1
|
Cavalcanti MB, da Silva IDCG, Lamarca F, de Castro IRR. Research on commercial milk formulas for young children: A scoping review. MATERNAL & CHILD NUTRITION 2024; 20:e13675. [PMID: 38956436 PMCID: PMC11574680 DOI: 10.1111/mcn.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
A scoping review of publications about commercial milk formulas intended for or consumed by children 12-36 months (CMF 12-36) was conducted. This review aimed to comprehensively map the existing literature, identify key concepts in the field and understand its evolution through time. A total of 3329 articles were screened and 220 were included, published between 1986 and 2024. Most works were published after 2016 (70.0%) and in high-income countries (71.8%). Original studies were the vast majority (81.8%) of publications. Most publications dealt with feeding practices or analysed the composition and/or contamination of specific products (44.1% and 35.9%), but since the late 2000s, publications about marketing, policy, legislation, and consumer perception started to appear. Most published works (65.5%) did not focus exclusively on CMF 12-36 and included formulas for other demographics or other foods. About half of the works (55.5%) did not consider CMF 12-36 to be a breast milk substitute. We found 81 distinct product denominations used to refer to CMF 12-36, Growing Up Milk was the most common (25.9%). CMF industry was involved in 41.8% of all analysed works, and industry participation and funding were not always clearly informed (22.5% lacked a conflict of interest statement, and 25.5% did not present any information about funding). In the last decade, publications about CMF 12-36 have increased in volume and diversified in scope and subject matter. CMF-industry participation has always been and still is present in the field, so possible vested interests should be taken into account when appreciating the literature.
Collapse
Affiliation(s)
| | | | - Fernando Lamarca
- Department of Applied Nutrition, Institute of NutritionState University of Rio de JaneiroRio de JaneiroBrazil
| | | |
Collapse
|
2
|
Sadighara P, Abedini AH, Mahvi AH, Esrafili A, Mohammadi AA, Tarahomi A, Yousefi M. Benzo ( a) pyrene in infant foods: a systematic review, meta-analysis, and health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:531-537. [PMID: 37053495 DOI: 10.1515/reveh-2022-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Exposure of infants to chemicals during their development will have major effects on their health. One of the major exposures of infants to chemicals is through their food. The main structure of infant food is milk, which is high in fat. There is a possibility of accumulation of environmental pollution, including benzo (a) pyrene (BaP). In this systematic review, the amount of BaP in infant milk was surveyed for this purpose. The chosen keywords were: benzo (a) pyrene, BaP, Infant formula, dried milk, powdered milk, and baby food. A total of 46 manuscripts were found in the scientific database. After initial screening and quality assessment, 12 articles were selected for extraction of data. By meta-analysis, the total estimate of BaP in baby food was calculated to be 0.078 ± 0.006 μg/kg. Estimation of daily intake (EDI) and Hazard Quotient (HQ) for noncarcinogenic risk and Margin of exposure (MOE) for carcinogenic risk were also calculated for three age groups 0-6 months, 6-12 months, and 1-3 years. HQ was lower than 1 and MOE was more than 10,000 for three age groups. Therefore, there is no potential carcinogenic and non-carcinogenic risk for infant health.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abedini
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Arian Tarahomi
- Faculty of General Medicine, Semmelwei University, Budapest, Hungary
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
4
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Mirza Alizadeh A, Hosseini H, Hosseini MJ, Hassanzadazar H, Hashempour-Baltork F, Zamani A, Mohseni M. Melamine in Iranian foodstuffs: A systematic review, meta-analysis, and health risk assessment of infant formula. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114854. [PMID: 37018855 DOI: 10.1016/j.ecoenv.2023.114854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The presence of melamine in food is one of the most significant threats to consumer health and food safety now confronting the communities. The goal of this systematic review and meta-analysis was to determine the melamine content of different food products available on the Iranian market. The pooled melamine concentration (95% confidence interval) on 484 samples of animal-based foodstuffs was as follows: 0.22 (0.08, 0.36 mg kg-1) for milk, 0.39 (0.25, 0.53 mg kg-1) for coffee mate, 1.45 (1.36, 1.54 mg kg-1) for dairy cream, 0.90 (0.50, 1.29 mg kg-1) for yoghurt, 1.25 (1.20, 1.29 mg kg-1) for cheese, 0.81 (-0.16, 1.78 mg kg-1) for hen eggs, 1.28 (1.25, 1.31 mg kg-1) for poultry meat, 0.58 (0.35, 