1
|
Li S, Li J, Chen K, Wang J, Wang L, Feng C, Wang K, Xu Y, Gao Y, Yan X, Zhao Q, Li B, Qiu Y. Chronic Arsenic Exposure Causes Alzheimer's Disease Characteristic Effects and the Intervention of Fecal Microbiota Transplantation in Rats. J Appl Toxicol 2025. [PMID: 40204291 DOI: 10.1002/jat.4782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
Arsenic exposure and intestinal microbiota disorders may be related with Alzheimer's disease (AD), but the mechanism has not been elucidated. This study conducted chronic arsenic exposure from rat's maternal body to adult offspring to investigate the mechanisms of the characteristic effects of chronic arsenic exposure on AD, and further explored the intervention effect of fecal microbiota transplantation (FMT) on arsenic-mediated neurotoxicity. Transmission electron microscopy, HE staining, and related indicators were measured in the control group, the exposed group, and the FMT intervention group. Western blot was used to determine microtubule-associated proteins Tau and p-Tau396, intestinal-brain barrier-related proteins Claudin-1 and Occludin, ELISA was used to detect the content of Aβ1-42, and 16S rRNA sequencing was used to detect the intestinal flora of feces. Results showed that chronic arsenic exposure could lead to neurobehavioral defects in rats, increase the expression levels of Tau, p-Tau396, and Aβ1-42 in hippocampus (p < 0.05), increase the abundance of Clostridium _ UCG-014, decrease the abundance of Roseburia, and decrease the expression levels of Claudin-1 and Occludin in colon and hippocampus (p < 0.05). After FMT intervention, the expression levels of Tau and p-Tau396 were decreased (p < 0.05), and the abundance of Roseburia was increased. In summary, chronic arsenic exposure caused intestinal flora disorder by changing the abundance of inflammation-related flora, thereby destroying the gut-brain barrier and causing AD characteristic effects in rats. Although the bacterial specific genus was improved and the expression of AD-related proteins was reduced after transplantation, it could not alleviate the neurobehavioral defects and neurotoxicity caused by arsenic exposure.
Collapse
Affiliation(s)
- Shuyuan Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jia Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Kun Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jing Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Longmei Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Chao Feng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Kanglin Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Yifan Xu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Yi Gao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Jinzhong, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Liu X, Xiang Q, Zhang L, Li J, Wu Y. Occurrence of rare earth elements in umbilical cord serum and association with thyroid hormones and birth outcomes in newborns. CHEMOSPHERE 2024; 359:142321. [PMID: 38754495 DOI: 10.1016/j.chemosphere.2024.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/13/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Rare earth elements (REEs) are emerging contaminants that are increasingly used in high technology products. However, limited information is available regarding exposure to REEs and associated health effects in neonates. This study aimed to investigate the association between REE concentrations and thyroid hormone levels, as well as birth outcomes in 109 newborns in Beijing, China. We measured the concentrations of 16 REEs and thyroid hormones in umbilical cord serum. To assess the impact of exposure to individual REEs and REE mixtures on thyroid hormone levels and birth outcomes, we employed univariate linear regression, least absolute shrinkage and selection operator (LASSO), and weighted quantile sum (WQS) models. We detected 14 REEs at high rates (92.6%-100%), with yttrium exhibiting the highest median (interquartile range) concentration [43.94 (0.33-172.55) ng/mL], followed by scandium [3.64 (0.46-11.15) ng/mL]. Univariate analyses showed that per logarithmic (ln)-unit change of neodymium (Nd) and samarium (Sm) was associated with 0.039 [95% confidence interval (CI): 0.001, 0.007] and 0.031 (95% CI: 0.003, 0.060) increases in free thyroxine (FT4) levels, respectively. Moreover, 14 REEs exhibited significant associations with triiodothyronine (T3) levels, resulting in increases ranging from 0.066 to 0.307. Elevated concentrations of terbium (Tb) [per ln-unit change: -0.021 (95% CI: -0.041, -0.01)] and lutetium (Lu) [-0.023 (95% CI: -0.043, -0.002)] were inversely correlated with birth length in newborns. A further multiple exposure analysis employing the LASSO model identified Sm, Nd, Y, Sc, and Lu as critical factors influencing FT4 and T3 levels. Additionally, WQS analyses showed positive associations between exposure to a mixture of 14 REEs and FT4 (P = 0.046), T3 (P < 0.001), and birth length (P = 0.049). These findings suggest that in utero exposure to REEs might disrupt thyroid hormone homeostasis and impact intrauterine growth. Further studies are warranted to validate these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xin Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian Xiang
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhang
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Jingguang Li
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| |
Collapse
|
3
|
Yang M, Zhang X, Qiao O, Zhang J, Li X, Ma X, Zhou S, Gao W. Effect of Cerebralcare Granule® combined with memantine on Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117609. [PMID: 38142875 DOI: 10.1016/j.jep.2023.117609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In elderly people, Alzheimer's disease (AD) is the most common form of dementia. It has been shown that traditional Chinese medicine (TCM) based on phytomedicines enhances the therapeutic effects of modern medicine when taken in conjunction with them. Modern medicine N-methyl-D-aspartate receptor (NMDA) antagonist memantine (Mm) are mainly used in the clinical treatment of AD. TCM Cerebralcare Granule® (CG) has long been an effective treatment for headaches, dizziness, and other symptoms. In this study, we employ a blend of CG and Mm to address Alzheimer's disease-like symptoms and explore their impacts and underlying mechanisms. AIM OF THE STUDY The objective of our study was to observe the effects of CG combined with Memantine (Mm) on learning and memory impairment of AD mice induced by D-galactose and to explore the mechanism at work. MATERIALS AND METHODS CG and Mm were combined to target multiple pathological processes involved in AD. For a thorough analysis, we performed various experiments such as behavioral detection, pathological detection, proteomic detection, and other experimental methods of detection. RESULTS It was found that the combination of CG and Mm was significantly effective for improving learning and memory in AD mice as well as brain pathology. The serum and hippocampal tissue of AD mice were significantly enhanced with catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) levels were decreased with this treatment. In AD mice, a combination of Mm and CG (CG + Mm) significantly increased the levels of the anti-inflammatory factors IL-4 and IL-10, decreased the levels of pro-inflammatory factors (IL-6, IL-1β) and tumor necrosis factor-alpha (TNF-α), improved synaptic plasticity by restoring synaptophysin (SYP) and postsynaptic density protein-95 (PSD-95) expression in the hippocampus, enhanced Aβ phagocytosis of microglia in AD mice, and increased mitochondrial respiratory chain enzyme complexes I, II, III, and IV, lead to an increase in the number of functionally active NMDA receptors in the hippocampus. Proteomic analysis GO analysis showed that the positive regulation gene H3BIV5 of G protein coupled receptor signal pathway and synaptic transmission was up-regulated, while the transsynaptic signal of postsynaptic membrane potential and regulation-related gene Q5NCT9 were down-regulated. Most proteins showed significant enriched signal transduction pathway profiles after CG + Mm treatment, based on the KEGG pathway database. CONCLUSION The data supported the idea that CG and Mm could be more effective in treating AD mice induced by D-galactose than Mm alone. We provided a basis for the clinical use of CG with Mm.
