1
|
Du X, Guan L, Chen C, Wang X, Geng X. Long-term exposure to PM 2.5 exacerbates dopaminergic neuronal loss through CpG hypermethylation induced down-regulation of PINK1 and DJ-1 genes. Sci Rep 2025; 15:10778. [PMID: 40155616 PMCID: PMC11953427 DOI: 10.1038/s41598-025-89422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/05/2025] [Indexed: 04/01/2025] Open
Abstract
To investigate whether airborne particle (PM2.5) aggravates Parkinson's disease (PD) and alter expression of key PD-related genes by DNA methylation. Two groups of rats were exposed to either clean air or polluted air for 3, 6, and 12 months. The neurotoxin rotenone was injected intraperitoneally to induce a Parkinson's-like disorder. Immunostaining was used to measure the number of dopaminergic neurons in substantia nigra (SN). Real-time PCR was used to measure mRNA levels of PD-related genes PINK1 and DJ-1 in SN. Bisulfate sequencing (BSP) was used to measure DNA methylation levels in gene promoters. In a cell-based mimic of animal experiments, SH-SY5Y cells were treated with Diesel exhaust PM2.5 (DEP) for 1.5, 6, and 24 h. RT-PCR and BSP methods were used to measure gene expression and methylation of CpG islands in the cells. Persistent exposure to PM2.5 significantly increased the loss of dopaminergic neurons in the SN. Prolonged PM2.5 exposure and DEP treatment significantly reduced the mRNA levels of PINK1 and DJ-1. Both PM2.5 and DEP significantly increased the methylation level of the CpG islands in both genes. PM2.5 induced loss of dopaminergic neurons and aggravated Parkinson's disease. PM2.5 induced dysregulation of DNA methylation, resulting in decreased expression of the PINK1 and DJ-1.
Collapse
Affiliation(s)
- Xiangnan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China
| | - Longfei Guan
- Department of Neurology, China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China
| | - Chen Chen
- Department of Neurology, China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China
| | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China.
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China.
- Department of Neurology, China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China.
| |
Collapse
|
2
|
Song C, Wang W, Hua Y, Liu A. 18beta-glycyrrhetinic acid alleviates deoxynivalenol-induced hepatotoxicity by inhibiting GPX4-dependent ferroptosis. Toxicon 2025; 255:108228. [PMID: 39798898 DOI: 10.1016/j.toxicon.2025.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Deoxynivalenol (DON), a mycotoxin that severely contaminates agri-food products can cause hepatotoxicity. Ferroptosis is an iron-dependent form of cell death, and the liver is an important organ for iron accumulation. 18beta-glycyrrhetinic acid (GA) has anti-ferroptosis and hepatoprotective effects. This study aimed to investigate the role of ferroptosis in the protective effects of GA against DON-induced hepatotoxicity in HepG2 cells and mice. The in vitro results revealed that DON (0.4 μM) decreased GPX4, SLC7A11, GCLC, NQO1, and Nrf2 expression; promoted TFR-1 expression and MDA, 4-HNE, and total ROS production; accelerated GSH depletion; and enhanced lipid ROS accumulation and Fe(II) overload, leading to ferroptosis. Pre-treatment with GA (0.4 and 6 μM) reversed these changes and alleviated DON-induced ferroptosis, thereby increasing cell viability and proliferation. In vivo results also showed that GA (10 mg/kg bw) pre-administration attenuated DON (2 mg/kg bw)-induced mouse liver injury, in part by inhibiting ferroptosis through reducing mitochondrial damage and lipid peroxidation. In addition, GA prevented erastin- and RSL3-induced ferroptosis by promoting GPX4 and SLC7A11 expression. Altogether, GA attenuated DON-induced hepatotoxicity by preventing ferroptosis via activation of GPX4-dependent pathway. The findings of this study provide a theoretical basis for the prevention of food mycotoxin toxicity.
Collapse
Affiliation(s)
- Chenchen Song
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Wei Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Yu Hua
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei 437100, China
| | - Aimei Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
3
|
He Y, Zhu X, Song H, Liu Y, Cao C. Sodium butyrate alleviates T-2 toxin-induced liver toxicity and renal toxicity in quails by modulating oxidative stress-related Nrf2 signaling pathway, inflammation, and CYP450 enzyme system. J Food Sci 2024; 89:8036-8053. [PMID: 39363242 DOI: 10.1111/1750-3841.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024]
Abstract
T-2 toxin is a member of class A aspergilloides toxins, one of the most prevalent mycotoxins that contaminate feed and food. Direct ingestion of animals or feed contaminated by T-2 toxin can cause various animal diseases. Butyrate is an organic fatty acid featuring a four-carbon chain, which is commonly found in the form of sodium butyrate (NaB). NaB has several biological functions and pharmacological effects. However, the role of sodium butyrate in alleviating T-2 toxin-induced hepatorenal toxicity has not been explored. In this study, 240 juvenile quails were evenly assigned into 4 groups. The experimental setup comprised four groups: The control group received a standard diet; the toxin group received a diet containing 0.9 mg/kg T-2 toxin; the butyrate group received a diet containing 0.5 g/kg NaB; and the T-2 treatment group received a diet containing both 0.9 mg/kg T-2 toxin and 0.5 g/kg NaB. We evaluated the histopathological changes in the kidney and liver on Days 14 and 28 and explored the molecular mechanisms involving oxidative stress, inflammation, and expression of nuclear xenobiotic receptors (NXRs). Our results showed that T-2 toxin exposure-induced inflammation in the liver and kidney by activating the oxidative stress pathway and modulating expression of NXRs to regulate related CYP450 isoforms, ultimately leading to histopathological injury in the liver and kidney, whereas sodium butyrate ameliorated this injury. These results offer novel insights into the molecular mechanisms underlying the protective effects of sodium butyrate in mitigating T-2 toxin-induced hepatorenal injury in juvenile quails. PRACTICAL APPLICATION: The mechanisms of T-2 toxin toxicity have been well described in experimental animals, but studies in birds are limited. With the development of society, the market scale of quails farming has been expanding, and the value of quails meat and eggs is increasing; there is an urgent need to clarify the harm of T-2 toxin to quails and its mechanism.
