1
|
Hamadouche S, Merouani H, Aidat O, Ouddai N, Ernst B, Alam M, Benguerba Y. Theoretical Design of New Grafted Molecules d-Glucosamine-Oxyresveratrol-Essential Amino Acids: DFT Evaluation of the Structure-Antioxidant Activity. ACS OMEGA 2024; 9:37128-37140. [PMID: 39246505 PMCID: PMC11375706 DOI: 10.1021/acsomega.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
In the pursuit of innovative high-performance materials suitable for antioxidant applications, the density functional theory was employed to design a series of compounds derived from small biodegradable organic molecules. This study involved grafting the negatively charged unit d-glucosamine (GleN) and essential amino acids onto the 3 and 4' carbons of the backbone of trans-2,4,3',5'-tetrahydroxystilbene (trans-OXY), respectively. The aim was to prevent trans-OXY degradation into the cis region and enhance its electronic and antioxidant properties. Theoretical calculations using DFT/PW91/TZP in water revealed that the designed biomolecules (GleN-OXY-AA) outperformed both free OXY units and essential amino acids in terms of antioxidant efficacy, as indicated by the bond dissociation energy (BDE) findings. Notably, GleN-OXY-Ile and GleN-OXY-Trp compounds exhibited an average BDE of 66.355 kcal/mol, translating to 1.82 times the activity of t-OXY and 1.55 times the action of ascorbic acid (Vit C). AIM analysis demonstrated that the proposed biomaterials favored the formation of quasi-rings through intramolecular H···O hydrogen bonds, promoting π-electron delocalization and stabilization of radical, cationic, and anionic forms. Quantum calculations revealed the release of hydrogen atoms or electrons from sites of reduced electronegativity, visually identified by MEP maps and estimated by Hirshfeld atomic charges.
Collapse
Affiliation(s)
- Salima Hamadouche
- Laboratoire de Chimie des Matériaux et des Vivants: Activité & Réactivité (LCMVAR), Université Batna1, Batna 5000, Algeria
| | - Hafida Merouani
- Laboratoire de Chimie des Matériaux et des Vivants: Activité & Réactivité (LCMVAR), Université Batna1, Batna 5000, Algeria
- Département de Socle Commun, Faculté de Technologie, Université Ben Boulaid Batna 2, Batna 5000, Algeria
| | - Omaima Aidat
- Laboratory of Food Technology and Nutrition, Abdelhamid Ibn Badis University, Mostaganem 27000, Algeria
| | | | - Barbara Ernst
- Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), Université de Strasbourg, CNRS, IPHC UMR 7178, ECPM 25 rue Becquerel, Strasbourg F-67000, France
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| |
Collapse
|
2
|
Yang J, Zhao Y, Shan B, Duan Y, Zhou J, Cai M, Zhang H. Study on the interaction and functional properties of Dolichos lablab L. protein-tea polyphenols complexes. Int J Biol Macromol 2023; 250:126006. [PMID: 37517754 DOI: 10.1016/j.ijbiomac.2023.126006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Tea polyphenols (TP) and plant proteins are significant materials in the food industry, the interactions between them are beneficial for their stability, functional properties, and biological activity. In this study, the mechanism and interaction between Dolichos lablab L. protein (DLP) obtained from nine treatments and three tea polyphenol monomers (EGCG, ECG, and EGC) were investigated. The results showed that the fluorescence of DLP was noticeably quenched and exhibited static quenching after the addition of polyphenols. DLP exhibited 1-2 binding sites for EGCG and ECG, but weakly binding to EGC (<1). The binding sites of DLP-TP were found to be in close proximity to the tyrosine residues, primarily interacting through hydrophobic interactions, van der Waals forces, and hydrogen bonds. The antioxidant capacity of DLP-TP compound was significantly improved after digestion. ECG showed a strong resistance to intestinal digestion. Compared with ECG (653.456 μg/mL), the content of free tea polyphenols of 20/40 kHz-ECG after digestion was 732.42 μg/mL. DLP-TP complexes significantly improved the storage stability, thermal stability, and bioaccessibility of tea polyphenols. The interaction between TP and DLP, as a protein-polyphenol complex, has great potential for application in preparing emulsion delivery systems due to their antioxidant activity and improved stability.
Collapse
Affiliation(s)
- Jing Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yajing Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Baosen Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Nourse Pet Nutrition Jiangsu Research Institute, Zhenjiang 212013, China.