0.80 mg kg-1) for chocolates, and 0.98 (0.18, 1.78 mg kg-1) for infant formula. Based on the results of health risk assessment study on toddlers under 2 years old who ingested infant formula (as a melamine-sensitive group), all groups of toddlers are at an acceptable level of non-carcinogenic risk (THQ ≤ 1). Toddlers were classified according to their ILCR (carcinogenic risk) levels due to infant formula consumption as follows: under 6 months (0.0000056), 6-12 months (0.0000077), 12-18 months (0.0000102), and 18-24 months (0.0000117). The melamine carcinogenicity in infant formula for children had an ILCR value of 0.000001-0.0001 in the investigation, which was considerable risk. According to the findings, Iranian food products (notably infant formula) should be analyzed for melamine contamination on a regular basis.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Abbasali Zamani
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Mehran Mohseni
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
6
|
Barzegar G, Rezaei Kalantary R, Bashiry M, Jaafarzadeh N, Ghanbari F, Shakerinejad G, Khatebasreh M, Sabaghan M. Measurement of polycyclic aromatic hydrocarbons in edible oils and potential health risk to consumers using Monte Carlo simulation, southwest Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5126-5136. [PMID: 35974284 DOI: 10.1007/s11356-022-22446-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants, such as polycyclic aromatic hydrocarbons, are hazardous trace contaminants frequently observed in food ingredients, such as edible oils. This study aimed to measure PAHs in forty brands of edible oils marketed in southwest Iran. Additionally, we characterized the daily intake of MOE and ILCR using Monte Carlo simulation. To analyze the content of PAHs, the liquid-liquid extraction method followed by GC-MS was utilized. The average concentration of PAHs was mostly lower than the maximum value for individual PAH (2 μg/Kg); however, the average concentration of fluorene (3.86 μg/Kg) and benzo(a)anthracene (3.13 μg/Kg) was more than the permitted level. The highest residual concentrations of PAHs were mostly observed in canola and corn oils. The daily intake of BaP and 4-PAH for 95% of consumers was 0.01 ng/kg BW/day and 0.04 ng/kg BW/day, respectively. Also, MOE was more than 10,000 for the percentiles of 5%, 50%, and 95%. The modeled ILCR showed that consumption of oil does not currently pose a cancer risk for Iranian consumers due to PAHs exposure. Concerning potential health risks, consumption of edible oils is safe; however, regular monitoring and assessment are required.
Collapse
Affiliation(s)
- Gelavizh Barzegar
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Moein Bashiry
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nematollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | | | - Masoumeh Khatebasreh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Mohamad Sabaghan
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
7
|
Agus BAP, Rajentran K, Selamat J, Lestari SD, Umar NB, Hussain N. Determination of 16 EPA PAHs in food using gas and liquid chromatography. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yan K, Li W, Wu S. Dietary exposure and risk assessment of European Union priority (EU 15+1) polycyclic aromatic hydrocarbons from milks and milk powders in China. J Dairy Sci 2022; 105:6536-6547. [DOI: 10.3168/jds.2021-21438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022]
|
9
|
Kiani A, Arabameri M, Moazzen M, Shariatifar N, Aeenehvand S, Khaniki GJ, Abdel-Wahhab M, Shahsavari S. Probabilistic Health Risk Assessment of Trace Elements in Baby Food and Milk Powder Using ICP-OES Method. Biol Trace Elem Res 2022; 200:2486-2497. [PMID: 34218415 DOI: 10.1007/s12011-021-02808-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
This study was conducted to evaluate the concentration and health risk of trace elements in milk powder and baby food samples marketed in Iran using inductive couple plasma/optical emission spectroscopy (ICP-OES) method. The limit of detection (LOD) and limit of quantification (LOQ) were ranged from 1.80 × 10-5 to 2.17 × 10-3 and 6.00 × 10-5 to 7.22 × 10-3 mg/kg, respectively, with recoveries ranged from 92 to 105%. Zinc (Zn) was found in a high mean concentration (8.49 × 10-1 ± 3.93 × 10-2 mg/kg) in milk powder, and iron (Fe) was found in the highest mean concentration (2.04 ± 3.61 × 10-2 mg/kg) in baby food. The Monte Carlo simulation results for the infants revealed that the rank order of the hazard quotient (HQ) index was mercury (Hg) > nickel (Ni) > arsenic (As) > cadmium (Cd) > aluminum (Al). Further, the result of non-carcinogenic and probability of carcinogenic risk was lower than the limits of safe risk (HQ > 1 and cancer risk (CR) > 1 × 10-4). In conclusion, the toxic elements content in the tested products was sufficiently low, and all of the milk powder and baby food sold in Iran could be considered safe for infants and children.