Collapse
Affiliation(s)
- Yihao He
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Xueyan Zhu
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Huanni Song
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, People's Republic of China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University/Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, People's Republic of China
| |
Collapse
|
4
|
An K, Shi B, Lv X, Liu Y, Xia Z. T-2 toxin triggers lipid metabolism disorder and oxidative stress in liver of ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117169. [PMID: 39405967 DOI: 10.1016/j.ecoenv.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
T-2 toxin (T-2) is a highly toxic mycotoxin that threatens organism health, yet its hepatoxicity on ducks remains unknown. The present study aimed to assess the hepatoxicity and redox reactions induced by T-2 in ducks. Sixty 7-day-old ducklings were divided into 4 groups and exposed to 0, 200, 400 and 800 μg/kg bodyweight of T-2 through oral gavage for 2 weeks. The growth performance, liver histopathology, biochemical indicators, antioxidant capacity and hepatic damage-related genes of ducks were analyzed. The results revealed that 800 µg/kg T-2 inhibited the growth and feed intake of ducks, whereas liver index increased with the elevation of T-2 concentration. Histological examinations exhibited that T-2 caused hepatic cord disappeared and severe steatosis. Moreover, serum AST, ALT and TG were substantially higher in 400 μg/kg group, while γ-GT and ALB were reduced under 800 μg/kg T-2 exposure. In addition, significant increase of malondialdehyde (MDA) in liver, decrease of hepatic total antioxidant capacity (T-AOC) and serum glutathione peroxidase (GPx) were observed in all T-2 groups. Furthermore, T-2 disrupted lipid metabolism and oxidative stress-related genes expression in liver. The transcript level of fatty acid binding protein 1 (FABP1) was markedly raised in all T-2 groups, and hepatic acyl-CoA oxidase 1 (ACOX1) was significantly raised in 200 and 400 μg/kg T-2 groups. Under 800 μg/kg T-2, significant induction of hypoxia inducible factor-1 alpha (HIF-1α), and downregulated peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyl transferase 1A (CPT1A), peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1α), GPx1, catalase (CAT) mRNA levels were observed. Therefore, we conclude that T-2 caused liver injury through lipid metabolism disruption and oxidative stress in ducks, which reinforces understanding about the hepatoxicity mechanisms of T-2 and provides new targets for detoxication and prevention.
Collapse
Affiliation(s)
- Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueze Lv
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Shandong Provincial Center for Animal Disease Control, Jinan 250100, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Huang J, Wang Y, Hu H, He K, Jiang X, Huang R, Liu T, Hu K, Guo X, Wang J, Zhang D, Li Q, Yang Z, Wei Z. SIRT5 safeguards against T-2 toxin induced liver injury by repressing iron accumulation, oxidative stress, and the activation of NLRP3 inflammasome. Toxicol Appl Pharmacol 2024; 492:117084. [PMID: 39241930 DOI: 10.1016/j.taap.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
T-2 toxin, a highly toxic trichothecene mycotoxin widely found in food and feed, poses a significant threat to human health as well as livestock and poultry industry. Liver, being a crucial metabolic organ, is particularly susceptible to T-2 toxin induced damage characterized by inflammation and oxidative stress. Despite the role of Sirtuin 5 (SIRT5) in mitigating liver injury has been confirmed, its specific impact on T-2 toxin induced liver injury remains to be elucidated. The objective of this study was to investigate the protective role of SIRT5 against T-2 toxin induced liver injury in mice. Following the oral administration of 1 mg/kg.bw of T-2 toxin for 21 consecutive days to SIRT5 knockout (SIRT5-/-) and wild-type (WT) male mice, liver assessments were conducted. Our findings demonstrated that aggravated hepatic pathological injury was observed in SIRT5-/- mice, accompanied by elevated malondialdehyde (MDA) and Fe levels, as well as enhanced expression of glutathione peroxidase 4 (GPX4), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin-D (GSDMD), tumour necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). These results indicated that SIRT5 alleviated hepatic structural damage and dysfunction, while inhibiting oxidative stress, iron accumulation, and NLRP3 inflammasome activation. Analysis revealed a positive correlation among NLRP3 inflammasome activation, iron accumulation, and oxidative stress. Overall, our study demonstrated that SIRT5 mitigated liver injury induced by T-2 toxin through inhibiting iron accumulation, oxidative stress, and NLRP3 inflammasome activation, providing novel insights into the management and prevention of T-2 toxin poisoning.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yiwen Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Han Hu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xi Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Rongsheng Huang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Kairao Hu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xin Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaxuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China.