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Hefer M, Huskic IM, Petrovic A, Raguz-Lucic N, Kizivat T, Gjoni D, Horvatic E, Udiljak Z, Smolic R, Vcev A, Smolic M. A Mechanistic Insight into Beneficial Effects of Polyphenols in the Prevention and Treatment of Nephrolithiasis: Evidence from Recent In Vitro Studies. CRYSTALS 2023; 13:1070. [DOI: 10.3390/cryst13071070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nephrolithiasis is a pathological condition characterized by the formation of solid crystals in the kidneys or other parts of urinary tract. Kidney stones are a serious public health issue and financial burden for health care system, as well as a painful and uncomfortable condition for patients, resulting in renal tissue injury in severe cases. Dietary habits, low fluid and high salt intake predominantly, contribute to the development of kidney stones. Current research suggests that polyphenols have a protective effect in the pathogenesis of kidney stones. Polyphenols are a group of naturally occurring compounds found in plant-based foods such as fruits, vegetables, tea, and coffee. In this review, we explore mechanisms underlying the beneficial effects of polyphenols, such as oxidative stress reduction and modulation of inflammatory pathways, in various in vitro models of nephrolithiasis. Additionally, certain polyphenols, such as catechins found in green tea, have been shown to inhibit the formation and growth of kidney stones in animal studies. This review highlights the antioxidant and anti-inflammatory effects, as well as the inhibition of crystal formation, as results of polyphenol treatment in vitro. Further research is required to determine the specific effects of polyphenols on kidney stone formation in humans; however, current knowledge implicates that incorporating a variety of polyphenol-rich foods into the diet may be a beneficial strategy for individuals at risk of developing nephrolithiasis.
Collapse
Affiliation(s)
- Marija Hefer
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Nikola Raguz-Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dominik Gjoni
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Elizabeta Horvatic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zarko Udiljak
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandar Vcev
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
5
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
6
|
Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM, Abdulmonem WA, Alsharif KF, Alzahrani KJ, Khan H. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 2022; 184:106398. [PMID: 35988867 DOI: 10.1016/j.phrs.2022.106398] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.
Collapse
Affiliation(s)
- Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roksana Alam
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KPK, Pakistan
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
7
|
Cao H, Högger P, Prieto M, Simal‐Gandara J, Xiao J. Stability of quercetin in DMEM and cell culture with A549 cells. EFOOD 2022. [DOI: 10.1002/efd2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hui Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie Universität Würzburg Würzburg Germany
| | - Miguel‐Angel Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| | - Jesus Simal‐Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| |
Collapse
|
8
|
Zhang H, Caprioli G, Hussain H, Khoi Le NP, Farag MA, Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFOOD 2021. [DOI: 10.53365/efood.k/143518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
Collapse
|
9
|
Phenolic-protein interactions in foods and post ingestion: Switches empowering health outcomes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Contente ML, Annunziata F, Cannazza P, Donzella S, Pinna C, Romano D, Tamborini L, Barbosa FG, Molinari F, Pinto A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13669-13681. [PMID: 34762407 DOI: 10.1021/acs.jafc.1c05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many sectors of industry, such as food, cosmetics, nutraceuticals, and pharmaceuticals, have increased their interest in polyphenols due to their beneficial properties. These molecules are widely found in Nature (plants) and can be obtained through direct extraction from vegetable matrices. Polyphenols introduced through the diet may be metabolized in the human body via different biotransformations leading to compounds having different bioactivities. In this context, enzyme-catalyzed reactions are the most suitable approach to produce modified polyphenols that not only can be studied for their bioactivity but also can be labeled as green, natural products. This review aims to give an overview of the potential of biocatalysis as a powerful tool for the modification of polyphenols to enhance their bioaccessibility, bioavailability, biological activity or modification of their physicochemical properties. The main polyphenol transformations occurring during their metabolism in the human body have been also presented.
Collapse
Affiliation(s)
- Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco Geraldo Barbosa
- Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza-CE 60455-970, Brazil
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
11
|
Si W, Zhang Y, Li X, Du Y, Xu Q. Understanding the Functional Activity of Polyphenols Using Omics-Based Approaches. Nutrients 2021; 13:nu13113953. [PMID: 34836207 PMCID: PMC8625961 DOI: 10.3390/nu13113953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polyphenols are the main category of natural active substances, and are distributed widely in vegetables, fruits, and plant-based processed foods. Polyphenols have a beneficial performance in preventing diseases and maintaining body health. However, its action mechanism has not been well understood. Foodomics is a novel method to sequence and widely used in nutrition, combining genomics, proteomics, transcriptomics, microbiome, and metabolomics. Based on multi-omics technologies, foodomics provides abundant data to study functional activities of polyphenols. In this paper, physiological functions of various polyphenols based on foodomics and microbiome was discussed, especially the anti-inflammatory and anti-tumor activities and gut microbe regulation. In conclusion, omics (including microbiomics) is a useful approach to explore the bioactive activities of polyphenols in the nutrition and health of human and animals.