Collapse
Affiliation(s)
- Amin Kiani
- Department of Public Health, School of Public Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Majid Arabameri
- Vice-Chancellery of Food and Drug, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Moazzen
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saeed Aeenehvand
- Department of Food Sciences and Technology/National Nutrition and Food Technology Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mosaad Abdel-Wahhab
- Food Toxicology & Contaminants Dept, National Research Center, Dokki, Cairo, Egypt
| | - Saeed Shahsavari
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
10
|
Moazzen M, Shariatifar N, Arabameri M, Hosseini H, Ahmadloo M. Measurement of Polycyclic Aromatic Hydrocarbons in Baby Food Samples in Tehran, Iran With Magnetic-Solid-Phase-Extraction and Gas-Chromatography/Mass-Spectrometry Method: A Health Risk Assessment. Front Nutr 2022; 9:833158. [PMID: 35252309 PMCID: PMC8891379 DOI: 10.3389/fnut.2022.833158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
Baby food is one of the most sensitive foods available, which is closely monitored for carcinogens. In this study, 16 Polycyclic Aromatic Hydrocarbon (PAH) compounds were evaluated by using the method of magnetic-solid-phase-extraction and gas-chromatography/mass-spectrometry (MSPE/GC-MS). The recovery, limit of detection (LOD), and limit of quantification (LOQ) of PAH compounds were 93.4–101.6%, 0.06–1.12, and 0.18–3.38 μg/kg, respectively. The results indicated the mean of total PAHs in all samples was 3.73 ± 0.8 μg/kg, and the mean of Benzo[a]pyrene (BaP) was 0.29 ± 0.14 μg/kg that were lower than the USA-Environmental Protection Agency (USEPA) standard level (1 μg/kg, BaP in baby foods). In addition, our results showed that mixed five cereal-based baby food had a maximum mean of ΣPAHs (5.06 ± 0.68 μg/kg) and mixed wheat and date-based baby food had a minimum mean of ΣPAHs (3.03 ± 0.41 μg/kg). The carcinogenic risk due to PAH in the tested baby foods sold in Iran was adequately low, and all examined products were safe for consumers. Therefore, it can be said that the consumption of baby foods does not pose a threat to consumers.
Collapse
Affiliation(s)
- Mojtaba Moazzen
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Nabi Shariatifar
| | - Majid Arabameri
- Food Safety Research Center (salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadloo
- Department of Food Safety and Hygiene, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
11
|
Ge Y, Wu S, Yan K. Concentrations, influencing factors, risk assessment methods, health hazards and analyses of polycyclic aromatic hydrocarbons in dairies: a review. Crit Rev Food Sci Nutr 2022; 63:6168-6181. [PMID: 35139701 DOI: 10.1080/10408398.2022.2028717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in dairies has been widely reported. Consumers may be overly exposed to PAHs through dairies causing health risks. Hazards can be reduced by controlling influencing factors in the full-chain of dairy production. This review briefly introduces research trends and analytical methods concerning PAHs in dairies. Additionally, this review discusses influencing factors of PAH concentrations in various dairies to avoid PAHs' formation and accumulation during manufacture. Relevant regulations are referred to and the reported risk assessment methods are summarized. Furthermore, indicators of health risks including TEQBaP, the number and the rate of over-standard are calculated based on PAH concentrations. Through analyses, we find PAH and BaP contamination in dairies are complex problems depending on environment, processing and storage. There was a significant correlation between fat contents and PAH concentrations. Results of infant formula in certain research were worrying and those of smoked cheeses are remarkably high indicating the dangerous smoking process. It is significant to monitor PAHs and calculate TEQBaP from meadows to feeders. Moreover, the existing regulations are insufficient and need strengthening. The data and discussions in this review contribute to worldwide Big Data, further scientific investigation and regulations for PAHs in dairies.