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Yang X, Liu H, Cheng S, Pan C, Cai Q, Chu X, Shi S, Wei W, He D, Cheng B, Wen Y, Jia Y, Tinkov AA, Skalny AV, Zhang F. Potential involvement of connective tissue growth factor in chondrocytes apoptosis of Kashin-Beck disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117148. [PMID: 39369662 DOI: 10.1016/j.ecoenv.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is an endemic osteoarthropathy characterized by excessive chondrocytes apoptosis. T-2 toxin exposure has been proved to be its etiology. Connective tissue growth factor (CTGF) exerts a profound influence on cartilage growth and metabolism. We investigated the potential role of CTGF in KBD development and examined CTGF alterations under T-2 toxin stimulation. METHODS The levels of CTGF and chondrocyte apoptosis-related markers in cartilage and primary chondrocytes from KBD and control groups were measured using qRT-PCR, Western blotting, immunohistochemistry, and immunofluorescence. We analyzed expression changes of these genes in response to T-2 toxin. Apoptosis rates of chondrocytes induced by T-2 toxin were measured by flow cytometry and TUNEL assay. The active pharmaceutical ingredient targeting CTGF was screened through Comparative Toxicogenomics Database, and molecular docking was performed using AutoDock Tools. RESULTS The CTGF levels in KBD cartilage and chondrocytes were significantly elevated and positively associated with the levels of apoptosis-related genes. T-2 toxin exposure increased CTGF and apoptosis-related gene levels in chondrocytes, with apoptosis rates rising alongside T-2 toxin concentration. Curcumin was identified as targeting CTGF and exhibited effective binding. It could down-regulate CTGF, apoptosis-related genes, such as Cleaved caspase 3 and BAX, and also significantly reduce apoptosis rate in chondrocytes treated with T-2 toxin. CONCLUSION CTGF plays a crucial role in the development of KBD. Curcumin has shown potential in inhibiting CTGF levels and reducing chondrocyte apoptosis, highlighting its promise as a therapeutic agent for preventing cartilage damage in KBD. Our findings provided valuable insights into the pathogenesis of KBD and could promote the development of novel therapeutic strategies for this debilitating disease.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Zheng S, Li H, Dong H, Qi F, Zhang B, Yu Q, Lin B, Jiang H, Du H, Liu Y, Yu J. A preliminary study of T-2 toxin that cause liver injury in rats via the NF-kB and NLRP3-mediated pyroptosis pathway. Toxicon 2024; 249:108060. [PMID: 39117157 DOI: 10.1016/j.toxicon.2024.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
T-2 toxin is recognized as the most potent and prevalent secondary metabolite among monotrichous mycotoxins produced by Fusarium species. Multiple studies have substantiated the hepatotoxic effects of T-2 toxin. This study aimed to investigate whether NF-κB and NLRP3-mediated pyroptosis is involved in the underlying mechanism of T-2 toxin hepatotoxicity. We designed three groups of rat models, blank control; solvent control and T-2 toxin (0.2 mg/kg body weight/day), which were euthanized at week 8 after gavage staining of the toxin. Through HE staining and biochemical indicators associated with liver injury, we observed that T-2 toxin induced liver damage in rats. By Western blot analysis and qRT-PCR, we found that the expression levels of pyroptosis-related genes and proteins were significantly higher in the T-2 toxin group. In addition, we also found a significant increase in the expression of p-NF-κB protein, an upstream regulator of NLRP3. In conclusion, NF-κB and NLRP3-mediated pyroptosis may be involved in the mechanism of hepatotoxic action of T-2 toxin, which provides a new perspective.
