1
|
Yang Q, Tang X, He Y, Yu X, Li Y, Wu Z. Cloning and characterization of the thioredoxin reductase 1 gene in Hyriopsis cumingii and its regulatory mechanism by Nrf2. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110056. [PMID: 39608731 DOI: 10.1016/j.fsi.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
The thioredoxin system, consisting of thioredoxin reductases and thioredoxin, plays a crucial role in defending against oxidative stress. Despite its importance, limited research has been conducted on this system in bivalves. In this study, we aimed to clone and characterize the thioredoxin reductase 1 gene from Hyriopsis cumingii (HcTrxR1) and to elucidate its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2) of H. cumingii (HcNrf2) using a combination of gene cloning, bioinformatics, RNA interference (RNAi), activator/inhibitor treatments, and dual-luciferase reporter assays. We successfully cloned the full-length cDNA of HcTrxR1, which consisted of a 1788 bp open reading frame encoding a 595-amino acid protein. Sequence analysis revealed high conservation of HcTrxR1 compared to homologs in other bivalve species. The expression of HcTrxR1 mRNA was detected across various tissues, with the highest levels observed in the gonads and hemolymph. RNAi and activator/inhibitor experiments demonstrated that HcNrf2 positively regulated the expression of HcTrxR1. Dual-luciferase reporter assays identified two antioxidant response elements in the promoter region of HcTrxR1, which were critical for HcNrf2 binding and transcriptional activation. Additionally, a polyclonal antibody against the HcTrxR1 protein was generated and confirmed for specificity. These findings underscore the regulatory role of Nrf2 in the thioredoxin system of bivalves, offering novel insights into the antioxidant mechanisms in H. cumingii. The study provides a molecular framework that may inform environmental monitoring and conservation efforts in aquatic ecosystems.
Collapse
Affiliation(s)
- Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yuzhuo He
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Wu D, Xu J, Zhang Y, Wang Y, Bai Y, Zhan X, Gao Y, Zhou H, Hu H, Wang P, Rao Z. tBHQ mitigates fatty liver ischemia-reperfusion injury by activating Nrf2 to attenuate hepatocyte mitochondrial damage and macrophage STING activation. Int Immunopharmacol 2024; 138:112515. [PMID: 38917524 DOI: 10.1016/j.intimp.2024.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Liver ischemia-reperfusion (IR) injury is an inevitable pathophysiological process in various liver surgeries. Previous studies have found that IR injury is exacerbated in fatty liver due to significant hepatocellular damage and macrophage inflammatory activation, though the underlying mechanisms are not fully understood. In this study, we aim to explore the role and mechanism of Nrf2 (Nuclear factor erythroid 2-related factor 2) signaling in regulating hepatocellular damage and macrophage immune response in fatty liver IR injury. METHODS The study used high-fat diet-induced fatty liver mice to establish an IR model, alongside an in vitro co-culture system of primary hepatocytes and macrophages. This approach was used to examine mitochondrial dysfunction, oxidative stress, mitochondrial DNA (mtDNA) release, and activation of macrophage STING (Stimulator of interferon genes) signaling. We also conducted recovery verification using H-151 (a STING inhibitor) and tBHQ (an Nrf2 activator). RESULTS Compared to the control group, mice on a high-fat diet demonstrated more severe liver IR injury, as evidenced by increased histological damage, elevated liver enzyme levels, and heightened inflammatory markers. The HFD group showed significant oxidative stress and mitochondrial dysfunction and damage post-IR, as indicated by elevated levels of ROS and lipid peroxidation markers, and decreased antioxidant enzyme activity. Elevated mtDNA release from hepatocytes post-IR activated macrophage STING signaling, worsening inflammation and liver damage. However, STING signaling inhibition with H-151 in vivo or employing STING knockout macrophages significantly reduced these injuries. In-depth mechanism studies have found that the transfer of Nrf2 protein into the nucleus of liver cells after IR in fatty liver is reduced. Pre-treatment with tBHQ ameliorated liver oxidative stress, mitochondrial damage and suppressed the macrophage STING signaling activation. CONCLUSIONS Our study reveals a novel mechanism where the interaction between hepatocellular damage and macrophage inflammation intensifies liver IR injury in fatty liver. Enhancing Nrf2 activation to protect mitochondrial from oxidative stress damage and inhibiting macrophage STING signaling activation emerge as promising strategies for clinical intervention in fatty liver IR injury.