Collapse
Affiliation(s)
- Yuxing Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Yan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Taghizadeh SF, Azizi M, Rezaee R, Giesy JP, Karimi G. Polycyclic aromatic hydrocarbons, pesticides, and metals in olive: analysis and probabilistic risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39723-39741. [PMID: 33759105 DOI: 10.1007/s11356-021-13348-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In the present study, levels of 22 pesticides, eight metals, and 16 polycyclic aromatic hydrocarbons (PAHs) in 1800 Iranian olive samples (20 cultivars from six different cultivation zones), were determined; then, health risk posed by oral consumption of the olive samples to Iranian consumers was assessed. Quantification of PAHs and pesticides was done by chromatography-mass spectrometry (GC-MS), and metal levels were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). There were no significant differences among the cultivars and zones in terms of the levels of the tested compounds. Target hazard quotients (THQ) were <1.0 for all pesticides, and total hazard indices (HI) indicated di minimis risk. At the 25th or 95th centiles, Incremental Life Time Cancer Risks (ILCRs) for carcinogenic elements, arsenic, and lead and noncarcinogenic metals did not exhibit a significant hazard (HI <1.0 for both cases). At the 25th or 95th centiles, ILCR and margins of exposure (MoE) for PAHs indicated di minimis risk. Sensitivity analysis showed that concentrations of contaminants had the most significant effect on carcinogenic and noncarcinogenic risks.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box, 1365-91775, Mashhad, Iran
| | - Majid Azizi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box, 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Bashiry M, Javanmardi F, Sadeghi E, Shokri S, Hossieni H, Oliveira CA, Mousavi Khaneghah A. The prevalence of aflatoxins in commercial baby food products: A global systematic review, meta-analysis, and risk assessment study. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Mielech A, Puścion-Jakubik A, Socha K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients 2021; 13:2358. [PMID: 34371868 PMCID: PMC8308760 DOI: 10.3390/nu13072358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Infants and toddlers are highly sensitive to contaminants in food. Chronic exposure can lead to developmental delays, disorders of the nervous, urinary and immune systems, and to cardiovascular disease. A literature review was conducted mainly in PubMed, Google Scholar and Scopus databases, and took into consideration papers published from October 2020 to March 2021. We focused on contaminant content, intake estimates, and exposure to contaminants most commonly found in foods consumed by infants and children aged 0.5-3 years. In the review, we included 83 publications with full access. Contaminants that pose a high health risk are toxic elements, acrylamide, bisphenol, and pesticide residues. Minor pollutants include: dioxins, mycotoxins, nitrates and nitrites, and polycyclic aromatic hydrocarbons. In order to reduce the negative health effects of food contamination, it seems reasonable to educate parents to limit foods that are potentially dangerous for infants and young children. An appropriate varied diet, selected cooking techniques, and proper food preparation can increase the likelihood that the foods children consume are safe for their health. It is necessary to monitor food contamination, adhere to high standards at every stage of production, and improve the quality of food for children.
Collapse
Affiliation(s)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (A.M.); (K.S.)