Collapse
Affiliation(s)
- Wenjin Si
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence:
| |
Collapse
|
12
|
Jia Y, Cai S, Muhoza B, Qi B, Li Y. Advance in dietary polyphenols as dipeptidyl peptidase-IV inhibitors to alleviate type 2 diabetes mellitus: aspects from structure-activity relationship and characterization methods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34652225 DOI: 10.1080/10408398.2021.1989659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.
Collapse
Affiliation(s)
- Yijia Jia
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shengbao Cai
- Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
13
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
14
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
15
|
Del Mondo A, Smerilli A, Ambrosino L, Albini A, Noonan DM, Sansone C, Brunet C. Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics. Crit Rev Biotechnol 2021; 41:155-171. [PMID: 33530761 DOI: 10.1080/07388551.2021.1874284] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenolic compounds (PCs) are a family of secondary metabolites with recognized biological activities making them attractive for the biomedical "red" biotechnology. The development of the eco-sustainable production of natural bioactive metabolites requires using easy cultivable organisms, such as microalgae, which represents one of the most promising sources for biotechnological applications. Microalgae are photosynthetic organisms inhabiting aquatic systems, displaying high levels of biological and functional diversities, and are well-known producers of fatty acids and carotenoids. They are also rich in other families of bioactive molecules e.g. phenolic compounds. Microalgal PCs however are less investigated than other molecular components. This study aims to provide a state-of-art picture of the actual knowledge on microalgal phenolic compounds, reviewing information on the PC content variety and chemodiversity in microalgae, their environmental modulation, and we aim to report discuss data on PC biosynthetic pathways. We report the challenges of promoting microalgae as a relevant source of natural PCs, further enhancing the interests of microalgal "biofactories" for biotechnological applications (i.e. nutraceutical, pharmacological, or cosmeceutical products).
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| |
Collapse
|
16
|
Masuku NP, Unuofin JO, Lebelo SL. Promising role of medicinal plants in the regulation and management of male erectile dysfunction. Biomed Pharmacother 2020; 130:110555. [PMID: 32795922 DOI: 10.1016/j.biopha.2020.110555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Male erectile dysfunction (ED) refers to incompetency to reaching and retaining adequate penile tumescence for sexual intercourse. Over 152 million men globally suffer from ED and by 2025, the number of affected individuals is anticipated to be around 322 million. Pharmacological and nonpharmacological therapies such as phosphodiesterase (PDE) inhibitors, alprostadil, penile prosthesis surgery, and hormonal replacement are available for management and recuperation of ED. Nevertheless, such therapies are reported to have adverse effects as well as life-threatening. Accordingly, diversity of medicinal plant species and bioactive active compounds are preferred as therapeutic options because they are natural, abundant, available, low-cost and cause fewer or no side effects. This current review will emphasise the aetiology, risk factors, mechanisms underlying the pathophysiology of ED, treatments of ED as well as their side effects. It also provides medicinal plants that are proven effective in vivo and in vitro for the mitigation and treatment of male ED. This knowledge could be used in the future in drug discovery for the development of more natural drugs with no side effects.
Collapse
Affiliation(s)
- Nelisiwe Prenate Masuku
- Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet and Pioneer Ave, Private Bag X6, Florida, 1710, South Africa
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet and Pioneer Ave, Private Bag X6, Florida, 1710, South Africa.