Collapse
Affiliation(s)
- Shicong Zheng
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Haonan Li
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Hexuan Dong
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Fang Qi
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Bing Zhang
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Qian Yu
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Buyi Lin
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Hong Jiang
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Haoyu Du
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Ying Liu
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Jun Yu
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| |
Collapse
|
8
|
Xu X, Wu Y, Zhao Y, Liu A, Yi C, Zhang A, Wang X. Inhibition of Macrophage Pyroptosis─A New Therapeutic Strategy to Alleviate T-2 Toxin-Induced Subacute Liver Injury by Directly Competing with the Key Target. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18670-18681. [PMID: 39112929 DOI: 10.1021/acs.jafc.4c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple compounds are related to the development of liver injury, such as toxins, drugs, and environmental pollutants. Although there are reports that the T-2 toxin can cause liver injury, its toxic mechanism remains unclear, which further impedes the development of effective antidotes. In this study, CRISPR-Cas9 genome-wide screening technology was used to identify transformation-related protein 53 inducible nuclear protein 1 (trp53inp1) as a toxic target of the T-2 toxin. Mechanism studies have shown that the T-2 toxin induced pyroptosis of macrophages (J774A.1 cells) by activating the trp53inp1/NF-κB/NLRP3/GSDMD-N pathway, leading to a subacute liver injury. Also, the new drug berberine (BER) identified through virtual screening significantly alleviated the subacute liver injury by competitively binding trp53inp1 via His224; the effect was better than those of the positive control drugs N-acetylcysteine (NAC) and disulfiram (DSF). In summary, the above results indicate that trp53inp1 is a key target for T-2 toxin to induce subacute liver injury and that inhibiting macrophage pyroptosis is a new method for treating liver injury. In addition, this study provides a new method and strategy for the discovery of key disease targets and the search for effective drugs.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan , Hubei 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan , Hubei 430070, China
| | - Yue Wu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan , Hubei 430070, China
| | - Yongxia Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan , Hubei 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan , Hubei 430070, China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P.R. China
| | - Chenyang Yi
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan , Hubei 430070, China
| | - Anding Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan , Hubei 430070, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease prevention, Guangzhou, Guangdong 510000, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan , Hubei 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan , Hubei 430070, China
| |
Collapse
|
9
|
Huang T, Li A, Zhang S, Fan J, Hua Z, Wang X, Zhang C, Yang X. The role of gut microbiota in anorexia induced by T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116612. [PMID: 38896898 DOI: 10.1016/j.ecoenv.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
T-2 toxin is one of trichothecene mycotoxins, which can impair appetite and decrease food intake. However, the specific mechanisms for T-2 toxin-induced anorexia are not fully clarified. Multiple research results had shown that gut microbiota have a significant effect on appetite regulation. Hence, this study purposed to explore the potential interactions of the gut microbiota and appetite regulate factors in anorexia induced by T-2 toxin. The study divided the mice into control group (CG, 0 mg/kg BW T-2 toxin) and T-2 toxin-treated group (TG, 1 mg/kg BW T-2 toxin), which oral gavage for 4 weeks, to construct a subacute T-2 toxin poisoning mouse model. This data proved that T-2 toxin was able to induce an anorexia in mice by increased the contents of gastrointestinal hormones (CCK, GIP, GLP-1 and PYY), neurotransmitters (5-HT and SP), as well as pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in serum of mice. T-2 toxin disturbed the composition of gut microbiota, especially, Faecalibaculum and Allobaculum, which was positively correlated with CCK, GLP-1, 5-HT, IL-1β, IL-6 and TNF-α, which played a certain role in regulating host appetite. In conclusion, gut microbiota changes (especially an increase in the abundance of Faecalibaculum and Allobaculum) promote the upregulation of gastrointestinal hormones, neurotransmitters, and pro-inflammatory cytokines, which may be a potential mechanism of T-2 toxin-induced anorexia.
Collapse
Affiliation(s)
- Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Shanshan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zeao Hua
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
10
|
Huang C, Ou Z, Kong L, Huang Y, Yang W, He J, Yang M, Wu J, Xiang S, Zhou Y, Yi J. Betulinic acid attenuates T-2 toxin-induced lung injury by activating Nrf2 signaling pathway and inhibiting MAPK/NF-κB signaling pathway. Toxicon 2024; 241:107652. [PMID: 38395262 DOI: 10.1016/j.toxicon.2024.107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
T-2 toxin, a type-A trichothecene mycotoxin, exists ubiquitously in mildewed foods and feeds. Betulinic acid (BA), a pentacyclic triterpenoid derived from plants, has the effect of relieving inflammation and oxidative stress. The purpose of this study was to investigate whether BA mitigates lung impairment caused by T-2 toxin and elucidate the underlying mechanism. The results indicated that T-2 toxin triggered the inflammatory cell infiltration, morphological alterations and cell apoptosis in the lungs. It is gratifying that BA ameliorated T-2 toxin-caused lung injury. The protein expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway and the markers of antioxidative capability were improved in T-2 toxin induced lung injury by BA mediated protection. Simultaneously, BA supplementation could suppress T-2 toxin-induced mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB)-dependent inflammatory response and mitochondrial apoptotic pathway. Therefore, T-2 toxin gave rise to pulmonary toxicity, but these changes were moderated by BA administration through regulation of the Nrf2/MAPK/NF-κB pathway, which maybe offer a viable alternative for mitigating the lung impairments caused by the mycotoxin.
Collapse
Affiliation(s)
- Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Siting Xiang
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China.
| | - Yu Zhou
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
11
|
Chen M, Su B, Wu H, Dai Y, Chen T, Fu F, Lin Z, Dong Y. Hydrogel SERS chip with strong localized surface plasmon resonance for sensitive and rapid detection of T-2 toxin. Talanta 2024; 268:125329. [PMID: 37879204 DOI: 10.1016/j.talanta.2023.125329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
T-2 toxin is one of the naturally dangerous food contaminants, which is harmful to people and animals. Because of its strong toxicity and wide distribution, it is vital to develop a rapid and effective method for the detection of T-2 toxin. Herein, an excellent hydrogel surface-enhanced Raman scattering (SERS) chip is constructed for developing a novel SERS sensor to detect T-2 toxin using a portable Raman spectrometer. The SERS chip is prepared by in-situ Ca2+-mediated assembly of silver nanoparticles (AgNPs) in PVA solution, followed by a physical crosslinking possess. The assembled AgNPs produces a strong localized surface plasmon resonance (LSPR) at around 532 nm, which enables the high activity of SERS chip under the irradiation of 532 nm laser. Additionally, the unique structure of hydrogel makes the obtained chip show excellent reliability and anti-interference ability in detection. As a result, the developed SERS sensor shows many obvious advantageous including free of complex sample pretreatment (only a simple extraction), fast response (5 min), low limit of detection (0.41 ppb), wide detection range (1-10000 ppb), good recoveries (90.26-101.81 %) and relative standard deviations (2.8-6.7 %). Therefore, this SERS sensor provides a promising choice for rapid scanning and sensitive detection of trace T-2 toxin in complex matrices.