Collapse
Affiliation(s)
- Mingjuan Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xinyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ou Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jun Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Xiaoqing Li
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Xiaohui Ma
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Shuiping Zhou
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Liu X, Yu J, Tan X, Zhang Q, Niu J, Hou Z, Wang Q. Necroptosis involved in sevoflurane-induced cognitive dysfunction in aged mice by activating NMDA receptors increasing intracellular calcium. Neurotoxicology 2024; 100:35-46. [PMID: 38070654 DOI: 10.1016/j.neuro.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Perioperative neurocognitive disorders are a common surgical and postanesthesia complication. Necroptosis contributes to the emergence of various neurological disorders. We conjecture that cognitive impairment is associated with necroptosis of hippocampal neurons, which is mediated by NMDA receptors leading to cytoplasmic calcium imbalance. C57BL/6 J male mice ( 18 months) were randomly divided into the C ( control group), S ( sevoflurane group), S+M ( sevoflurane plus the NMDA receptor antagonist memantine group) and S+N ( sevoflurane plus necrostatin-1) group. We exposed the mice to 3% sevoflurane for 2 h a day for three consecutive days in the S, S+M and S+N groups. Memantine ( 20 mg/kg) or Nec-1 ( 10 mg/kg) was injected intraperitoneally 1 h before sevoflurane anesthesia in the S+M or S+N group. We used the animal behavior tests to evaluate the cognitive function. Pathological damage, the rate of necroptosis, [Ca2+]i, and the expression of necroptosis-related proteins were evaluated. The cognitive function tests, pathological damage, the rate of necroptosis, the expression of necroptosis-related proteins, NMDAR2A and NMDAR2B were significantly different in the S group ( P < 0.05). Alleviated pathological damage, decreased the rate of necroptosis and down-regulated the expression of necroptosis-related proteins occurred in the S+M and S+N group ( P < 0.05). The lower elevated [Ca2+]i, expression of NMDAR2A and NMDAR2B were found in the S+M group. Our findings highlighted sevoflurane-induced cognitive dysfunction is associated with an imbalance in cytoplasmic calcium homeostasis by activating NMDA receptors, which causes hippocampus neurons to undergo necroptosis and ultimately affects cognitive performance in aged mice.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China; Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Jiaxu Yu
- Department of Anesthesiology, Cang Zhou Centrol Hospital, Cangzhou 061017, Hebei, China
| | - Xiaona Tan
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Junfang Niu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Zhiyong Hou
- Center of Emergency and Trauma, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
5
|
Xia YY, de Seymour JV, Yang XJ, Zhou LW, Liu Y, Yang Y, Beck KL, Conlon CA, Mansell T, Novakovic B, Saffery R, Han TL, Zhang H, Baker PN. Hair and cord blood element levels and their relationship with air pollution, dietary intake, gestational diabetes mellitus, and infant neurodevelopment. Clin Nutr 2023; 42:1875-1888. [PMID: 37625317 DOI: 10.1016/j.clnu.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND & AIMS Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.
Collapse
Affiliation(s)
- Yin-Yin Xia
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jamie V de Seymour
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Xiao-Jia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Liu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Kathryn L Beck
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Cathryn A Conlon
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Ting-Li Han
- Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China.
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
6
|
Song Z, Mao H, Liu J, Sun W, Wu S, Lu X, Jin C, Yang J. Lanthanum Chloride Induces Axon Abnormality Through LKB1-MARK2 and LKB1-STK25-GM130 Signaling Pathways. Cell Mol Neurobiol 2023; 43:1181-1196. [PMID: 35661286 PMCID: PMC11414431 DOI: 10.1007/s10571-022-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.
Collapse
Affiliation(s)
- Zeli Song
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Haoyue Mao
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
7
|
Gao X, Chen F, Xu X, Liu J, Dong F, Liu Y. Ro25-6981 alleviates neuronal damage and improves cognitive deficits by attenuating oxidative stress via the Nrf2/ARE pathway in ischemia/reperfusion rats. J Stroke Cerebrovasc Dis 2023; 32:106971. [PMID: 36586245 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Oxidative stress plays a crucial role in the initiation and progression of cerebral ischemia‒reperfusion injury (CIRI). Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of CIRI. NMDAR NR2B subunit antagonists have been reported to be beneficial for synaptic plasticity, neuropathic pain, epilepsy, and cerebral ischemia. However, it remains unclear whether the NR2B subunit antagonist Ro25-6981 has any effect on CIRI. METHODS In this study, the Morris water maze test and passive avoidance test were used to detect spatial learning and memory. Neuronal loss was measured by Nissl staining. The expression of NSE was assayed by immunohistochemistry. The activities of MDA, 8-OHdG, SOD, GSH-Px, GST and CAT were detected by assay kits. Real-time PCR was used to detect the mRNA levels of hippocampal SOD, GSH-Px and HO-1. Western blotting was used to measure the activation of the Nrf2/ARE pathway by Ro25-6981. RESULTS Ro25-6981 ameliorated cognitive deficits and neuronal damage induced by ischemia‒reperfusion (I/R). Neuronal injury was decreased and the expression of NSE was increased in the CA1 regions of the hippocampus of I/R rats after Ro25-6981 treatment. Moreover, Ro25-6981 alleviated the levels of MDA and 8-OHdG by elevating the activities of SOD, GSH-Px, GST and CAT. Meanwhile, the mRNA levels of SOD, GSH-Px and HO-1 were increased in I/R rats after Ro25-6981 treatment. Furthermore, Ro25-6981 promoted the translocation of Nrf2 to the nucleus, promoting the expression of the Nrf2 downstream genes HO-1 and NQO1. CONCLUSION The present study indicated that the improvement in the antioxidant properties of Ro25-6981 is mediated by the Nrf2/ARE pathway. This is the first study to demonstrate a favorable effect of Ro25-6981 on cognitive impairment in a CIRI rat model, rendering this NR2B subunit antagonist a promising agent for the treatment or prevention of CIRI.
Collapse
Affiliation(s)
- Xiuxian Gao
- Department of Neurology, The First People's Hospital of Jiujiang, 48 Taling South Road, Jiujiang, Jiangxi Province 332000, China
| | - Fei Chen
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Xinqi Xu
- The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
8
|
Huang K, Lai S, Guo M, Zhu X, Yuan J, Liu Z, Hu G, Gao Y. Comparison of toxicity between lanthanum oxide nanoparticles and lanthanum chloride. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Sun L, Xue C, Guo C, Jia C, Li X, Tai P. Regulatory actions of rare earth elements (La and Gd) on the cell cycle of root tips in rice seedlings (Oryza sativa L.). CHEMOSPHERE 2022; 307:135795. [PMID: 35917980 DOI: 10.1016/j.chemosphere.2022.135795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The continuous expansion of the application of rare earth elements (REEs) in various fields has attracted attention to their biosafety. At present, the molecular mechanisms underlying the biological effects of REEs are unclear. In this study, the effects of lanthanum (La) and gadolinium (Gd) on cell cycle progression in the root tips of rice seedlings were investigated. Low concentrations of REEs (0.1 mg L-1) induced an increase in the number of cells in the prophase and metaphase, while high concentrations of REEs (10 mg L-1) induced an increase in the number of cells in the late and terminal stages of the cell cycle, and apoptosis or necrosis. Additionally, low concentrations of REEs induced a significant increase in the expression of the cell cycle factors WEE1, CDKA;1, and CYCB1;1, and promoted the G2/M phase and accelerated root tip growth. However, at high REEs concentrations, the DNA damage response sensitized by BRCA1, MRE11, and TP53 could that prevent root tip growth by inhibiting the transcription factor E2F, resulting in obvious G1/S phase transition block and delayed G2/M phase conversion. Furthermore, by comparing the biological effect mechanisms of La and Gd, we found that these two REEs share regulatory actions on the cell cycle of root tips in rice seedlings.