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Cnr Christiaan de Wet and Pioneer Ave, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
17
|
Ouyang Y, Chen L, Qian L, Lin X, Fan X, Teng H, Cao H. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Food Chem 2020; 317:126418. [DOI: 10.1016/j.foodchem.2020.126418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
|
18
|
Wu X, Li M, Xiao Z, Daglia M, Dragan S, Delmas D, Vong CT, Wang Y, Zhao Y, Shen J, Nabavi SM, Sureda A, Cao H, Simal-Gandara J, Wang M, Sun C, Wang S, Xiao J. Dietary polyphenols for managing cancers: What have we ignored? Trends Food Sci Technol 2020; 101:150-164. [DOI: 10.1016/j.tifs.2020.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Neri-Numa IA, Arruda HS, Geraldi MV, Maróstica Júnior MR, Pastore GM. Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Palacio J, Monsalve Y, Ramírez-Rodríguez F, López B. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Cao H, Yi L, Zhong J, Högger P, Wang M, Prieto M, Simal‐Gandara J, Xiao J. Investigation of new products and reaction kinetics for myricetin in DMEM via an in situ UPLC–MS–MS analysis. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hui Cao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality University of Macau Taipa Macau
| | - Lunzhao Yi
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Jiayi Zhong
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie Universität Würzburg Würzburg Germany
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | - Miguel‐Angel Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality University of Macau Taipa Macau
| |
Collapse
|
22
|
Cao H, Högger P, Arroo R, Xiao J. Flavonols with a catechol or pyrogallol substitution pattern on ring B readily form stable dimers in phosphate buffered saline at four degrees celsius. Food Chem 2020; 311:125902. [PMID: 31865113 DOI: 10.1016/j.foodchem.2019.125902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
23
|
Cao J, Wang Q, Ma T, Bao K, Yu X, Duan Z, Shen X, Li C. Effect of EGCG-gelatin biofilm on the quality and microbial composition of tilapia fillets during chilled storage. Food Chem 2020; 305:125454. [DOI: 10.1016/j.foodchem.2019.125454] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
24
|
Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020; 11:93-118. [PMID: 31905019 DOI: 10.1146/annurev-food-032519-051708] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional foods is a very popular term in the social and scientific media; consequently, food producers have invested resources in the development of processed foods that may provide added functional benefits to consumers' well-being. Because of intrinsic regulation and end-of-use purposes in different countries, worldwide meanings and definitions of this term are still unclear. Hence, here we standardize this definition and propose a guideline to attest that some ingredients or foods truly deserve this special designation. Furthermore, focus is directed at the most recent studies and practical guidelines that can be used to develop and test the efficacy of potentially functional foods and ingredients. The most widespread functional ingredients, such as polyunsaturated fatty acids (PUFAs), probiotics/prebiotics/synbiotics, and antioxidants, and their technological means of delivery in food products are described. The review discusses the steps that food companies should take to ensure that their developed food product is truly functional.
Collapse
Affiliation(s)
- Daniel Granato
- Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-0250 Espoo, Finland;
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science, Education and Technology of Rio de Janeiro (IFRJ), 20260-100 Rio de Janeiro, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang ZJ, Xiao J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2020; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Pakistan..
| | - Marcella Reale
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Scalo (CH), Italy
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of Balearic Islands, Ctra. Valldemossa Km 75, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Ying Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
26
|
Zhao C, Wan X, Zhou S, Cao H. Natural Polyphenols: A Potential Therapeutic Approach to Hypoglycemia. EFOOD 2020. [DOI: 10.2991/efood.k.200302.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
27
|
Zhou Y, Li C, Feng B, Chen B, Jin L, Shen Y. UPLC-ESI-MS/MS based identification and antioxidant, antibacterial, cytotoxic activities of aqueous extracts from storey onion (Allium cepa L. var. proliferum Regel). Food Res Int 2019; 130:108969. [PMID: 32156403 DOI: 10.1016/j.foodres.2019.108969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022]
Abstract
Storey onion (Allium cepa L. var. proliferum Regel) is a variety of onion commonly grown in northern China that has not been researched in detail. This study aimed to identify the chemical compositions of storey onion aqueous extracts by UPLC-ESI-MS/MS, as well as characterize the antioxidant, antibacterial and cytotoxic activities, compared with welsh onion and onion. A total of 42 compounds were identified, among which the contents of organosulfur compounds (962.20 ± 34.55 μg/g), polyphenols (100.40 ± 12.55 μg/g) and organic acids (54.04 ± 2.69 μg/g) in storey onion were higher than those in welsh onion and onion. Additionally, the contents of cycloalliin (551.74 ± 8.12 μg/g), ajoene (159.31 ± 5.30 μg/g) and (E)-1-propene-1-sulfenic acid (72.12 ± 2.98 μg/g) in storey onion were the highest. Storey onion had pronounced DPPH• (IC50 = 1.24 ± 0.52 mg/mL) and OH• scavenging activities (IC50 = 14.45 ± 1.29 mg/mL) as well as ferric ion reducing power (absorbance from 0.32 to 2.21). Onion had the highest ABTS•+ scavenging activity (IC50 = 1.64 ± 0.64 mg/mL), while welsh onion had the lowest antioxidant activity. Storey onion had the strongest inhibitory effect on all the tested strains (MIC 31.3-125 mg/mL), and cell viability assays against human liver (HepG2) cancer cell lines also illustrated that aqueous extracts from storey onion significantly inhibited cell proliferation (when incubated for 24 h, IC50 = 33.21 ± 1.12 mg/mL) and induced cell apoptosis. Welsh onion and onion also had weaker antibacterial and anticancer activites, with those of onion being the weakest. The results showed that storey onion with excellent biological activity may benefit to human health and can be developed into functional foods.