Collapse
Affiliation(s)
- Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Bihang Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huiying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yawen Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Tianwen Chen
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, China.
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
12
|
Vörösházi J, Mackei M, Sebők C, Tráj P, Márton RA, Horváth DG, Huber K, Neogrády Z, Mátis G. Investigation of the effects of T-2 toxin in chicken-derived three-dimensional hepatic cell cultures. Sci Rep 2024; 14:1195. [PMID: 38216675 PMCID: PMC10786837 DOI: 10.1038/s41598-024-51689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Despite being one of the most common contaminants of poultry feed, the molecular effects of T-2 toxin on the liver of the exposed animals are still not fully elucidated. To gain more accurate understanding, the effects of T-2 toxin were investigated in the present study in chicken-derived three-dimensional (3D) primary hepatic cell cultures. 3D spheroids were treated with three concentrations (100, 500, 1000 nM) of T-2 toxin for 24 h. Cellular metabolic activity declined in all treated groups as reflected by the Cell Counting Kit-8 assay, while extracellular lactate dehydrogenase activity was increased after 500 nM T-2 toxin exposure. The levels of oxidative stress markers malondialdehyde and protein carbonyl were reduced by the toxin, suggesting effective antioxidant compensatory mechanisms of the liver. Concerning the pro-inflammatory cytokines, IL-6 concentration was decreased, while IL-8 concentration was increased by 100 nM T-2 toxin exposure, indicating the multifaceted immunomodulatory action of the toxin. Further, the metabolic profile of hepatic spheroids was also modulated, confirming the altered lipid and amino acid metabolism of toxin-exposed liver cells. Based on these results, T-2 toxin affected cell viability, hepatocellular metabolism and inflammatory response, likely carried out its toxic effects by affecting the oxidative homeostasis of the cells.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary.
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Dávid Géza Horváth
- Department of Pathology, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| |
Collapse
|
13
|
Wang Y, Cheng W, Wang X, He T, Liu J, Chen S, Zhang J. Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice. Food Chem Toxicol 2023:113913. [PMID: 37348806 DOI: 10.1016/j.fct.2023.113913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Endemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice. A network pharmacology approach was applied to predict the potential target of As-induced hepatotoxicity. The predicted targets of differential metabolites were subjected to a deep matching for elucidating the integration mechanisms. The results demonstrate that the levels of ALT and AST in plasma significantly increased in mice after As exposure. In addition, the liver tissue showed disorganized liver lobules, lax cytoplasm and inflammatory cell infiltration. Metabolomic analysis revealed that As exposure caused disturbance to 40 and 75 potential differential metabolites in plasma and liver, respectively. Further investigation led to discovering five vital metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis and nicotinate and nicotinamide metabolism pathways. These pathways may responded to As-induced hepatotoxicity primarily through lipid metabolism, apoptosis, and deoxyribonucleic acid damage. The network pharmacology suggested that As could induce hepatotoxicity in mice by acting on targets including Hsp90aa1, Akt2, Egfr, and Tnf, which regulate PI3K Akt, HIF-1, MAPK, and TNF signaling pathways. Finally, the integrated metabolomics and network pharmacology revealed eight key targets associated with As-induced hepatoxicity, namely DNMT1, MAOB, PARP1, MAOA, EPHX2, ANPEP, XDH, and ADA. The results also suggest that nicotinic acid and nicotinamide metabolisms may be involved in As-induced hepatotoxicity. This research identified the metabolites, targets, and mechanisms of As-induced hepatotoxicity, offering meaningful insights and establishing the groundwork for developing antidotes for widespread As poisoning.
Collapse
Affiliation(s)
- Yazhi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoning Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Shuangshuang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
14
|
Song W, Wang Y, Huang T, Liu Y, Chen F, Chen Y, Jiang Y, Zhang C, Yang X. T-2 toxin metabolism and its hepatotoxicity: New insights on the molecular mechanism and detoxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121784. [PMID: 37169237 DOI: 10.1016/j.envpol.2023.121784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
T-2 toxin, a type A trichothecene, is a secondary metabolite produced by Fusarium poae, Fusarium sporotrichioides, and Fusarium tricinctum. As the most toxic trichothecenes, T-2 toxin causes severe damage to multiple organs, especially to liver. However, the contamination of T-2 toxin covers a wide range of plants, including nuts, grains, fruits and herbs globally. And due to chemical stability of T-2 toxin, it is difficult to be completely removed from the food and feeds, which poses a great threat to human and animal health. Liver is the major detoxifying organ which also makes it the main target of T-2 toxin. After being absorbed by intestine, the first pass effect will reduce the level of T-2 toxin in blood indicating that liver is the main metabolic site of T-2 toxin in vivo. In this review, updated researches on the hepatotoxicity of T-2 toxin were summarized. The metabolic characteristic of T-2 toxin in vivo was introduced. The main hepatotoxic mechanisms of T-2 toxin are oxidative stress, mitochondrial damage, deoxyribonucleic acid (DNA) methylation, autophagy and apoptosis. Recent research of the main hepatotoxic mechanisms of T-2 toxin and the interactions between these mechanisms were summarized. The remission of the hepatotoxicity induced by T-2 toxin was also studied in this review followed by new findings on the detoxification of hepatotoxicity induced by T-2 toxin. The review aimed to offer a comprehensive view and proposes new perspectives in the field of hepatotoxicity induced by T-2 toxin.