Collapse
Affiliation(s)
- Dongming Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Jian Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Ye Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Yuechen Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Yan Bai
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China
| | - Xinyu Zhan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Yiyun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China
| | - Haoran Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China.
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, 210029 Nanjing, China.
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China.
| |
Collapse
|
3
|
Tang XH, Zhao TN, Guo L, Liu XY, Zhang WN, Zhang P. Cell-Cycle-related Protein Centromere Protein F Deficiency Inhibits Cervical Cancer Cell Growth by Inducing Ferroptosis Via Nrf2 Inactivation. Cell Biochem Biophys 2024; 82:997-1006. [PMID: 38536579 PMCID: PMC11344725 DOI: 10.1007/s12013-024-01251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 08/25/2024]
Abstract
Cervical cancer (CC) is one of the severe cancers that pose a threat to women's health and result in death. CENPF, the centromere protein F, plays a crucial role in mitosis by regulating numerous cellular processes, such as chromosome segregation during mitosis. According to bioinformatics research, CENPF serves as a master regulator that is upregulated and activated in cervical cancer. Nevertheless, the precise biological mechanism that CENPF operates in CC remains unclear. The aim of this study was to analyze the function of CENPF on cervical cancer and its mechanism. We conducted immunohistochemistry and western blot analysis to examine the expression levels of CENPF in both cervical cancer tissues and cells. To explore the hidden biological function of CENPF in cell lines derived from CC, we applied lentivirus transfection to reduce CENPF manifestation. CENPF's main role is to regulate ferroptosis which was assessed by analyzing Reactive Oxygen Species (ROS), malonaldehyde (MDA), etc. The vitro findings were further validated through a subcutaneous tumorigenic nude mouse model. Our research finding indicates that there is an apparent upregulation of CENPF in not merely tumor tissues but also cell lines in the carcinomas of the cervix. In vitro and vivo experimental investigations have demonstrated that the suppression of CENPF can impede cellular multiplication, migration, and invasion while inducing ferroptosis. The ferroptosis induced by CENPF inhibition in cervical cancer cell lines is likely mediated through the Nrf2/HO-1 pathway. The data herein come up with the opinion that CENPF may have a crucial role in influencing anti-cervical cancer effects by inducing ferroptosis via the triggering of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xin Hui Tang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Department of Obstetrics and Gynecology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
| | - Tian Nan Zhao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Dalian Medical University, School of Graduate, Dalian, 116000, China
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xin Yue Liu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China
- Department of Gynecology, Changzhi People's Hospital, Changzhi, 046000, China
| | - Wei Na Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China.
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, 266011, China.