Collapse
Affiliation(s)
- Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
10
|
Huang W, Wang Z, Wang G, Li K, Jin Y, Zhao F. Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119813. [PMID: 35868470 DOI: 10.1016/j.envpol.2022.119813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca2+. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Weiyu Huang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zijiang Wang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning, People's Republic of China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Kunyang Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Sayehmiri F, Khodagholi F, Pourbadie HG, Naderi N, Aliakbarzadeh F, Hashemi R, Naderi S, Motamedi F. Phosphonate analog of 2-oxoglutarate regulates glutamate-glutamine homeostasis and counteracts amyloid beta induced learning and memory deficits in rats. Exp Gerontol 2022; 168:111944. [PMID: 36064157 DOI: 10.1016/j.exger.2022.111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Metabolic alteration is a mainstream concept underlying the cognitive decline in neurodegenerative disorders including Alzheimer's disease (AD). Mitochondrial enzyme α-ketoglutarate dehydrogenase complex (α-KGDHC) seems to play a dual-edged sword role in cytotoxic insult. Here, using succinyl phosphonate (SP), a specific α-KGDHC inhibitor, we aimed to examine its potential action on AD progression. METHODS Male Wistar rats were assigned to two separate experiments. First, they were bilaterally microinjected into the dorsal CA1 area by amyloid-beta (Aβ)25-35 for four consecutive days. Seven days after the last injection, they were trained to acquire Morris Water Maze (MWM) task for three successive days when they were treated with SP after each training session. In the second experiment, SP was administered 30 min after the first Aβ microinjection and behavioral tests were performed one week after the last Aβ administration. The activity of glutamate dehydrogenase (GDH), and glutamine synthetase (GS), as key enzymes involved in glutamate-glutamine homeostasis and histological assays were evaluated in the hippocampi. RESULTS Our behavioral results indicated that post-training SP treatment enhanced task acquisition but did not change memory performance in Aβ-treated rats. However, administration of SP at the time of Aβ injection precludes the deteriorative effect of Aβ and neuronal injury on both spatial learning and memory performances indicating its preventive action against Aβ pathology at its early stages. Measurement of enzymes activity shows that α-KGDHC activity was reduced in the Aβ treated group, and SP administration restored its activity; also, GDH and GS activities were increased and decreased respectively due to Aβ, and SP reversed the action of Aβ on these enzymes. CONCLUSIONS This study proposes that SP possibly a promising therapeutic approach to improve memory impairment in AD, especially in the early phases of this disease.
Collapse
Affiliation(s)
- Fatemeh Sayehmiri
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobilogy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nima Naderi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Aliakbarzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hashemi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudabeh Naderi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
13
|
Yan L, Yang J, Yu M, Sun W, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum Impairs Learning and Memory by Activating Microglia in the Hippocampus of Mice. Biol Trace Elem Res 2022; 200:1640-1649. [PMID: 35178682 DOI: 10.1007/s12011-021-02637-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Lanthanum can induce neurotoxicity and impair cognitive function; therefore, research on the mechanism by which the ability to learning and memory is decreased by lanthanum is vitally important for protecting health. Microglia are a type of neuroglia located throughout the brain and spinal cord that play an important role in the central nervous system. When overactive, these cells can cause the excessive production of inflammatory cytokines that can damage neighboring neurons. The purpose of this study was to explore the effect of lanthanum in the form of lanthanum chloride (LaCl3) on learning and the memory of mice and determine whether there is a relationship between hippocampal neurons or learning and memory damage and excessive production of inflammatory cytokines. Four groups of pregnant Chinese Kun Ming mice were exposed to 0, 18, 36, or 72 mM LaCl3 in their drinking water during lactation. The offspring were then exposed to LaCl3 in the breast milk at birth until weaning and then exposed to these concentrations in their drinking water for 2 months after weaning. The results showed that LaCl3 impaired learning and memory in mice and injured their neurons, activated the microglia, and significantly overregulated the mRNA and protein expression of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1, and nitric oxide in the hippocampus. The results of this study suggest that lanthanum can impair learning and memory in mice, possibly by over-activating the microglia.
Collapse
Affiliation(s)
- Licheng Yan
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
- Department of Toxicology, School of Public Health, North China University of Science and Technology, No.21 Bohai road, Caofeidian New Area, Tangshan, 063210, Hebei province, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Miao Yu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Yarao Han
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe road, Shenyang North New Area, Shenyang, 110122, Liaoning province, People's Republic of China.
| |
Collapse
|
14
|
Sun J, Zhang Y, Yan L, Liu S, Wang W, Zhu Y, Wang W, Li S, He B, Wu L, Zhang L. Action of the Nrf2/ARE signaling pathway on oxidative stress in choroid plexus epithelial cells following lanthanum chloride treatment. J Inorg Biochem 2022; 231:111792. [DOI: 10.1016/j.jinorgbio.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
|
15
|
Liu J, Wang L, Ge L, Sun W, Song Z, Lu X, Jin C, Wu S, Yang J. Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. Food Chem Toxicol 2022; 161:112831. [DOI: 10.1016/j.fct.2022.112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
16
|
Wang L, Zhang M, Wen J, Xiang Y, Duan X, Yu C, Yan M, Zhang B, Fang P. Isoliquiritigenin Alleviates Semen Strychni-Induced Neurotoxicity by Restoring the Metabolic Pathway of Neurotransmitters in Rats. Front Pharmacol 2021; 12:762290. [PMID: 34867385 PMCID: PMC8634445 DOI: 10.3389/fphar.2021.762290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Acute neurotoxicity of Semen Strychni can result in sudden death in epilepsy. The detoxification method and mechanism of Semen Strychni acute poisoning have not been clarified. This experiment focused on the mechanism of Semen Strychni neurotoxicity and the alleviation effects of isoliquiritigenin. The rats were intraperitoneally injected with Semen Strychni extract (125 mg/kg), followed by oral administration of isoliquiritigenin (50 mg/kg) for 7 days. FJ-B staining was used to evaluate the degree of injury on hippocampus neurons. The concentration of monoamines, amino acids, and choline neurotransmitters, the Dopamine (DA) and 5-hydroxytryptamine (5-HT) metabolic pathway in the hippocampus, cerebellum, striatum, prefrontal cortex, hypothalamus, serum, and plasma were detected by LC-MS/MS. The expression of neurotransmitter metabolic enzymes [catechol-O-methyl transferase (COMT) and monoamine oxidase (MAO)] and neurotransmitter receptors [glutamate N-methyl-D-aspartic acid receptors (NMDARs) and gamma-aminobutyric acid type A receptor (GABRs)] were, respectively determined using ELISA and qRT-PCR. The results indicated that Semen Strychni induced neuronal degeneration in the hippocampal CA1 region. Meanwhile, Semen Strychni inhibited the mRNA expression of NMDAR1, NMDAR2A, NMDAR2B, GABRa1, GABRb2 and reduced the level of MAO, which disrupted the DA and 5-HT metabolic pathway. However, isoliquiritigenin reversed these effects. In summary, isoliquiritigenin showed alleviation effects on Semen Strychni-induced neurotoxicity, which could be attributed to restoring neurotransmitters metabolic pathway, most likely through the activation of NMDA receptors.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wen
- Third Hospital of Changsha, Changsha, China
| | - Yalan Xiang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Duan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Changwei Yu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Han G, Tan Z, Jing H, Ning J, Li Z, Gao S, Li G. Comet Assay Evaluation of Lanthanum Nitrate DNA Damage in C57-ras Transgenic Mice. Biol Trace Elem Res 2021; 199:3728-3736. [PMID: 33403576 DOI: 10.1007/s12011-020-02500-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Due to the wide application of rare-earth elements (REEs) in the last decades, lanthanum has increasingly entered the environment and has gradually accumulated in the human body through the food chain. Lanthanum is worth paying attention in terms of food safety. Although the genotoxicity of lanthanum has been studied in vitro, data on its DNA damage in vivo rodent are limited, moreover, which have also presented some controversy. This study aimed to conduct an in vivo rodent alkaline comet assay, and as a companion test to the lanthanum nitrate carcinogenicity test. We conducted an oral gavage experiment for 180 days (26 weeks) to test for the persistence of DNA damage of long-term low-dose accumulation of lanthanum nitrate (12.5, 25, and 50 mg/kg body weight), in F1 hybrid C57-ras transgenic mice (CB6F1) by using alkaline comet assay in the blood and liver. The comet assay revealed that all the tested concentrations of lanthanum nitrate did not induce DNA damage in any of the tissues investigated, whereas DNA damage was induced in the positive control group. These results could indicate that lanthanum nitrate can accumulate in tissues and organs of the mice after exposure, and does not possess DNA damage in C57-ras transgenic mice after repeated treatments at oral doses up to 50 mg/kg·BW for 26 weeks; also, it did not cause pathological changes in the liver of the mice.