Collapse
Affiliation(s)
- Yanyan Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Bang Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
28
|
Tatzber F, Wonisch W, Lackner S, Lindschinger M, Pursch W, Resch U, Trummer C, Murkovic M, Zelzer S, Holasek S, Cvirn G. A Micromethod for Polyphenol High-Throughput Screening Saves 90 Percent Reagents and Sample Volume. Antioxidants (Basel) 2019; 9:antiox9010011. [PMID: 31877807 PMCID: PMC7023636 DOI: 10.3390/antiox9010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
There is ample evidence that polyphenols are important natural substances with pronounced antioxidative properties. This study aimed to develop a fast and reliable method to determine total polyphenol content (TPC) in foodstuffs and human samples. The microtitration format offers the advantage of low sample volumes in the microlitre range, facilitating high-throughput screening with 40 samples simultaneously. We accordingly adjusted the so-called Folin–Ciocalteu method to a microtitre format (polyphenols microtitre—PPm) with 90% reduction of reagents. The assay was standardized with gallic acid in the range between 0.1 and 3 mM, using a 20 µL sample volume. The intra-assay coefficient of variation (CV) was less than 5%, and inter-assay CV was in the range of 10%. Wavelength was measured at 766 nm after two hours of incubation. This micromethod correlates significantly with both the classical Folin–Ciocalteu method and High-Performance Thin-Layer Chromatography (HPTLC) (r2 = 0.9829). We further observed a significant correlation between PPm and total antioxidants (r2 = 0.918). The highest polyphenol concentrations were obtained for red, blue, and black fruits, vegetables, and juices. Extracts of red grapes could be harvested almost sugar free and might serve as a basis for polyphenol supplementation. Beer, flour, and bread contained polyphenol concentrations sufficient to meet the minimal daily requirement. We conclude that PPm is a sensitive and reliable method that detects polyphenols even in samples diluted 10-fold. The literature strongly recommends further investigations on the effects of polyphenol uptake on human and animal health.
Collapse
Affiliation(s)
- Franz Tatzber
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Devision of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; (F.T.); (S.L.); (W.P.); (S.H.)
| | - Willibald Wonisch
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Devision of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria;
- Correspondence:
| | - Sonja Lackner
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Devision of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; (F.T.); (S.L.); (W.P.); (S.H.)
| | - Meinrad Lindschinger
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Austria;
| | - Werner Pursch
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Devision of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; (F.T.); (S.L.); (W.P.); (S.H.)
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christopher Trummer
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; (C.T.); (M.M.)
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria; (C.T.); (M.M.)
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria;
| | - Sandra Holasek
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Devision of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; (F.T.); (S.L.); (W.P.); (S.H.)
| | - Gerhard Cvirn
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Devision of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
29
|
Chen L, Li K, Liu Q, Quiles JL, Filosa R, Kamal MA, Wang F, Kai G, Zou X, Teng H, Xiao J. Protective effects of raspberry on the oxidative damage in HepG2 cells through Keap1/Nrf2-dependent signaling pathway. Food Chem Toxicol 2019; 133:110781. [PMID: 31465820 DOI: 10.1016/j.fct.2019.110781] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to explore the protective effects of raspberry and its bioactive compound cyanidin 3-O-glucoside against H2O2-induced oxidative stress in HepG2 cells. We established a model of oxidative stress in HepG2 cells induced by H2O2 and examined the protein expression of Keap1/Nrf2. The antioxidant activity of raspberry extract was carried out measuring the level of reactive oxygen species (ROS), and the changes of phase II detoxification elements such as GSH level and CAT activity. Also the expression of proteins related to the Keap1/Nrf2 signaling was tested. The results revealed that raspberry extract significantly reduced the ROS levels in oxidative injured cells, increased GSH content and CAT activity, and activated the expression of proteins Keap1, Nrf2, HO-1, NQO1, and γ-GCS. These results taken together indicated that raspberry treatment could ameliorate H2O2-induced oxidative stress in HepG2 cells via Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Armilla, 18100, Granada, Spain.
| | - Rosanna Filosa
- Department of Experimental Medicine, University of Campania, Via L. De Crecchio 7, Naples, 80138, Italy.