| |
Collapse
|
4
|
Liu S, Qu H, Mao Y, Yao L, Yan L, Dong B, Zheng L. Nanozyme-integrated alcogel colorimetric sensor for rapid and on-site detection of tert-butyl hydroquinone. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133962. [PMID: 38452679 DOI: 10.1016/j.jhazmat.2024.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Tert-butyl hydroquinone (TBHQ) stand as one of the most widely used antioxidants in food and daily chemical products. Rapid and sensitive monitoring of TBHQ holds considerable importance in safeguarding human health due to its potential risks. In this study, we devised an alcogel-based colorimetric sensor enabling the portable and visual detection of TBHQ. The Ce-UiO-66 nanozyme exhibiting remarkable oxidase-like activity, was synthesized and characterized, facilitating the catalysis of TBHQ oxidation to 2-tert-butyl-1,4-benzoquinone (TBBQ). The ensuing chromogenic reaction between TBBQ and ethylenediamine produced a stable and colored product, serving as a reliable indicator for the rapid and specific detection of TBHQ. Building upon this discovery, a portable and low-cost colorimetric sensor was fashioned by integrating the nanozyme into κ-carrageenan alcogel, thereby enabling on-site TBHQ detection via a smartphone-based sensing platform. The colorimetric sensor exhibited a detection limit of 0.8 μg mL-1, demonstrating robust performance across various matrices such as edible oils, cosmetics, and surface water. Recoveries ranged from 84.9 to 95.5%, with the sensor's accuracy further validated through gas chromatography-mass spectrometry. Our study presents an effective approach to rapid and convenient monitoring of TBHQ, exhibiting good extensibility and practicability.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Wang M, Zhang F, Ning X, Wu C, Zhou Y, Gou Z, Fan Y, Duan R, Li Z, Shao C, Lu L. Regulating NLRP3 Inflammasome-Induced Pyroptosis via Nrf2: TBHQ Limits Hyperoxia-Induced Lung Injury in a Mouse Model of Bronchopulmonary Dysplasia. Inflammation 2023; 46:2386-2401. [PMID: 37556072 PMCID: PMC10673969 DOI: 10.1007/s10753-023-01885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Nuclear factor e2-related factor 2 (Nrf2) plays a key role in cellular resistance to oxidative stress injury. Oxidative stress injury, caused by Nrf2 imbalance, results in increased pyroptosis, DNA damage, and inflammatory activation, which may lead to the arrest of alveolar development and bronchopulmonary dysplasia (BPD) in premature infants under hyperoxic conditions. We established a BPD mouse model to investigate the effects of tert-butylhydroquinone (TBHQ), an Nrf2 activator, on oxidative stress injury, pyroptosis, NLRP3 inflammasome activation, and alveolar development. TBHQ reduced abnormal cell death in the lung tissue of BPD mice and restored the number and normal structure of the alveoli. TBHQ administration activated the Nrf2/heme oxygenase-1 (HO-1) signaling pathway, resulting in the decrease in the following: reactive oxygen species (ROS), activation of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, and IL-18 and IL-1β expression and activation, as well as inhibition of pyroptosis. In contrast, after Nrf2 gene knockout in BPD mice, there was more severe oxidative stress injury and cell death in the lungs, there were TUNEL + and NLRP3 + co-positive cells in the alveoli, the pyroptosis was significantly increased, and the development of alveoli was significantly blocked. We demonstrated that TBHQ may promote alveolar development by enhancing Nrf2-induced antioxidation in the lung tissue of BPD mice and that the decrease in the NLRP3 inflammasome and pyroptosis caused by Nrf2 activation may be the underlying mechanism. These results suggest that TBHQ is a promising treatment for lung injury in premature infants with hyperoxia.
Collapse
Affiliation(s)
- Minrong Wang
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Feng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Xuemei Ning
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Chan Wu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Yue Zhou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Zhixian Gou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Yang Fan
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Rongrong Duan
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Zhongni Li
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Chunyan Shao
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China.
- Clinic Medical College, Chengdu Medical College, No. 783 Xindu Avenue, Xindu District, Chengdu, Sichuan Province 610500, People's Republic of China.
| |
Collapse
|
6
|
Liu X, Yang L, Zhang G, Ling J. Neuroprotective Effects of Phenolic Antioxidant Tert-butylhydroquinone (tBHQ) in Brain Diseases. Mol Neurobiol 2023; 60:4909-4923. [PMID: 37191855 DOI: 10.1007/s12035-023-03370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Shandong Medical College, Linyi, 276000, China
| | - Luodan Yang
- College of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Leonard ER, Marques ES, Roy MA, Conlin SM, Ranjan R, Timme-Laragy AR. Dietary exposure to the food preservative tert-Butylhydroquinone (tBHQ) impairs zebrafish (Danio rerio) survival, growth, organ development, and gene expression in Nrf2a-dependent and independent ways. Food Chem Toxicol 2023; 176:113788. [PMID: 37075880 PMCID: PMC10213143 DOI: 10.1016/j.fct.2023.113788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Tert-Butylhydroquinone (tBHQ), a preservative used to prevent oxidative deterioration of oil, fat, and meat products, has been linked to both chemoprotective and adverse effects. This study investigates the impact of dietary tBHQ consumption on survival, growth parameters, organ development, and gene expression in zebrafish (Danio rerio). As tBHQ activates the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2a), a zebrafish line with a mutation in the DNA-binding domain of Nrf2a was used to identify Nrf2a-dependent vs independent effects. Homozygous Nrf2a wildtype (wt) and mutant (m) larvae were fed a diet containing 5% tBHQ or a control diet. Survival and growth parameters were assessed at 15 days and at 5 months, and samples were collected for RNA sequencing at 5 months. Dietary exposure to tBHQ throughout the larval and juvenile periods negatively impacted growth and survival. RNA-seq analysis found differentially expressed genes related to growth and development and upregulation of several immune system-related pathways. The findings herein demonstrate that dietary tBHQ exposure may impair growth and survival in both Nrf2a dependent and independent manners.