Collapse
Affiliation(s)
- Gaochao Han
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Zhuangsheng Tan
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
| | - Haiming Jing
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Zinan Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Shan Gao
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
| | - Guojun Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
18
|
Weng W, Biesiekierski A, Li Y, Dargusch M, Wen C. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomater 2021; 130:80-97. [PMID: 34118448 DOI: 10.1016/j.actbio.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg) is well-tolerated by the body, displaying exceedingly low toxicity, rapid excretion, and numerous bioactive effects, including improved bone formation and protection against oxidative stresses; further, Mg alloys can be degraded in vivo to allow complete removal of an implant without surgical intervention, avoiding revision surgery and thrombosis concerns seen with permanent implants. Rare earth elements (REEs) have been of particular interest in alloying Mg alloys for nearly a century due to their unique chemical and physical properties but have attracted increasing attention in recent decades. The REEs contribute greatly to the mechanical and biological properties of metal alloys, and so are common in Mg alloys in a wide variety of applications; in particular, they represent the dominant alloying additions in current, clinically applied Mg alloys. Notably, the use of these elements may assist in the development of advanced Mg alloys for use as biodegradable orthopedic implants and cardiovascular stents. To this end, current research progress in this area, highlighting the physiological impact of REEs in Mg alloys, is reviewed. Clinical work and preclinical data of REE-containing Mg alloys are analyzed. The biological roles of REEs in cellular responses in vivo require further research in the development of biofunctional Mg alloy medical devices. STATEMENT OF SIGNIFICANCE: The presented work is a review into the biological impact and current application of rare-earth elements (REEs) in biodegradable Mg-based biomaterials. Despite their efficacy in improving corrosion, mechanical, and manufacturability properties of Mg alloys, the physiological effects of REEs remain poorly understood. Therefore, the present work was undertaken to both provide guidance in the development of new biomedical alloys, and highlight areas of existing concerns and unclear knowledge. Key findings of this review include a summary of current clinical and preclinical work, and the identification of Sc as the most promising REE with regards to physiological impact. Y, Ce, Pr, Gd, Dy, Yb, Sm, and Eu should be considered carefully before their use as alloying elements, with other REEs intermediate or insufficiently studied.
Collapse
Affiliation(s)
- Weijie Weng
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; Shanghai Power Equipment Research Institute, Shanghai 200240, China
| | - Arne Biesiekierski
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
19
|
Yang N, Yang J, Liu Y, Fan H, Ji L, Wu T, Jia D, Ye Q, Wu G. Impaired learning and memory in mice induced by nano neodymium oxide and possible mechanisms. ENVIRONMENTAL TOXICOLOGY 2021; 36:1514-1520. [PMID: 33938091 DOI: 10.1002/tox.23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
A growing number of individuals are now exposed to neodymium (Nd) owing to its extensive applications. However, the biological effects of Nd on humans, especially on learning and memory, remain elusive. To investigate whether Nd exposure affects learning and memory, in this study female ICR mice were exposed to nano Nd2 O3 via intranasal instillation at doses of 50, 100, and 150 mg/kg body weight, daily for 45 days. According to Morris water maze data, learning and memory parameters were significantly reduced in the 150 mg/kg nano-Nd2 O3 group than the sham control. Furthermore, inductively coupled plasma-mass spectroscopy analysis revealed that Nd levels were significantly higher in the hippo campus of the 100 and 150 mg/kg exposed group than the sham control; however, no significant differences were observed in the hippocampal histopathology between these groups. Furthermore, reactive oxygen species were elevated in hippocampal tissues of experimental groups than the sham control, 447.3 in high dose group and 360.0 in control group; however, malondialdehyde levels were significantly increased and superoxide dismutase activities were decreased only in mice exposed to 100 and 150 mg/kg Nd2 O3 . High-performance liquid chromatography data demonstrated that levels of glutamic acid, glycine, and gamma-aminobutyric acid were higher in the hippocampus of mice exposed to 150 mg/kg Nd2 O3 than the sham control. Our findings indicated that the neuronal injury was induced by disruption of the oxidation-antioxidation homeostasis and altered amino acid neurotransmitter levels in the hippocampus, which could result in the poor cognitive performance demonstrated by exposed mice.