Collapse
Affiliation(s)
- Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
15
|
Al-Zahrani MH, Balgoon MJ, El-Sawi NM, Alshubaily FA, Jambi EJ, Khojah SM, Baljoon RS, Alkhattabi NA, Baz LA, Alharbi AA, Ahmed AM, Abo elkhair AM, Ismael M, Gebril SM. A biochemical, theoretical and immunohistochemical study comparing the therapeutic efficacy of curcumin and taurine on T-2 toxin induced hepatotoxicity in rats. Front Mol Biosci 2023; 10:1172403. [PMID: 37214337 PMCID: PMC10192634 DOI: 10.3389/fmolb.2023.1172403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Foodborne trichothecene T-2 Toxin, is a highly toxic metabolite produced by Fusarium species contaminating animal and human food, causing multiple organ failure and health hazards. T-2 toxins induce hepatotoxicity via oxidative stress causing hepatocytes cytotoxicity and genotoxicity. In this study, curcumin and taurine were investigated and compared as antioxidants against T-2-provoked hepatotoxicity. Methods: Wistar rats were administrated T-2 toxin sublethal oral dose (0.1 mg/kg) for 2 months, followed by curcumin (80 mg/kg) and taurine (50 mg/kg) for 3 weeks. Biochemical assessment of liver enzymes, lipid profiles, thiobarbituric acid reactive substances (TBARs), AFU, TNF-α, total glutathione, molecular docking, histological and immunohistochemical markers for anti-transforming growth factor-β1 (TGFβ1), double-strand DNA damage (H2AX), regeneration (KI67) and apoptosis (Active caspase3) were done. Results and Discussion: Compared to T-2 toxin, curcumin and taurine treatment significantly ameliorated hepatoxicity as; hemoglobin, hematocrit and glutathione, hepatic glycogen, and KI-67 immune-reactive hepatocytes were significantly increased. Although, liver enzymes, inflammation, fibrosis, TGFβ1 immunoexpressing and H2AX and active caspase 3 positive hepatocytes were significantly decreased. Noteworthy, curcumin's therapeutic effect was superior to taurine by histomorphometry parameters. Furthermore, molecular docking of the structural influence of curcumin and taurine on the DNA sequence showed curcumin's higher binding affinity than taurine. Conclusion: Both curcumin and taurine ameliorated T-2 induced hepatotoxicity as strong antioxidative agents with more effectiveness for curcumin.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha J. Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagwa M. El-Sawi
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebtihaj J. Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sohair M. Khojah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lina A. Baz
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa A. Alharbi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amira M. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Ayat M. Abo elkhair
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Mohamed Ismael
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Sahar M. Gebril
- Histology and Cell biology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
16
|
Zhang N, Tian X, Yan T, Wang H, Zhang D, Lin C, Liu Q, Jiang S. Insights into the role of nucleotide methylation in metabolic-associated fatty liver disease. Front Immunol 2023; 14:1148722. [PMID: 37020540 PMCID: PMC10067741 DOI: 10.3389/fimmu.2023.1148722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by fatty infiltration of the liver. In recent years, the MAFLD incidence rate has risen and emerged as a serious public health concern. MAFLD typically progresses from the initial hepatocyte steatosis to steatohepatitis and then gradually advances to liver fibrosis, which may ultimately lead to cirrhosis and carcinogenesis. However, the potential evolutionary mechanisms still need to be clarified. Recent studies have shown that nucleotide methylation, which was directly associated with MAFLD's inflammatory grading, lipid synthesis, and oxidative stress, plays a crucial role in the occurrence and progression of MAFLD. In this review, we highlight the regulatory function and associated mechanisms of nucleotide methylation modification in the progress of MAFLD, with a particular emphasis on its regulatory role in the inflammation of MAFLD, including the regulation of inflammation-related immune and metabolic microenvironment. Additionally, we summarize the potential value of nucleotide methylation in the diagnosis and treatment of MAFLD, intending to provide references for the future investigation of MAFLD.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| |
Collapse
|
17
|
Kang R, Li S, Perveen A, Shen J, Li C. Effects of maternal T-2 toxin exposure on microorganisms and intestinal barrier function in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114252. [PMID: 36332402 DOI: 10.1016/j.ecoenv.2022.114252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
T-2 toxin belongs to the trichothecenes group A compound, mainly produced by Fusarium fungi. It has been shown that T-2 toxin could cross the placental barrier and breast milk, thus endangering the health of offspring. The present study aimed to explore the effects of maternal T-2 toxin exposure on the integrity of the intestinal barrier and the intestinal microflora of young mice. From late pregnancy (GD 14) to lactation (LD 21), pregnant mice were given T-2 toxin daily at 0, 0.005, or 0.05 mg T-2 toxin/kg BW. Postnatal day 21 (PND21), PND28, and PND56 young mice were chosen as objects to detect the influences of maternal T-2 toxin exposure to mice on the offspring. The results showed that maternal exposure to T-2 toxin disturbed the balance of the intestinal microbial flora of the young mice. Villous adhesions and fusion of ileum were observed in T-2-treated groups. In addition, supplementation of T-2 toxin significantly decreased the gene expressions of Claudin 1, Occludin, Tjp1, Il10, Il6, and Tnf in PND 21. However, in PND 28, the expressions of Tnf were significantly increased. The expressions of Claudin 1, Occludin, Tjp1, Il10, Il6 and Tnf were significantly increased after T-2 toxin treatment in PND 56. These results suggested that maternal exposure to T-2 toxin has negative influences on the intestine of young mice, which may be due to the alterations of microbial composition.