| | | |
Collapse
|
15
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021. [DOI: 10.3390/catal11070782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The petroleum industry is one of the most rapidly developing industries and is projected to grow faster in the coming years. The recent environmental activities and global requirements for cleaner methods are pushing the petroleum refining industries for the use of green techniques and industrial wastewater treatment. Petroleum industry wastewater contains a broad diversity of contaminants such as petroleum hydrocarbons, oil and grease, phenol, ammonia, sulfides, and other organic composites, etc. All of these compounds within discharged water from the petroleum industry exist in an extremely complicated form, which is unsafe for the environment. Conventional treatment systems treating refinery wastewater have shown major drawbacks including low efficiency, high capital and operating cost, and sensitivity to low biodegradability and toxicity. The advanced oxidation process (AOP) method is one of the methods applied for petroleum refinery wastewater treatment. The objective of this work is to review the current application of AOP technologies in the treatment of petroleum industry wastewater. The petroleum wastewater treatment using AOP methods includes Fenton and photo-Fenton, H2O2/UV, photocatalysis, ozonation, and biological processes. This review reports that the treatment efficiencies strongly depend on the chosen AOP type, the physical and chemical properties of target contaminants, and the operating conditions. It is reported that other mechanisms, as well as hydroxyl radical oxidation, might occur throughout the AOP treatment and donate to the decrease in target contaminants. Mainly, the recent advances in the AOP treatment of petroleum wastewater are discussed. Moreover, the review identifies scientific literature on knowledge gaps, and future research ways are provided to assess the effects of these technologies in the treatment of petroleum wastewater.
Collapse
|
17
|
Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, de Camargo AC, Torres EAFS. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int J Mol Sci 2021; 22:6010. [PMID: 34199457 PMCID: PMC8199595 DOI: 10.3390/ijms22116010] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds comprised of carbon and hydrogen molecules in a cyclic arrangement. PAHs are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of contaminated food, which can occur during preparation and processing involving high temperatures (e.g., grilling, smoking, toasting, roasting, and frying) as well as through PAHs present in the soil, air, and water (i.e., environmental pollution). Differently from changes caused by microbiological characteristics and lipid oxidation, consumers cannot sensorially perceive PAH contamination in food products, thereby hindering their ability to reject these foods. Herein, the occurrence and biological effects of PAHs were comprehensively explored, as well as analytical methods to monitor their levels, legislations, and strategies to reduce their generation in food products. This review updates the current knowledge and addresses recent regulation changes concerning the widespread PAHs contamination in several types of food, often surpassing the concentration limits deemed acceptable by current legislations. Therefore, effective measures involving different food processing strategies are needed to prevent and reduce PAHs contamination, thereby decreasing human exposure and detrimental health effects. Furthermore, gaps in literature have been addressed to provide a basis for future studies.
Collapse
Affiliation(s)
- Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Glória Maria Guizellini
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Simone Alves da Silva
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil;
| | - Adriana Palma de Almeida
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil;
| | - Ana Clara C. Pinaffi-Langley
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; (G.M.G.); (S.A.d.S.); (A.C.C.P.-L.); (M.M.R.); (E.A.F.S.T.)
| |
Collapse
|
18
|
Jain RB. Concentrations of selected monohydroxy polycyclic aromatic hydrocarbons across various stages of glomerular function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23220-23234. [PMID: 33439441 DOI: 10.1007/s11356-021-12376-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the variabilities in the concentrations of selected monohydroxy polycyclic aromatic hydrocarbons (OH-PAH) in urine across various stages of glomerular function. Data from National Health and Nutrition Examination Survey for US adult smokers (N = 3125) and nonsmokers (N = 6793) were selected for analysis to meet the objectives of the study. OH-PAHs selected for analysis were as follows: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene. Stages of glomerular function (GF) considered were as follows: hyperfiltrators (GF-1A, eGFR ≥ 110 mL/min/1.73 m2), normal filtrators (GF-1B, 90 < eGFR < 110 mL/min/1.73 m2), GF-2 (60 ≤ eGFR < 90 mL/min/1.73 m2), GF-3A (45 ≤ eGFR < 60 mL/min/1.73 m2), and GF-3B/4 (15 ≤ eGFR < 45 mL/min/1.73 m2). For the analysis of data for smokers, however, data for GF-3A and GF-3B/4 were merged because of small sample sizes for these GF stages for smokers. Among nonsmokers, (i) there was almost a straight-line decrease in adjusted concentrations of 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene over GF-1A through GF-3B/4; (ii) concentrations of these OH-PAHs at GF-3B/4 varied from being 37.5% for 1-hydroxypyrene to being 87% for 9-hydroxyfluorene of what they were at GF-1A; and (iii) while concentrations of 1-hydroxynaphthalene were located on an inverted U-shaped curve, concentrations of 2-hydroxynaphthalene were located on a U-shaped curve with pints of inflections at GF-3A. Among smokers, concentrations of all nine OH-PAHs in urine were located on inverted U-shaped curves with points of inflections located at GF-2 and concentrations of these OH-PAHs at GF-3/4 varied from being 48.7% for 1-hydroxypyrene to being 116.1% for 9-hydroxyfluorene of what they were at GF-1A. The kidneys differ in how they process urinary metabolites of PAHs among smokers and nonsmokers.