Collapse
Affiliation(s)
- Ning Yang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jing Yang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yang Liu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hongxing Fan
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Le Ji
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Tao Wu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Dantong Jia
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qianru Ye
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gang Wu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
20
|
Gong X, Huang C, Yang X, Chen J, Pu J, He Y, Xie P. Altered Fecal Metabolites and Colonic Glycerophospholipids Were Associated With Abnormal Composition of Gut Microbiota in a Depression Model of Mice. Front Neurosci 2021; 15:701355. [PMID: 34349620 PMCID: PMC8326978 DOI: 10.3389/fnins.2021.701355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiota–gut–brain axis has been considered to play an important role in the development of depression, but the underlying mechanism remains unclear. The gastrointestinal tract is home to trillions of microbiota and the colon is considered an important site for the interaction between microbiota and host, but few studies have been conducted to evaluate the alterations in the colon. Accordingly, in this study, we established a chronic social defeated stress (CSDS) mice model of depression. We applied 16S rRNA gene sequencing to assess the gut microbial composition and gas and liquid chromatography–mass spectroscopy to identify fecal metabolites and colonic lipids, respectively. Meanwhile, we used Spearman’s correlation analysis method to evaluate the associations between the gut microbiota, fecal metabolites, colonic lipids, and behavioral index. In total, there were 20 bacterial taxa and 18 bacterial taxa significantly increased and decreased, respectively, in the CSDS mice. Further, microbial functional prediction demonstrated a disturbance of lipid, carbohydrate, and amino acid metabolism in the CSDS mice. We also found 20 differential fecal metabolites and 36 differential colonic lipids (in the category of glycerolipids, glycerophospholipids, and sphingolipids) in the CSDS mice. Moreover, correlation analysis showed that fecal metabolomic signature was associated with the alterations in the gut microbiota composition and colonic lipidomic profile. Of note, three lipids [PC(16:0/20:4), PG(22:6/22:6), and PI(18:0/20:3), all in the category of glycerophospholipids] were significantly associated with anxiety- and depression-like phenotypes in mice. Taken together, our results indicated that the gut microbiota might be involved in the pathogenesis of depression via influencing fecal metabolites and colonic glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Xue Gong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Cheng Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Xun Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
21
|
Malvandi AM, Shahba S, Mohammadipour A, Rastegar-Moghaddam SH, Abudayyak M. Cell and molecular toxicity of lanthanum nanoparticles: are there possible risks to humans? Nanotoxicology 2021; 15:951-972. [PMID: 34143944 DOI: 10.1080/17435390.2021.1940340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lanthanum nanoparticles are widely used in industry, agriculture, and biomedicine. Over 900 kg of lanthanum is annually released into the environment only in Europe, 50 times higher than the metals, mercury, and cadmium's environmental spread. Human health risk associated with long-term exposure to the abundant lanthanum nanoparticles is a concerning environmental issue. Due to lanthanum's ability to disrupt the main biological barriers and interrupt various cells' hemostasis, they seem to cause severe disruptions to various tissues. This review opens a new perspective regarding the cellular and molecular interaction of nanosized and ionic lanthanum with the possible toxicity on the nervous system and other tissues that would show lanthanum nanoparticles' potential danger to follow in toxicological science.
Collapse
Affiliation(s)
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Liu Z, Guo C, Tai P, Sun L, Chen Z. The exposure of gadolinium at environmental relevant levels induced genotoxic effects in Arabidopsis thaliana (L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112138. [PMID: 33740487 DOI: 10.1016/j.ecoenv.2021.112138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Rare Earth Elements (REEs) are increasingly being used in agriculture and are also used to produce high end technological devices, thereby increasing their anthropogenic presence in the environment. However, the ecotoxicological mechanism of REEs on organisms is not fully understood. In this study, the effects of gadolinium (Gd) addition on Arabidopsis thaliana (L.) were investigated at both physiological and molecular levels. Four treatments (0, 10, 50 and 200 μmol·L-1 Gd) were used in the exposure tests. Biomass, root length and chlorophyll content in shoots/roots were measured to investigate the plant's physiological response to Gd stress. Random amplified polymorphic (RAPD)-Polymerase Chain Reaction (PCR) and methylation sensitive arbitrarily primed (MSAP)-PCR were used to investigate changes in genetic variation and DNA methylation of A. thaliana when exposed to Gd. At the physiological level, it was found that low concentration of Gd (10 μmol·L-1) could significantly increase the plant biomass and root length, while the growth of A. thaliana was significantly inhibited when exposed to 200 μmol·L-1 of Gd, yet the total soluble protein content in aerial plant parts increased significantly by 24.2% when compared to the control group. Among the 12 primers considered in the RAPD assessment, at the molecular level, only four primers revealed different patterns in their genomic DNA. Compared to the control group, the treatment with 50 μmol·L-1 of Gd was associated with lower polymorphism, while the treatment with 200 μmol·L-1 of Gd was associated with higher polymorphism. The polymorphism frequencies for the 50 μmol·L-1 of Gd and the 200 μmol·L-1 of Gd were 4.67% and 20.33%, respectively. The MSAP analysis revealed that the demethylation (D) type of Arabidopsis genomic DNA increased significantly under 10 and 50 μmol·L-1 of Gd, while the methylation (M) type was also significantly increased under 200 μmol·L-1 of Gd. Generally, the total methylation polymorphism (D+M) increased with an increase of Gd concentration. It was found that high concentrations of Gd appeared to cause DNA damage, but low concentrations of Gd (as low as 10 μmol·L-1) were associated with DNA methylation change. Further, it was verified by Real time Reverse Transcription PCR (RT-PCR) on the bands detected by the MSAP analysis, that the genes relative to processes including cell cycle, oxidative stress and apoptosis, appeared to be regulated by methylation under Gd stress. These findings reveal new insight regarding ecotoxicity mechanisms of REEs on plants.
Collapse
Affiliation(s)
- Zhihong Liu
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| | - Cheng Guo
- Liaoning Shihua University, Fushun 113001, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Zhenbo Chen
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
23
|
Li R, Yu L, Qin Y, Zhou Y, Liu W, Li Y, Chen Y, Xu Y. Protective effects of rare earth lanthanum on acute ethanol-induced oxidative stress in mice via Keap 1/Nrf2/p62 activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143626. [PMID: 33243512 DOI: 10.1016/j.scitotenv.2020.143626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
With the widespread application of rare earth elements (REEs) in environment safety, food and medicine, they accumulate in the ecosystem and different human organs where REEs exert certain biological effects. Low dose REEs are proved to perform antioxidant effects, while high concentration can cause oxidative stress. However, scant information about rational doses and underlying mechanism of REEs as oxidants/antioxidants were illustrated. To elucidate these problems, here we performed a study that the ICR mice were received 0.1, 0.2, 1.0, 2.0 and 20.0 mg/kg lanthanum nitrate (La(NO3)3) by gavage for 30 days, and then were given 12 mL/kg ethanol once to undergo acute ethanol-induced oxidative stress. The antioxidant enzymes, antioxidants, peroxides and related proteins in Keap 1/Nrf2/p62 signaling pathway were measured. The results showed that La(NO3)3 inhibited hepatic morphological alternations by histopathological examination. Meanwhile, elevated superoxide dismutase (SOD) and glutathione (GSH), coupled with decreased alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and protein carbonyl (PC) were observed in serum and liver tissues of mice by enzyme-linked immunosorbent assay test. Furthermore, western blot analysis demonstrated that oxidative stress was alleviated due to enhanced NF-E2-related factor 2 (Nrf2) and phosphorylated p62 expressions as well as lower Kelch-like ECH-associated protein-1 (Keap 1), followed by the activation of heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO-1) and glutamate cysteine ligase, catalytic (GCLC) proteins. Our findings clearly highlighted that La(NO3)3 could restore the redox homeostasis disrupted by ethanol through provoking Keap 1/Nrf2/p62 signaling pathway, and the optimal dosages were 1.0 and 2.0 mg/kg.