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China.
| | - Xiaobo Zou
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
30
|
Sordon S, Popłoński J, Milczarek M, Stachowicz M, Tronina T, Kucharska AZ, Wietrzyk J, Huszcza E. Structure-Antioxidant-Antiproliferative Activity Relationships of Natural C7 and C7-C8 Hydroxylated Flavones and Flavanones. Antioxidants (Basel) 2019; 8:E210. [PMID: 31284642 PMCID: PMC6680932 DOI: 10.3390/antiox8070210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022] Open
Abstract
Common food flavonoids: chrysin, apigenin, luteolin, diosmetin, pinocembrin, naringenin, eriodictyol, hesperetin, and their analogues with an additional hydroxyl group at the C-8 position obtained via biotransformation were tested for antioxidant activity using the ABTS, DPPH, and ferric ion reducing antioxidant power (FRAP) methods. They were also tested for antiproliferative activity against selected human cancer cell lines-MV-4-11 (biphenotypic B myelomonocytic leukemia), MCF7 (breast carcinoma), LoVo (colon cancer), LoVo/DX (colon cancer doxorubicin resistant), and DU 145 (prostate cancer)-and two normal human cell lines-MCF 10A (breast cells) and HLMEC (lung microvascular endothelial cells). Flavonoids with a C7-C8 catechol moiety indicated much higher antioxidant activity compared with the C7 hydroxy analogues. However, because they were unstable under the assay conditions, they did not show antiproliferative activity or it was very low.
Collapse
Affiliation(s)
- Sandra Sordon
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Martyna Stachowicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
31
|
Gonzalez-Alfonso JL, Peñalver P, Ballesteros AO, Morales JC, Plou FJ. Effect of α-Glucosylation on the Stability, Antioxidant Properties, Toxicity, and Neuroprotective Activity of (-)-Epigallocatechin Gallate. Front Nutr 2019; 6:30. [PMID: 30968027 PMCID: PMC6438877 DOI: 10.3389/fnut.2019.00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
(–)-Epigallocatechin gallate (EGCG), the predominant catechin (≥50%) in green tea (Camellia sinensis), displays several bioactive properties but its stability and bioavailability are low. In this work, the properties of two α-glucosyl derivatives of EGCG (3′- and 7-O-α-D-glucopyranoside), obtained by enzymatic synthesis, were assessed. The α-glucosylation enhanced the pH and thermal stability of EGCG. The analysis of scavenging activity toward ABTS·+ radicals showed that the α-glucosylation at C-7 of A-ring caused a higher loss of antioxidant activity compared with the sugar conjugation at C-3′ of B-ring. The 3′-glucoside also showed higher potential to alleviate intracellular reactive oxygen species (ROS) levels and to boost REDOX activity. The toxicity of EGCG and its monoglucosides was tested in human SH-S5Y5 neurons, RAW 264.7 macrophages, MRC5 fibroblasts, and HT-29 colon cancer cells. Interestingly, the 3′-O-α-D-glucoside increased the viability of neural cells in vitro (2.75-fold at 100 μM) in the presence of H2O2, whilst EGCG gave rise only to a 1.7-fold enhancement. In conclusion, the α-glucoside of EGCG at C-3′ has a great potential for nutraceutical, cosmetic and biomedical applications.