Collapse
Affiliation(s)
- Ruifen Kang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sheng Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aneela Perveen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiakun Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Zhang J, Song M, Cui Y, Shao B, Zhang X, Cao Z, Li Y. T-2 toxin-induced femur lesion is accompanied by autophagy and apoptosis associated with Wnt/β-catenin signaling in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1653-1661. [PMID: 35289972 DOI: 10.1002/tox.23514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
T-2 toxin is one of the most common mycotoxins found in grain foods, animal feed, and other agricultural by-products causing food contamination and health threat. The skeletal system is the main target tissue for T-2 toxin. T-2 toxin exposure is also recognized as a potential contributor to multiple types of bone diseases, including Kashin-Beck disease. However, the mechanisms of T-2 toxin-induced bone toxicity remain unclear. In this study, 60 male C57BL/6 mice were exposed T-2 toxin with 0, 0.5, 1 or 2 mg/kg body weight by intragastric administration for 28 days, respectively. Femora were collected for the detections of femur lesion, bone formation factors, oxidative stress, autophagy, apoptosis, and Wnt/β-catenin signaling. Our research showed that T-2 toxin caused bone formation disorders, presenting as the reduction of the BMD and femur length, bone structure changes and abnormal bone formation proteins expressions, along with enhanced oxidative stress. Meanwhile, T-2 toxin increased expressions of autophagy-related proteins (Beclin 1, ATG5, p62, and LC3), and promoted apoptosis in mouse femur. Moreover, T-2 toxin suppressed the Wnt/β-catenin signaling and expressions of downstream target genes. Taken together, our data indicated T-2 toxin-induced femur lesion was accompanied by autophagy and apoptosis, which was associated with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Cytochrome P450 enzymes mediated by DNA methylation is involved in deoxynivalenol-induced hepatoxicity in piglets. ANIMAL NUTRITION 2022; 9:269-279. [PMID: 35600548 PMCID: PMC9092380 DOI: 10.1016/j.aninu.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022]
Abstract
Deoxynivalenol (DON) is an inevitable contaminant in animal feed and can lead to liver damage, then decreasing appetite and causing growth retardation in piglets. Although many molecular mechanisms are related to hepatoxicity caused by DON, few studies have been done on cytochrome P450 (CYP450) enzymes and DNA methylation. To explore the role of CYP450 enzymes and DNA methylation in DON-induced liver injury, male piglets were fed a control diet, or diet containing 1.0 or 3.0 mg/kg DON for 4 weeks. DON significantly raised the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and glutamyl transpeptidase (GGT) (P < 0.01), leading to liver injury. In vivo study found that DON exposure increased the expression of CYP450 enzymes (such as CYP1A1, CYP2E1, CYP3A29) (P < 0.05), and disturbed the expression of nicotinamide N-methyltransferase (NNMT), galanin-like peptide (GALP) and insulin-like growth factor 1 (IGF-1) (P < 0.05), in which DNA methylation affected the expression of these genes. In vitro study (human normal hepatocytes L02) further proved that DON elevated the expression of CYP1A1, CYP2E1 and CYP3A4 (P < 0.05), and inhibited cell growth in a dose-dependent manner, resulting in cell necrosis. More importantly, knockdown of CYP1A1 or CYP2E1 could alleviate DON-induced growth inhibition by promoting IGF-1 expression. Taken together, increased CYP450 enzymes expression was one of the mechanisms of hepatoxicity and growth inhibition induced by DON, suggesting that the decrease of CYP450 enzymes can antagonize the hepatoxicity in animals, which provides some value for animal feed safety.