Collapse
Affiliation(s)
- Emily R Leonard
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
8
|
Xu J, Wang XL, Zeng HF, Han ZY. Methionine alleviates heat stress-induced ferroptosis in bovine mammary epithelial cells through the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114889. [PMID: 37079940 DOI: 10.1016/j.ecoenv.2023.114889] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) triggers mammary gland degradation, accompanied by apoptosis and autophagy in bovine mammary epithelial cells, negatively affecting milk performance and mammary gland health. Ferroptosis is iron-mediated regulated cell death caused by over production of lipid peroxides, however, the relationship between ferroptosis and HS in bovine mammary epithelial cells has not been clarified. Methionine (Met) plays a notable role in alleviating HS affecting the mammary glands in dairy cows, but the underlying mechanisms require further exploration. Therefore, we evaluated the regulatory effect and mechanism of Met in alleviating HS-induced ferroptosis by using bovine mammary epithelial cell line (MAC-T) as an in vitro model. The results showed that Met improved cell vitality, restored mitochondrial function; reduced the content of various reactive oxygen species (ROS), especially hydrogen peroxide (H2O2) and superoxide anion (O2·-); had positive effects on antioxidant enzyme activity, namely glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). More importantly, Met reduced labile iron protein (LIP) levels; increased iron storage and simultaneously decreased the levels of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA), which all caused by HS in MAC-T. Mechanistically, Met increased the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7, member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1) by activating nuclear factor E2-related factor 2 (Nrf2) expression. Additionally, the protection effect of Met was cut off in MAC-T cells after interference with Nrf2, manifesting in decresing the protein expression levels of GPX4, SLC7A11 and FTH1,and increasing the levels of LIP and lipid ROS. Our findings indicate that Met eases HS-induced ferroptosis in MAC-T through the Nrf2 pathway, revealing that Met produces a marked effect on easing HS-induced bovine mammary gland injury in dairy cows.
Collapse
Affiliation(s)
- Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Xu K, Ma J, Hall SRR, Peng RW, Yang H, Yao F. Battles against aberrant KEAP1-NRF2 signaling in lung cancer: intertwined metabolic and immune networks. Theranostics 2023; 13:704-723. [PMID: 36632216 PMCID: PMC9830441 DOI: 10.7150/thno.80184] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
The Kelch-like ECH-associated protein 1/nuclear factor erythroid-derived 2-like 2 (KEAP1/NRF2) pathway is well recognized as a key regulator of redox homeostasis, protecting cells from oxidative stress and xenobiotics under physiological circumstances. Cancer cells often hijack this pathway during initiation and progression, with aberrant KEAP1-NRF2 activity predominantly observed in non-small cell lung cancer (NSCLC), suggesting that cell/tissue-of-origin is likely to influence the genetic selection during malignant transformation. Hyperactivation of NRF2 confers a multi-faceted role, and recently, increasing evidence shows that a close interplay between metabolic reprogramming and tumor immunity remodelling contributes to its aggressiveness, treatment resistance (radio-/chemo-/immune-therapy) and susceptibility to metastases. Here, we discuss in detail the special metabolic and immune fitness enabled by KEAP1-NRF2 aberration in NSCLC. Furthermore, we summarize the similarities and differences in the dysregulated KEAP1-NRF2 pathway between two major histo-subtypes of NSCLC, provide mechanistic insights on the poor response to immunotherapy despite their high immunogenicity, and outline evolving strategies to treat this recalcitrant cancer subset. Finally, we integrate bioinformatic analysis of publicly available datasets to illustrate the new partners/effectors in NRF2-addicted cancer cells, which may provide new insights into context-directed treatment.