Collapse
Affiliation(s)
- Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; Toxicological Research and Risk Assessment for Food Safety, Beijing 100083, China.
| |
Collapse
|
24
|
Li R, Zhou Y, Liu W, Li Y, Qin Y, Yu L, Chen Y, Xu Y. Rare earth element lanthanum protects against atherosclerosis induced by high-fat diet via down-regulating MAPK and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111195. [PMID: 32891972 DOI: 10.1016/j.ecoenv.2020.111195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Rare earth elements, which are extensively used in environmental protection, medicine, food, aerospace and other fields, have attracted widespread attention in recent years. However, the effect on atherosclerosis and its biological mechanism remains unclear. To elucidate these problems, here we performed a study that Apolipoprotein E-deficient mice were fed with high-fat diet to promote the development of atherosclerosis, meanwhile, mice were received 0.1, 0.2, 1.0, 2.0 mg/kg lanthanum nitrate (La(NO3)3) for 12 weeks. The results showed that La(NO3)3 prominently inhibited aorta morphological alternations by histopathological examination. Meanwhile, La(NO3)3 regulated serum lipids, including reducing total cholesterol and increasing high-density lipoprotein. Moreover, the oxidative stress was alleviated by La(NO3)3 intervention through enhancing superoxide dismutase and glutathione, and decreasing malondialdehyde levels. In addition, enzyme-linked immunosorbent assay analysis showed La(NO3)3 could ameliorate the dysfunction of vascular endothelium with declined endothelin-1 and increased prostacyclin. Furthermore, Western blot analysis indicated that La(NO3)3 significantly down-regulated inflammation-mediated proteins including phosphorylated p38 mitogen-activated protein kinases (p-p38 MAPK), monocyte chemo-attractant protein, intercellular adhesion molecule-1, nuclear factor-kappa B p65 (NF-κB p65), tumor necrosis factor-α, interleukin-6 and interleukin-1β, whereas up-regulated the inhibitor of NF-κB protein. In conclusion, La(NO3)3 ameliorates atherosclerosis by regulating lipid metabolism, oxidative stress, endothelial dysfunction and inflammatory response in mice. The potential mechanism associates with the inhibition of MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100083, China; Toxicological Research and Risk Assessment for Food Safety, Beijing, 100083, China.
| |
Collapse
|
25
|
Xiao X, Yong L, Jiao B, Yang H, Liang C, Jia X, Liu Z, Sang Y, Song Y. Postweaning exposure to lanthanum alters neurological behavior during early adulthood in rats. Neurotoxicology 2020; 83:40-50. [PMID: 33359004 DOI: 10.1016/j.neuro.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 01/10/2023]
Abstract
Lanthanum is a rare-earth element that has been used in various fields including medicine, agriculture and industry. Previously, in utero lanthanum exposure to dams was shown to alter neurobehavior and neurotransmitter levels in rat offspring; however, the effects of postweaning exposure to lanthanum on neurological behavior is still limited. The purpose of this study was to investigate the effects of postweaning exposure to lanthanum on neurological behavior during early adulthood in rats. Rats were orally exposed to 0, 2, 20, 60 mg/kg BW of lanthanum nitrate from postnatal day (PND) 24 to PND60. Our results indicated that lanthanum treatment significantly decreased body weight and food intake. Morris water maze test results showed that lanthanum significantly decreased escape latency and travel distance. Lanthanum treatment also significantly decreased grip strength, hindlimb strength, and running time & distance in motor activity test. Further results showed that lanthanum treatment significantly decreased plasma neurotransmitter levels of acetylcholine and norepinephrine as well as the number of neurons in the CA1 area of the hippocampus. These results suggest that postweaning exposure to lanthanum have adverse effects on neurobehaviors and the central nervous system, with no-observed-adverse-effect level at 2 mg/kg BW and benchmark dose lower confidence limit at 1.7 mg/kg BW.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Bingqing Jiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Hui Yang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Chunlai Liang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China.
| |
Collapse
|
26
|
Cai QL, Peng DJ, Lin-Zhao, Chen JW, Yong-Li, Luo HL, Ou SY, Huang ML, Jiang YM. Impact of Lead Exposure on Thyroid Status and IQ Performance among School-age Children Living Nearby a Lead-Zinc Mine in China. Neurotoxicology 2020; 82:177-185. [PMID: 33115663 DOI: 10.1016/j.neuro.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/31/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Lead exposure is one of the most concerning public health problems worldwide, particularly among children. Yet the impact of chronic lead exposure on the thyroid status and related intelligence quotient performance among school-age children remained elusive. OBJECTIVE The aim of this study was to evaluate the influence of lead exposure on the thyroid hormones, amino acid neurotransmitters balances, and intelligence quotient (IQ) among school-age children living nearby a lead-zinc mining site. Other factors such as rice lead levels, mothers' smoking behavior, and diet intake were also investigated. METHODS A total of 255 children aged 7-12 years old were recruited in this study. Blood lead level (BLL), thyroid hormones including free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH), and amino acid neurotransmitters such as glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) were measured using graphite furnace atomic absorption spectroscopy (GFAAS), chemiluminescence immunoassay, high performance liquid chromatography (HPLC). Raven's standard progressive matrices (SPM) and the questionnaire were used to determine IQ and collect related influence factors. RESULTS The average BLL of children was 84.8 μg/L. The occurrence of lead intoxication (defined as the BLL ≥ 100 μg/L) was 31.8%. Serum TSH levels and IQ of lead-intoxicated children were significantly lower than those without lead toxicity. The GABA level of girls with the lead intoxication was higher than those with no lead-exposed group. Correlation analyses revealed that BLL were inversely associated with the serum TSH levels (R= -0.186, p < 0.05), but positively related with IQ grades (R = 0.147, p < 0.05). Moreover, BLL and Glu were inversely correlated with IQ. In addition, this study revealed four factors that may contribute to the incidence of lead intoxication among children, including the frequency of mother smoking (OR = 3.587, p < 0.05) and drinking un-boiled stagnant tap water (OR = 3.716, p < 0.05); eating fresh fruits and vegetables (OR = 0.323, p < 0.05) and soy products regularly (OR = 0.181, p < 0.05) may protect against lead intoxication. CONCLUSION Lead exposure affects the serum TSH, GABA levels and IQ of school-aged children. Developing good living habits, improving environment, increasing the intake of high-quality protein and fresh vegetable and fruit may improve the condition of lead intoxication.
Collapse
Affiliation(s)
- Qiu-Ling Cai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dong-Jie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lin-Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jing-Wen Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Public Health Office, Wuhan First Hospital, Hubei 430022, China
| | - Yong-Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Wanzhou District Health Committee, Chongqing 404000, China
| | - Hai-Lan Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Center for Disease Control and Prevention, Nanning 530021, Guangxi, China
| | - Shi-Yan Ou
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ming-Li Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
27
|
Guo C, Wei Y, Yan L, Li Z, Qian Y, Liu H, Li Z, Li X, Wang Z, Wang J. Rare earth elements exposure and the alteration of the hormones in the hypothalamic-pituitary-thyroid (HPT) axis of the residents in an e-waste site: A cross-sectional study. CHEMOSPHERE 2020; 252:126488. [PMID: 32199167 DOI: 10.1016/j.chemosphere.2020.126488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Rare earth elements (REEs) are widely used in electronic products. But the contaminations of REEs in the e-waste sites and the related health effects were barely investigated. In the present study, we analyzed the concentrations of REEs and the hormones of the HPT axis in plasma of subjects recruited from an e-waste area and a reference area in Taizhou, China. The results showed that the concentrations of several REEs like La, Ce were much higher in the exposed group than in the control group (all p < 0.001). The thyroid hormones, FT3 and FT4, and TRH showed no significant difference between the two groups, while the concentration of TSH was significantly higher in the exposed group when compared to the control group (p = 0.002). Separate regression analysis indicated that elevated La and Ce levels were associated with higher TSH concentrations. MDA and 8-iso, the biomarkers of oxidative stress, were also significantly higher in the exposed group than that of the control group (p = 0.002 and p = 0.003, respectively). The increased oxidative stress might be the mechanism underlying the disruptive effects of REEs on TSH. Our results indicated that the quantities of internal exposure of REEs in the subjects in the e-waste area were considerable and the compositional profile of the REEs in the exposed group was different from the control group due to the e-waste dismantling. The expression of TSH were also affected by high La and Ce exposure which showed an endocrine disruption effects of REEs on HPT axis.
