pathology. Our findings illustrate that gene-specific DNA methylation changes have functional consequences and may be an important component of furan hepatotoxicity and hepatocarcinogenicity.
Collapse
Affiliation(s)
- Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Greg R Olson
- Toxicologic Pathology Associates, National Center for Toxicological Research (NCTR), Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA.
| |
Collapse
|
27
|
El-Akabawy G, El-Sherif NM. Protective role of garlic oil against oxidative damage induced by furan exposure from weaning through adulthood in adult rat testis. Acta Histochem 2016; 118:456-63. [PMID: 27130490 DOI: 10.1016/j.acthis.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
Furan is produced in a wide variety of heat-treated foods via thermal degradation. Furan contamination is found to be relatively high in processed baby foods, cereal products, fruits juices, and canned vegetables. Several studies have demonstrated that furan is a potent hepatotoxin and hepatocarcinogen in rodents. However, few studies have investigated the toxic effects of furan in the testis. In addition, the exact mechanism(s) by which furan exerts toxicity in the testis has not been fully elucidated. In this study, we investigated the potential of furan exposure from weaning through adulthood to induce oxidative stress in adult rat testis, as well as the potential of garlic oil (GO) to ameliorate the induced toxicity. Our results reveal that furan administration significantly reduced serum testosterone levels and increased the levels of malondialdehyde (MDA); furthermore, furan administration decreased significantly the enzymatic activity of testicular antioxidants, including glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) and induced histopathological alterations in the testis. GO co-administration ameliorated the reduction in testosterone levels and dramatically attenuated the furan-induced oxidative and histopathological changes. In addition, Go significantly down-regulated the increased caspase-3 and cytochrome P450 2E1 (CYP2E1) expression in the furan-treated testis. To the best of our knowledge, this study is the first to demonstrate the furan-induced oxidative changes in the adult rat testis and the protective role of GO to ameliorate these changes through its antioxidant effects and its ability to inhibit CYP2E1 production.
Collapse
|