Collapse
Affiliation(s)
- Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jie Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, 230000, China
| | - Sean R. R. Hall
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115, USA
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern; Bern, 3010, Switzerland
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.,✉ Corresponding author: Haitang Yang (, +86 18217015189), Feng Yao (, +86 13636354837), Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University. West Huaihai 241, 200030, Shanghai, People's Republic of China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| |
Collapse
|
10
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
11
|
Protective activity of tert-butylhydroquinone against oxidative stress and apoptosis induced by glutamate agonizts in R28 cells and mice retina. Biomed Pharmacother 2022; 152:113117. [PMID: 35653886 DOI: 10.1016/j.biopha.2022.113117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Glutamate excitotoxicity can cause cell damage and apoptosis and play an important role in a variety of retinal diseases. Tertiary-butylhydroquinone (tBHQ) is an approved food-grade phenolic antioxidant with antioxidant activity in a variety of cells and tissues. We observed the protective effect of tBHQ on glutamatergic agonist-induced retina and explored its possible mechanism of action through in vitro cell experiments. The results showed that tBHQ had protective effects on NMDA-induced mouse retinal excitotoxicity and glutamate-induced excitotoxicity in rat retinal precursor cells (R28 cells). tBHQ reversed glutamate-induced apoptosis, production of intracellular reactive oxygen species, and reduction of mitochondrial membrane potential. Western blot analysis showed that tBHQ could increase the expression of procaspase-3, Bcl-2, AIF precursor, CAT, SOD2, Nrf2, NQO1, HO-1 and NF-κB in glutamate-treated cells, and decrease the expression of AIF cleavage products. Furthermore, we discovered that tBHQ activated müller glial cells. Based on these results, tBHQ may have antioxidant and anti-apoptotic properties, thus serving as a potential retinal protective agent. Its anti-oxidative stress effect was attributed to up-regulation of Nrf2, and its anti-apoptotic effect was related to its up-regulation of Bcl-2 expression and inhibition of mitochondria-dependent apoptosis.
Collapse
|
12
|
Ogawa T, Ishitsuka Y. The Role of KEAP1-NRF2 System in Atopic Dermatitis and Psoriasis. Antioxidants (Basel) 2022; 11:antiox11071397. [PMID: 35883888 PMCID: PMC9312147 DOI: 10.3390/antiox11071397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The Kelch-like erythroid cell-derived protein with cap‘n’collar homology-associated protein 1 (KEAP1)-nuclear factor erythroid-2-related factor 2 (NRF2) system, a thiol-based sensor-effector apparatus, exerts antioxidative and anti-inflammatory effects and maintains skin homeostasis. Thus, NRF2 activation appears to be a promising treatment option for various skin diseases. However, NRF2-mediated defense responses may deteriorate skin inflammation in a context-dependent manner. Atopic dermatitis (AD) and psoriasis are two common chronic inflammatory skin diseases caused by a defective skin barrier, dysregulated immune responses, genetic predispositions, and environmental factors. This review focuses on the role of the KEAP1-NRF2 system in the pathophysiology of AD and psoriasis and the therapeutic approaches that utilize this system.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Correspondence: ; Tel.: +81-29-853-3128; Fax: +81-29-853-3217
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
13
|