Collapse
Affiliation(s)
- Chen Guo
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huijie Liu
- Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Zhipeng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
28
|
Braun J, Busse R, Darmon-Kern E, Heine O, Auer J, Meyl T, Maurer M, Hamm B, de Bucourt M. Baseline characteristics, diagnostic efficacy, and peri-examinational safety of IV gadoteric acid MRI in 148,489 patients. Acta Radiol 2020; 61:910-920. [PMID: 31739672 DOI: 10.1177/0284185119883390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) examinations with intravenous (IV) contrast are performed worldwide in routine daily practice. In order to detect and enumerate even rare adverse events (AE) and serious adverse events (SAE), and to relate them with patients' baseline characteristics and diagnostic effectiveness, high quantity sample size is necessary. PURPOSE To assess safety, diagnostic effectiveness, and baseline characteristics of patients undergoing IV gadoteric acid (Dotarem®) MRI in routine practice. MATERIAL AND METHODS Data from two observational post-marketing surveillance (PMS) databases compiled by 139 and 52 German centers in 2004-2011 and 2011-2013, respectively, were pooled, yielding data on a total of 148,489 patients examined over a 10-year period. Radiologists used a standardized questionnaire to report data including patient demographics, characteristics of MR examinations, and results in terms of diagnosis and patient safety. RESULTS Overall, 712 AEs were reported in 467 (0.3%) patients, mainly nausea (n = 224, 0.2%), vomiting (n = 29, <0.1%), urticaria (n = 20, <0.1%), and feeling hot (n = 13, <0.1%). AEs were considered related to gadoteric acid in 362 (0.2%) patients. Higher frequencies of AEs were observed among patients with a previous reaction to a contrast agent (2.0%), liver dysfunction (0.7%), bronchial asthma (0.7%), and a history of allergies (0.6%). There were 49 SAEs in 18 (<0.1%) patients, including two children. No fatal SAE was reported. Examinations were diagnostic in 99.8% of all patients, and image quality was excellent or good in 97.7% of the patients. CONCLUSION Gadoteric acid is a safe peri-examinational and effective contrast agent for MRI in routine practice.
Collapse
Affiliation(s)
- Joachim Braun
- Department of Radiology, Charité – University Medicine, Berlin, Germany
| | - Reinhard Busse
- Department of Health Care Management, Faculty of Economics and Management, Berlin University of Technology, Berlin, Germany
| | | | | | - Jonas Auer
- Department of Radiology, Charité – University Medicine, Berlin, Germany
| | - Tobias Meyl
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Martin Maurer
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Bernd Hamm
- Department of Radiology, Charité – University Medicine, Berlin, Germany
| | | |
Collapse
|
29
|
Sun W, Yang J, Hong Y, Yuan H, Wang J, Zhang Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum Chloride Impairs Learning and Memory and Induces Dendritic Spine Abnormality by Down-Regulating Rac1/PAK Signaling Pathway in Hippocampus of Offspring Rats. Cell Mol Neurobiol 2020; 40:459-475. [PMID: 31776842 PMCID: PMC11448949 DOI: 10.1007/s10571-019-00748-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Lanthanum (La) is a natural rare earth element. It has neurotoxic effects which can impair learning and memory in humans. However, its mechanism of neurotoxicity is unclear. Learning and memory are coordinated by dendritic spines which form tiny protruding structures on the dendritic branches of neurons. This study investigated the effect of LaCl3 exposure to pregnant and lactating rats on the offspring rats' learning and memory ability. In this study, rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, 0.5% LaCl3, respectively, and this was done from conception to the end of the location. The effects of LaCl3 on spatial learning and memory ability in offspring rats and in the development of dendritic spines in CA1 pyramidal cells were investigated. The results showed that LaCl3 impaired spatial learning and memory ability in offspring rats, and decreased dendritic spine density during development. In addition, LaCl3 can affect the expression of CaMKII, miRNA132, p250GAP, Tiam1, PARD3, and down-regulated the activation of Rac1 which led to a decrease in the expression of Rac1/PAK signaling pathway and downstream regulatory proteins Cortactin and actin-related protein 2/3 complex (Arp2/3 complex). This study indicated that the learning and memory impairment and the decrease of dendritic spine density in the offspring of LaCl3 exposure may be related to the down-regulation of the Rac1/PAK signaling pathway regulated by Tiam1 and p250GAP.
Collapse
Affiliation(s)
- Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| | - Yunting Hong
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Hui Yuan
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jianbo Wang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yanqiang Zhang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
30
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
31
|
Long JY, Chen JM, Liao YJ, Zhou YJ, Liang BY, Zhou Y. Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav Brain Funct 2020; 16:4. [PMID: 32103758 PMCID: PMC7045422 DOI: 10.1186/s12993-020-00166-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Chemokine C–C motif ligand 2 (CCL2) is one of the most widely recognised proinflammatory chemokines in cognitive disorders. Currently, CCL2-targeting drugs are extremely limited. Thus, this study aimed to explore the neuroprotection afforded by naringin in CCL2-induced cognitive impairment in rats. Methods Before the CCL2 intra-hippocampal injection, rats were treated with naringin for 3 consecutive days via intraperitoneal injection. Two days post-surgery, the Morris water maze (MWM) and novel object recognition (NORT) tests were performed to detect spatial learning and memory and object cognition, respectively. Nissl staining and dUTP nick-end labelling (TUNEL) staining were performed to assess histopathological changes in the hippocampus. Commercial kits were used to measure the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the relative mRNA expression of interleukin 1β, (IL-1β), interleukin 6 (IL-6), glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), phosphate-activated glutaminase (PAG), cysteine aspartic acid-specific protease 8 (caspase-8), cysteine aspartic acid-specific protease 3 (caspase-3), cell lymphoma/leukaemia-2 (Bcl-2), and Bcl-2 associated X protein (Bax). Results In the MWM, the average escape latency and average swimming distance were significantly reduced and the crossing times were increased in the naringin-treated groups, compared with the CCL2 group. The NORT results revealed that, compared with the CCL2 rats, the discrimination index in the naringin-treated rats increased significantly. Nissl and TUNEL staining revealed that naringin protected the structure and survival of the neurons in the CA1 zone of the hippocampus. In the naringin-treated groups, the SOD and GSH-Px activities were increased, whereas the MDA levels were decreased. Furthermore, in the naringin-treated groups, the relative mRNA expression of IL-1β and IL-6 was significantly decreased; GLAST and GLT-1 mRNA expression levels were increased, whereas PAG was decreased. In the naringin-treated groups, the relative mRNA expression levels of caspase-8, caspase-3, and Bax were decreased, whereas that of Bcl-2 was increased. Conclusion Collectively, these data indicated that naringin alleviated the CCL2-induced cognitive impairment. The underlying mechanisms could be associated with the inhibition of neuroinflammation, oxidative stress, apoptosis, and the regulation of glutamate metabolism.