Collapse
Affiliation(s)
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | - Juan C Morales
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | |
Collapse
|
32
|
Ghadiri S, Spalenza V, Dellafiora L, Badino P, Barbarossa A, Dall'Asta C, Nebbia C, Girolami F. Modulation of aflatoxin B1 cytotoxicity and aflatoxin M1 synthesis by natural antioxidants in a bovine mammary epithelial cell line. Toxicol In Vitro 2019; 57:174-183. [PMID: 30849473 DOI: 10.1016/j.tiv.2019.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Aflatoxin (AF) B1, a widespread food and feed contaminant, is bioactivated by drug metabolizing enzymes (DME) to cytotoxic and carcinogenic metabolites like AFB1-epoxide and AFM1, a dairy milk contaminant. A number of natural antioxidants have been reported to afford a certain degree of protection against AFB1 (cyto)toxicity. As the mammary gland potentially participates in the generation of AFB1 metabolites, we evaluated the role of selected natural antioxidants (i.e. curcumin, quercetin and resveratrol) in the modulation of AFB1 toxicity and metabolism using a bovine mammary epithelial cell line (BME-UV1). Quercetin and, to a lesser extent, resveratrol and curcumin from Curcuma longa (all at 5 μM) significantly counteracted the AFB1-mediated impairment of cell viability (concentration range: 96-750 nM). Moreover, quercetin was able to significantly reduce the synthesis of AFM1. The quantitative PCR analysis on genes encoding for DME (phase I and II) and antioxidant enzymes showed that AFB1 caused an overall downregulation of the detoxifying systems, and mainly of GSTA1, which mediates the GSH conjugation of the AFB1-epoxide. The negative modulation of GSTA1 was efficiently reversed in the presence of quercetin, which significantly increased GSH levels as well. It is suggested that quercetin exerts its beneficial effects by depressing the bio-transformation of AFB1 and counterbalancing its pro-oxidant effects.
Collapse
Affiliation(s)
- Shiva Ghadiri
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Veronica Spalenza
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Via G.P. Usberti 27/A, 43124 Parma, Italy
| | - Paola Badino
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Via G.P. Usberti 27/A, 43124 Parma, Italy
| | - Carlo Nebbia
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Flavia Girolami
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy.
| |
Collapse
|
33
|
Diukendjieva A, Alov P, Tsakovska I, Pencheva T, Richarz A, Kren V, Cronin MTD, Pajeva I. In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:79-85. [PMID: 30668415 DOI: 10.1016/j.phymed.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/04/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND In recent years the number of natural products used as pharmaceuticals, components of dietary supplements and cosmetics has increased tremendously requiring more extensive evaluation of their pharmacokinetic properties. PURPOSE This study aims at combining in vitro and in silico methods to evaluate the gastrointestinal absorption (GIA) of natural flavonolignans from milk thistle (Silybum marianum (L.) Gaertn.) and their derivatives. METHODS A parallel artificial membrane permeability assay (PAMPA) was used to evaluate the transcellular permeability of the plant main components. A dataset of 269 compounds with measured PAMPA values and specialized software tools for calculating molecular descriptors were utilized to develop a quantitative structure-activity relationship (QSAR) model to predict PAMPA permeability. RESULTS The PAMPA permeabilities of 7 compounds constituting the main components of the milk thistle were measured and their GIA was evaluated. A freely-available and easy to use QSAR model predicting PAMPA permeability from calculated physico-chemical molecular descriptors was derived and validated on an external dataset of 783 compounds with known GIA. The predicted permeability values correlated well with obtained in vitro results. The QSAR model was further applied to predict the GIA of 31 experimentally untested flavonolignans. CONCLUSIONS According to both in vitro and in silico results most flavonolignans are highly permeable in the gastrointestinal tract, which is a prerequisite for sufficient bioavailability and use as lead structures in drug development. The combined in vitro/in silico approach can be used for the preliminary evaluation of GIA and to guide further laboratory experiments on pharmacokinetic characterization of bioactive compounds, including natural products.
Collapse
Affiliation(s)
- Antonia Diukendjieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 105, 1113 Sofia, Bulgaria
| | - Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 105, 1113 Sofia, Bulgaria
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 105, 1113 Sofia, Bulgaria
| | - Andrea Richarz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, United Kingdom
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, CZ 14220 Prague, Czech Republic
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England, United Kingdom
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 105, 1113 Sofia, Bulgaria.