Khezerlou A, Akhlaghi AP, Alizadeh AM, Dehghan P, Maleki P. Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. Toxicol Rep 2022; 9:1066-1075. [PMID: 36561954 PMCID: PMC9764193 DOI: 10.1016/j.toxrep.2022.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tert-butyl hydroquinone (TBHQ) is a food additive commonly used as a more effective protectant in the food, cosmetic and pharmaceutical industries. However, the long-term exposure to TBHQ at higher doses (0.7 mg/kg) results in substantial danger to public health and brings a series of side effects, including cytotoxic, genotoxic, carcinogenic, and mutagenic effects. As a result, the global burden of chronic diseases has fascinated consumers and governments regarding the safety assessment of food additives. Regarding contradictory reports of various research about the application of food additives, the accurate monitoring of food additives is urgent. Notwithstanding, there are reports of the therapeutic effects of TBHQ under pathologic conditions through activation of nuclear factor erythroid 2-related factor 2. Thus, further investigations are required to investigate the impact of TBHQ on public health and evaluate its mechanism of action on various organs and cells. Therefore, this review aimed to investigate TBHQ safety through an overview of its impacts on different tissues, cells, and biological macromolecules as well as its therapeutic effects under pathologic conditions.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir pouya Akhlaghi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Maleki
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Deng S, Wu D, Li L, Li J, Xu Y. TBHQ attenuates ferroptosis against 5-fluorouracil-induced intestinal epithelial cell injury and intestinal mucositis via activation of Nrf2. Cell Mol Biol Lett 2021; 26:48. [PMID: 34794379 PMCID: PMC8600870 DOI: 10.1186/s11658-021-00294-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intestinal mucositis is a common side effect of chemotherapy and radiotherapy. Very few drugs can efficiently ameliorate it. Tertiary butylhydroquinone (TBHQ) is a widely used food preservative with known immunomodulatory activity. Whether it has an effect on intestinal mucositis remains unknown. In this study, we investigated the role and mechanism of action of TBHQ on 5-fluorouracil-induced (5-FU-induced) human intestinal epithelial cell (HIEC) injury and intestinal mucositis in mice. METHODS We established a cell model of HIEC injury and a mouse model of intestinal mucositis via treatment with 5-FU. Cell death, Cell Counting Kit-8, and lactate dehydrogenase (LDH) release were assessed for the HIECs. Diarrhea, body weight, intestinal length, mucosal damage, and the levels of IL-6, TNF-α, IL-1β, glutathione, reactive oxygen species, and malondialdehyde were determined for the mice. Additionally, we performed immunohistochemical analysis, immunofluorescence, western blotting, quantitative real-time PCR, and ELISA to examine the effects of TBHQ. Finally, HIECs were transfected with an Nrf2 gene silencer to verify its role in ferroptosis. All data were analyzed using one-way analysis of variance or paired t-tests. RESULTS TBHQ markedly decreased LDH release and cell death and improved the proliferative ability of 5-FU-treated HIECs. The TBHQ-treated mice showed reduced weight loss, a lower diarrhea score, and longer colons than the 5-FU-treated mice. The in vivo expressions of IL-1β, IL-6, and TNF-α were suppressed by TBHQ treatment. Ferroptosis was shown to be involved in 5-FU-induced intestinal mucositis, and TBHQ markedly hampered its activation. Mechanistically, TBHQ activated Nrf2 effectively and selective Nrf2 knockdown significantly reduced the anti-ferroptotic functions of TBHQ in 5-FU-treated HIECs. CONCLUSIONS TBHQ attenuates ferroptosis in 5-FU-induced intestinal mucositis, making it a potential novel protective agent against intestinal mucositis.