Collapse
Affiliation(s)
- Jiang-Yi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Jian-Min Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Yuan-Jun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Yi-Jun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China
| | - Bing-Yu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guang, China
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, 53002, Guangxi, China.
| |
Collapse
|
32
|
Wu J, Yang J, Yu M, Sun W, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride causes blood–brain barrier disruption through intracellular calcium-mediated RhoA/Rho kinase signaling and myosin light chain kinase. Metallomics 2020; 12:2075-2083. [DOI: 10.1039/d0mt00187b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanum caused endothelial barrier hyperpermeability, loss of VE-cadherin and rearrangement of the actin cytoskeleton, though intracellular Ca2+-mediated RhoA/ROCK and MLCK pathways.
Collapse
Affiliation(s)
- Jie Wu
- Department of Occupational and Environmental Health
- School of Public Health
- Jinzhou Medical University
- Jinzhou 121001
- P. R. China
| | - Jinghua Yang
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Miao Yu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Wenchang Sun
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Yarao Han
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Xiaobo Lu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Cuihong Jin
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Shengwen Wu
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| | - Yuan Cai
- Department of Hygiene Toxicology
- School of Public Health
- China Medical University
- Shenyang 110122
- P. R. China
| |
Collapse
|
33
|
Chen S, Lin Z, Tan KL, Chen R, Su W, Zhao H, Tan Q, Tan W. Enhanced Contextual Fear Memory and Elevated Astroglial Glutamate Synthase Activity in Hippocampal CA1 BChE shRNA Knockdown Mice. Front Psychiatry 2020; 11:564843. [PMID: 33061920 PMCID: PMC7518375 DOI: 10.3389/fpsyt.2020.564843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
Butyrylcholinesterase (BChE) efficiently hydrolyzes acetylcholine (ACh) at high concentrations when acetylcholinesterase (AChE) is substrate-inhibited. Recent studies have shown that BChE also has a function that is independent of ACh, but it has not been fully explored. Low BChE expression is accompanied with higher stress-induced aggression and ghrelin levels in stress models, and BChE knockout mice exhibit cognitive and memory impairments. However, the role of BChE in posttraumatic stress disorder (PTSD) remains unclear. In the present study, we investigated the role of BChE in contextual fear memory and its regulatory effect on the expression of factors related to the glutamate (Glu)-glutamine (Gln) cycle via knockdown studies. We used AAVs and lentiviruses to knockdown BChE expression in the mouse hippocampal CA1 region and C8D1A astrocytes. Our behavioral data from those mice injected with AAV-shBChE in the hippocampal CA1 region showed strengthened fear memory and increased dendritic spine density. Elevated Glu levels and glutamine synthetase (GS) enzyme activity were detected in contextual fear conditioned-BChE knockdown animals and astrocytes. We observed that an AAV-shBChE induced lowering of BChE expression in the hippocampus CA1 region enhanced contextual fear memory expression and promoted the astrocytic Glu-Gln cycle but did not elevate ACh-hydrolyzing activity. This study provides new insight into the regulatory role of BChE in cognition and suggests potential target for stress-related psychiatric disorder such as PTSD where patients experience fear after exposure to severe life-threatening traumatic events.
Collapse
Affiliation(s)
- Si Chen
- Department of Human Anatomy and Histology & Embryology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhengdong Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Kai-Leng Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Risheng Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wenfang Su
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Haishan Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qiwen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Campus, Bandar Sunway, Malaysia
| |
Collapse
|
34
|
Behets GJ, Mubiana KV, Lamberts L, Finsterle K, Traill N, Blust R, D'Haese PC. Use of lanthanum for water treatment A matter of concern? CHEMOSPHERE 2020; 239:124780. [PMID: 31726528 DOI: 10.1016/j.chemosphere.2019.124780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Among several other eutrophication management tools, Phoslock®, a lanthanum modified bentonite (LMB) clay, is now frequently used. Concerns have been raised as to whether exposure to Phoslock®-treated water may lead to lanthanum accumulation/toxicity in both animals and humans. In the present experimental study, rats were administered lanthanum orally as either lanthanum carbonate, lanthanum chloride or Phoslock® at doses of either 0.5 or 17 mg/L during 10 weeks. Controls received vehicle. The gastrointestinal absorption and tissue distribution of lanthanum was investigated. Extremely strict measures were implemented to avoid cross-contamination between different tissues or animals. Results showed no differences in gastrointestinal absorption between the different compounds under study as reflected by the serum lanthanum levels and concentrations found in the brain, bone, heart, spleen, lung, kidney and testes. At sacrifice, significant but equally increased lanthanum concentrations versus vehicle were observed in the liver for the highest dose of each compound which however, remained several orders of magnitude below the liver lanthanum concentration previously measured after long-term therapeutic administration of lanthanum carbonate and for which no hepatotoxicity was noticed in humans. In conclusion, (i) the use of LMB does not pose a toxicity risk (ii) gastrointestinal absorption of lanthanum is minimal and independent on the type of the compound, (iii) with exception of the liver, no significant increase in lanthanum levels is observed in the various organs under study, (iv) based on previous studies, the slightly increased liver lanthanum levels observed in a worst case scenario do not hold any risk of hepatotoxicity.
Collapse
Affiliation(s)
- Geert J Behets
- Laboratory of Pahophysiology, Department Biomedical Sciences, University of Antwerp, Belgium
| | - Kayawe Valentine Mubiana
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Belgium
| | - Ludwig Lamberts
- Laboratory of Pahophysiology, Department Biomedical Sciences, University of Antwerp, Belgium
| | | | - Nigel Traill
- Phoslock® Environmental Technologies Ltd, Australia
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Belgium
| | - Patrick C D'Haese
- Laboratory of Pahophysiology, Department Biomedical Sciences, University of Antwerp, Belgium.
| |
Collapse
|
35
|
Yu M, Yang J, Gao X, Sun W, Liu S, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride impairs spatial learning and memory by inducing [Ca2+]m overload, mitochondrial fission–fusion disorder and excessive mitophagy in hippocampal nerve cells of rats. Metallomics 2020; 12:592-606. [DOI: 10.1039/c9mt00291j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lanthanum chloride damages hippocampal nerve cells of rats through inducing [Ca2+]m overload, mitochondrial fission–fusion disorder, and excessive mitophagy.
Collapse
|
36
|
Gao X, Yang J, Li Y, Yu M, Liu S, Han Y, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces autophagy in rat hippocampus through ROS-mediated JNK and AKT/mTOR signaling pathways. Metallomics 2019; 11:439-453. [DOI: 10.1039/c8mt00295a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanum (La) can cause central nervous system damage in rats and lead to learning and memory impairment, but the relevant mechanisms have not been fully elucidated.
Collapse
|
37
|
Yan L, Yang J, Yu M, Lu Y, Huang L, Wang J, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces neuron damage by activating the nuclear factor-kappa B signaling pathway in activated microglia. Metallomics 2019; 11:1277-1287. [DOI: 10.1039/c9mt00108e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lanthanum is a rare earth element which can have adverse effects on the central nervous system (CNS).
Collapse
|
38
|
Sharma S, Samal RR, Subudhi U, Chainy GB. Lanthanum chloride-induced conformational changes of bovine liver catalase: A computational and biophysical study. Int J Biol Macromol 2018; 115:853-860. [DOI: 10.1016/j.ijbiomac.2018.04.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
|