| |
Collapse
|
34
|
Chen Z, Wang C, Gao X, Chen Y, Kumar Santhanam R, Wang C, Xu L, Chen H. Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chem 2019; 271:266-273. [PMID: 30236676 DOI: 10.1016/j.foodchem.2018.07.170] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
The interactions of soy protein isolate with cyanidin-3-O-glucoside were investigated to study the protective effect of protein on anthocyanin's stability by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy, circular dichroism and fluorescence spectroscopy. Preheat treatment and binding of cyanidin-3-O-glucoside effectively changed the secondary structure of soy protein isolate, with a decrease in α-helix, random coil structure and an increase in β-sheet and β-turn. The soy protein isolate preheated at 121 °C exhibited a strong binding affinity towards cyanidin-3-O-glucoside with strong Ks of 147.40 × 104 M-1 and also effectively increased the thermal and oxidation stabilities of black soybean seed coat extract via decreasing the degradation rate by 67% and 23%, respectively. Soy protein isolate interacted with cyanidin-3-O-glucoside mainly through hydrophobic interactions and static quenching process. Altogether, the results suggested that preheated soy protein isolate-cyanidin-3-O-glucoside interaction could effectively protect anthocyanins' stability through strong binding affinity influenced by the systematic alterations in the secondary structure.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Leilei Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
35
|
Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, Trifan A. Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr 2019; 60:626-659. [PMID: 30614249 DOI: 10.1080/10408398.2018.1546669] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A polyphenol-rich diet protects against chronic pathologies by modulating numerous physiological processes, such as cellular redox potential, enzymatic activity, cell proliferation and signaling transduction pathways. However, polyphenols have a low oral bioavailability mainly due to an extensive biotransformation mediated by phase I and phase II reactions in enterocytes and liver but also by gut microbiota. Despite low oral bioavailability, most polyphenols proved significant biological effects which brought into attention the low bioavailability/high bioactivity paradox. In recent years, polyphenol metabolites have attracted great interest as many of them showed similar or higher intrinsic biological effects in comparison to the parent compounds. There is a huge body of literature reporting on the biological functions of polyphenol metabolites generated by phase I and phase II metabolic reactions and gut microbiota-mediated biotransformation. In this respect, the review highlights the pharmacokinetic fate of the major dietary polyphenols (resveratrol, curcumin, quercetin, rutin, genistein, daidzein, ellagitannins, proanthocyanidins) in order to further address the efficacy of biometabolites as compared to parent molecules. The present work strongly supports the contribution of metabolites to the health benefits of polyphenols, thus offering a better perspective in understanding the role played by dietary polyphenols in human health.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania.,Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Irina Macovei
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Alexandra Bujor
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Anca Miron
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Ana Clara Aprotosoaie
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Adriana Trifan
- Department of Pharmacognosy Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| |
Collapse
|
36
|
Wang Q, Cao J, Yu H, Zhang J, Yuan Y, Shen X, Li C. The effects of EGCG on the mechanical, bioactivities, cross-linking and release properties of gelatin film. Food Chem 2019; 271:204-210. [DOI: 10.1016/j.foodchem.2018.07.168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
37
|
Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem 2018; 279:223-230. [PMID: 30611484 DOI: 10.1016/j.foodchem.2018.11.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022]
Abstract
In this study, resveratrol was successfully encapsulated using zein-chitosan complex coacervation. The encapsulation efficiency was markedly improved (51.4%) after chitosan coating at 1:2.5 zein/chitosan ratio, compared with 38.6% using native zein. Analysis of multi-model frequency ultrasound treatment effects on resveratrol encapsulation using zein-chitosan complex coacervation showed that 28/40 kHz dual-frequency ultrasound led to the highest encapsulation efficiency (65.2%; 31.9% increase) and loading capacity (5.9%; 31.1% increase) of resveratrol, followed by multi-frequency ultrasound at 20/28/40 kHz (17.8% encapsulation efficiency increase; 17.8% loading capacity increase). Dual-frequency ultrasound treatment significantly reduced the zein-chitosan complex coacervation particle size and reduced their distribution, however, did not change the zeta potential. Fourier transform infrared spectroscopy and fluorescence spectroscopy analysis demonstrated that ultrasound treatment had no effect on secondary structure of zein-chitosan complex but markedly decreased the fluorescence emission intensity. Differential scanning calorimetry and X-ray diffraction results indicated that Dual-frequency ultrasound treatment improved the thermal stability of zein-chitosan complex coacervation but had no effect on the crystal structure. Atomic force microscopy and scanning electron microscopy images revealed uniform distribution of zein-chitosan complex coacervation followed by ultrasonic treatment.
Collapse
|
38
|
Khan H, Perviz S, Sureda A, Nabavi SM, Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem Toxicol 2018; 119:176-188. [DOI: 10.1016/j.fct.2018.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023]
|
39
|
Xiao J, Battino M. 3rd International Symposium on Phytochemicals in Medicine and Food (3-ISPMF). Food Chem Toxicol 2018; 119:1-2. [PMID: 29936277 DOI: 10.1016/j.fct.2018.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau.
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Via Ranieri 65, Ancona, 60131, Italy.
| |
Collapse
|