Collapse
Affiliation(s)
- Shihua Deng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dongming Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Li Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Jin Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China. .,The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China. .,School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
15
|
Rahman Z, Dwivedi DK, Jena GB. The intervention of tert-butylhydroquinone protects ethanol-induced gastric ulcer in type II diabetic rats: the role of Nrf2 pathway. Can J Physiol Pharmacol 2021; 99:522-535. [PMID: 33095998 DOI: 10.1139/cjpp-2020-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ethanol consumption increases the prevalence of gastric ulcer (GU) in rats with type II diabetes (T2D). Induction of GU by absolute ethanol (5 mL/kg or 3.94 g/kg) in the animal model resembles human ulcer characteristics. The aim was to investigate the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the treatment of GU in diabetic condition. The rats were exposed to absolute ethanol 1 h before sacrifice and T2D was induced by combined exposure of high-fat diet and low dose streptozotocin. Pretreatment of tert-butylhydroquinone (tBHQ) (25 and 50 mg/kg), metformin (500 mg/kg), and omeprazole (20 mg/kg) were given once daily for last three consecutive weeks. In ethanol-exposed diabetic rats, pretreatment with tBHQ, omeprazole, and metformin reduced gastric mucosal lesion, ulcer index, histological alterations, malondialdehyde level, and apoptosis. Furthermore, the intervention of tBHQ, omeprazole, and metformin improved the integrity of the stomach mucosa, glutathione, gastric pH, collagen, and goblet cells. tBHQ treatment improved ethanol-induced alterations of Nrf2, catalase, heat shock protein 70 (HSP70), NF-κB, and endothelin-1 expressions in diabetic rats. In diabetic conditions, the incidence of GU is increased due to elevated levels of reactive oxygen species, inflammatory mediators, depleted levels of cellular antioxidants, and altered gastric parameters. The tBHQ intervention could be a rational strategy to protect these changes.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - G B Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
16
|
Investigating Molecular Mechanisms of Immunotoxicity and the Utility of ToxCast for Immunotoxicity Screening of Chemicals Added to Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073332. [PMID: 33804855 PMCID: PMC8036665 DOI: 10.3390/ijerph18073332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/07/2023]
Abstract
The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.
Collapse
|
17
|
Bronisz-Budzyńska I, Kozakowska M, Podkalicka P, Kachamakova-Trojanowska N, Łoboda A, Dulak J. The role of Nrf2 in acute and chronic muscle injury. Skelet Muscle 2020; 10:35. [PMID: 33287890 PMCID: PMC7722332 DOI: 10.1186/s13395-020-00255-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a master cytoprotective factor regulating the expression of genes encoding anti-oxidant, anti-inflammatory, and detoxifying proteins. The role of Nrf2 in the pathophysiology of skeletal muscles has been evaluated in different experimental models, however, due to inconsistent data, we aimed to investigate how Nrf2 transcriptional deficiency (Nrf2tKO) affects muscle functions both in an acute and chronic injury. The acute muscle damage was induced in mice of two genotypes-WT and Nrf2tKO mice by cardiotoxin (CTX) injection. To investigate the role of Nrf2 in chronic muscle pathology, mdx mice that share genetic, biochemical, and histopathological features with Duchenne muscular dystrophy (DMD) were crossed with mice lacking transcriptionally active Nrf2 and double knockouts (mdx/Nrf2tKO) were generated. To worsen the dystrophic phenotype, the analysis of disease pathology was also performed in aggravated conditions, by applying a long-term treadmill test. We have observed slightly increased muscle damage in Nrf2tKO mice after CTX injection. Nevertheless, transcriptional ablation of Nrf2 in mdx mice did not significantly aggravate the most deleterious, pathological hallmarks of DMD related to degeneration, inflammation, fibrotic scar formation, angiogenesis, and the number and proliferation of satellite cells in non-exercised conditions. On the other hand, upon chronic exercises, the degeneration and inflammatory infiltration of the gastrocnemius muscle, but not the diaphragm, turned to be increased in Nrf2tKOmdx in comparison to mdx mice. In conclusion, the lack of transcriptionally active Nrf2 influences moderately muscle pathology in acute CTX-induced muscle injury and chronic DMD mouse model, without affecting muscle functionality. Hence, in general, we demonstrated that the deficiency of Nrf2 transcriptional activity has no profound impact on muscle pathology in various models of muscle injury.