Collapse
|
19
|
Taghizadeh SF, Rezaee R, Badibostan H, Karimi G. Probabilistic carcinogenic and non-carcinogenic risk assessment of heavy metal ingestion through consumption of different walnut cultivars: An Iranian study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:599. [PMID: 32856100 DOI: 10.1007/s10661-020-08551-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The heavy metal levels in six walnut cultivars from five geographical zones of Iran were measured. An assessment of risks was conducted by calculating the Target Hazard Quotient (THQ) and Incremental Lifetime Cancer Risk (ILCR) by use of the Monte Carlo simulation method. The highest amounts of As and Pb were reported in Farouj samples. Also, the highest levels of Cr, Zn, Cu and Mn were determined in samples collected from Tuyserkan. Accordingly, 50th and 95th ILCRs for general population due to consumption of walnut were 1.03 × 10-4 and 3.11 × 10-4 (for As), 4.10 × 10-6 and 1.1 × 10-5 (for Cr) and 4.71 × 10-9 and 1.05 × 10-8 (for Pb), respectively. In addition, the 50th and 95th centiles of the HIs for walnut ingestion by Iranians were 1.02 and 2.05, respectively, indicating a minor chance of non-cancer effects. Based on the calculated 95% ILCR, dietary exposure to As through the consumption of walnut poses a risk to Iranian consumer health. However, ILCR values of other heavy metals (HMs) were in acceptable ranges (ILCR < 1 × 10-4), representing no toxicological concern for consumers. The most significantly influential parameters were determined by sensitivity analysis during the MCS. According to THQ and ILCR methods, concentration was the most sensitive parameters. For THQ method the concentration effects were ranged from 72.4 to 85.1%. Moreover, for ILCR method the effects of concentration in As, Cr, and Pb were 87.1, 79.1 and 83.54%, respectively.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 1365-91775. I, Mashhad, .R, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Badibostan
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 1365-91775. I, Mashhad, .R, Iran.
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Taghizadeh SF, Rezaee R, Badiebostan H, Giesy JP, Karimi G. Occurrence of mycotoxins in rice consumed by Iranians: a probabilistic assessment of risk to health. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:342-354. [PMID: 31810432 DOI: 10.1080/19440049.2019.1684572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Risks based on cancer and non-cancer endpoints, to Iranians from exposure to several mycotoxins (aflatoxin B1, ochratoxin, deoxynivalenol and T-2 toxin) following consumption of rice were evaluated. Point estimates of hazard were made for each mycotoxin and a hazard index (HI) and probabilistic estimates were based on results of Monte Carlo Simulations (MCS). All known 17 peer-reviewed studies, published in databases included in Science Direct, PubMed, Scopus and Web of Science, as well as grey literature published in Google Scholar from 2008 to 2017 were considered. The 95th and 50th centiles of Hazard Index (HI) in Iranians due to ingestion of rice were estimated to be 2.5 and 0.5, respectively. The 95th and 50th centiles of people with positive surface antigens for hepatitis B (HBsAg+) risk characterisation for AFB1 in Iranian consumers of rice were 81 and 79.1, respectively. The 95th and 50th centiles for risks of Iranians negative for the surface antigen of hepatitis B HBsAg (HBsAg-) were 4.4 and 2.6, respectively. Based on results of the MCS for risks to cancer effects, the 95th and 50th centiles of margins of exposure (MOE) were 233 and 231, respectively. Therefore, it is recommended to update agricultural approaches and storage methods and implement monitoring and regulations based on risks to health posed by consumption of rice by the Iranian population.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Chemical Engineering, Environmental Engineering Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece.,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki, Greece
| | - Hasan Badiebostan
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.,School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|