Collapse
Affiliation(s)
- Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Bursley JK, Rockwell CE. Nrf2-dependent and -independent effects of tBHQ in activated murine B cells. Food Chem Toxicol 2020; 145:111595. [PMID: 32702509 DOI: 10.1016/j.fct.2020.111595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022]
Abstract
Nrf2 is a transcription factor that regulates cytoprotective cellular responses to oxidative and electrophilic stress. Nrf2 is potently activated by the synthetic food additive, tert-butylhydroquinone (tBHQ), which is widely used as a preservative in oils and processed foods. Previously published studies have established that tBHQ has numerous effects on T cell function. The purpose of this study was to determine the effect of tBHQ on B cell function and the role of Nrf2 in these effects. Specifically, we investigated T cell-independent B cell activation, differentiation, and IgM antibody production. Murine wild-type and Nrf2-null splenocytes were isolated, treated with tBHQ (0.25-2.5 μm), and activated by lipopolysaccharide (LPS), a T cell-independent B cell activator. Our findings indicate that tBHQ significantly enhanced IgM production in activated wild-type, but not Nrf2-null, B cells, suggesting this effect is Nrf2-dependent. In contrast, tBHQ significantly decreased the induction of CD69, CD25, CD22, and CD138 in both wild-type and Nrf2-null splenocytes. These findings indicate that the tBHQ-mediated increase in IgM is Nrf2-dependent, whereas the inhibition of CD69, CD25, CD22 and CD138 is Nrf2-independent. Overall, this study demonstrates that in addition to its effects on T cells, tBHQ also has potent effects on T cell-independent B cell function.
Collapse
Affiliation(s)
- Jenna K Bursley
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheryl E Rockwell
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Pyaram K, Kumar A, Kim YH, Noel S, Reddy SP, Rabb H, Chang CH. Keap1-Nrf2 System Plays an Important Role in Invariant Natural Killer T Cell Development and Homeostasis. Cell Rep 2020; 27:699-707.e4. [PMID: 30995469 DOI: 10.1016/j.celrep.2019.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) proteins work in concert to regulate the levels of reactive oxygen species (ROS). The Keap1-Nrf2 antioxidant system also participates in T cell differentiation and inflammation, but its role in innate T cell development and functions remains unclear. We report that T cell-specific deletion of Keap1 results in defective development and reduced numbers of invariant natural killer T (NKT) cells in the thymus and the peripheral organs in a cell-intrinsic manner. The frequency of NKT2 and NKT17 cells increases while NKT1 decreases in these mice. Keap1-deficient NKT cells show increased rates of proliferation and apoptosis, as well as increased glucose uptake and mitochondrial function, but reduced ROS, CD122, and Bcl2 expression. In NKT cells deficient in Nrf2 and Keap1, all these phenotypic and metabolic defects are corrected. Thus, the Keap1-Nrf2 system contributes to NKT cell development and homeostasis by regulating cell metabolism.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Ajay Kumar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yeung-Hyen Kim
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep 2019; 9:10366. [PMID: 31316111 PMCID: PMC6637199 DOI: 10.1038/s41598-019-46824-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is a complication of diseases and conditions such as chronic kidney disease, diabetes, and aging. Previous studies have demonstrated that high concentrations of inorganic phosphate (Pi) can induce oxidative stress and vascular smooth muscle cell calcification. KEAP1 (Kelch-like ECH-associated protein 1)/NF-E2-related factor 2 (NRF2) signaling has been shown to play important roles in protecting cells from oxidative stress. The current study aims to investigate the possible involvement of the KEAP1/NRF2/P62 -mediated antioxidant pathway in vascular calcification induced by high Pi levels. Exposure of vascular smooth muscle cells (VSMCs) to high Pi concentrations promoted the accumulation of reactive oxygen species (ROS) and the nuclear translocation of NRF2, along with an increase in P62 levels and a decrease in KEAP1 levels. A classic NRF2 activator, tert-butylhydroquinone (tBHQ), significantly decreased ROS levels and calcium deposition in VSMCs by promoting the nuclear translocation of NRF2 and upregulating P62 and KEAP1 expression. In contrast, silencing NRF2 and P62 with siRNAs increased the levels of ROS and calcium deposition in VSMCs. In conclusion, VSMC calcification can be alleviated by the activation of the KEAP1/NRF2/P62 antioxidative pathway, which could have a protective role when it is exogenously activated by tBHQ.
Collapse
Affiliation(s)
- Ran Wei
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Mayu Enaka
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| |
Collapse
|