Collapse
|
20
|
Liu A, Guo M, He L, Martínez MA, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. Nicotinamide N-methyltransferase protects against deoxynivalenol-induced growth inhibition by suppressing pro-inflammatory cytokine expression. Food Chem Toxicol 2022; 163:112969. [PMID: 35351591 DOI: 10.1016/j.fct.2022.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is an inevitable contaminant in cereals for infants. Indeed, children's growth retardation caused by widespread DON pollution has become a global problem that cannot be ignored. Accumulating evidence has shown that DON stunts growth in children through pro-inflammatory cytokines. An exogenous increase of methylnicotinamide, a metabolite produced by nicotinamide N-methyltransferase (NNMT), has anti-inflammatory effects, but it is not clear whether NNMT has the same effect, and the role of NNMT in DON-induced inflammation and growth impairment remains indistinct. The present research reports that NNMT is an inflammatory self-protective factor in DON-exposed L02 cells. DON promoted the production of pro-inflammatory cytokines. Furthermore, DON increased NNMT to reduce pro-inflammatory cytokines, including interleukin (IL)-1β, IL-11 and IL-6, and thus increased IGF-1 and cell viability, alleviating the cell growth inhibition induced by DON. Interestingly, NNMT negatively regulated the expression of IL-1β through Sirtuin type 1 (SIRT1). Collectively, these findings provide new mechanistic insights into the toxicity of DON-induced growth retardation and inflammatory responses in children.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyue Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lixuan He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
21
|
Tao W, Yue X, Ye R, Nabi F, Shang Y, Zhu Z, Ahmed BZ, Liu J. Hepatoprotective Effect of the Penthorum Chinense Pursh Extract against the CCl 4-Induced Acute Liver Injury via NF-κB and p38-MAPK PATHWAYS in Dogs. Animals (Basel) 2022; 12:ani12050569. [PMID: 35268138 PMCID: PMC8909057 DOI: 10.3390/ani12050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI), manifested by acute hepatocellular damages and necrosis, is a life-threatening clinical syndrome and Penthorum Chinense Pursh (PCP) is a well-known folk medicine practiced for liver-related diseases. This study aimed to investigate the ameliorative effects of PCP extract (PCPE) on carbon tetrachloride (CCl4) induced ALI in dogs via mitogen-activated protein kinase (MAPK) and Nuclear factor κB (NF-κB) signaling pathway. Healthy dogs were induced by CCl4 and treated with different dosage regimes of PCPE for 7 days. CCl4 produced acute liver injury and induced both oxidative stress and an inflammatory response in dogs. The PCPE significantly ameliorated and improved vacuolar inflammatory lesions in liver tissues during ALI, enhanced activity of superoxide dismutase, and restored glutathione peroxidase, further significantly reducing the indices of malondialdehyde and nitric oxide in serum. Inflammatory factors (IL-1β, IL-6, and TNF-α) were declined and anti-inflammatory factors (IL-10) were increased by the application of PCPE. PCPE treatment, down-regulated the MEKK4, MKK3, p38MAPK, MSK1, and NF-κB, and upregulated the IkB mRNA levels (p < 0.01) in ALI affected dogs. In conclusion, PCPE repaired acute liver injury by improving antioxidant enzymes and by reducing oxidation products. Furthermore, the PCPE inhibited the MAPK/NF-κB signaling pathway, which resulted in anti-inflammatory and antioxidant effects on ALI-induced dogs. In the future, PCPE could be a useful ethnomedicine in veterinary clinical practices for the treatment of liver injuries or failures.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Xin Yue
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Ruiling Ye
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Yangfei Shang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Zhaorong Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Bhutto Zohaib Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal 90150, Pakistan;
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
22
|
Yang X, Xiao X, Zhang L, Wang B, Li P, Cheng B, Liang C, Ma M, Guo X, Zhang F, Wen Y. An integrative analysis of DNA methylation and transcriptome showed the dysfunction of MAPK pathway was involved in the damage of human chondrocyte induced by T-2 toxin. BMC Mol Cell Biol 2022; 23:4. [PMID: 35038982 PMCID: PMC8762874 DOI: 10.1186/s12860-021-00404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background T-2 toxin is thought to induce the growth plate and articular cartilage damage of Kashin-Beck disease (KBD), an endemic osteochondropathy in China. This study aims to explore the potential underlying mechanism of such toxic effects by integrating DNA methylation and gene expression profiles. Methods In this study, C28/I2 chondrocytes were treated with T-2 toxin (5 ng/mL) for 24 h and 72 h. Global DNA methylation level of chondrocyte was tested by Enzyme-Linked Immuno Sorbent Assay. Genome-wide DNA methylation and expression profiles were detected using Illumina Infinium HumanMethylation850 BeadChip and RNA-seq technique, respectively. Differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified mainly for two stages including 24 h group versus Control group and 72 h group versus 24 h group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by Metascape. DMGs and DEGs were further validated by Sequenom MassARRAY system and quantitative real-time polymerase chain reaction. Results The global DNA methylation levels of chondrocytes exposed to T-2 toxin were significantly increased (P < 0.05). For 24 h group versus Control group (24 VS C), 189 DEGs and 590 DMGs were identified, and 4 of them were overlapping. For 72 h group versus 24 h group (72 VS 24), 1671 DEGs and 637 DMGs were identified, and 45 of them were overlapping. The enrichment analysis results of DMGs and DEGs both showed that MAPK was the one of the mainly involved signaling pathways in the regulation of chondrocytes after T-2 toxin exposure (DEGs: P24VSc = 1.62 × 10− 7; P72VS24 = 1.20 × 10− 7; DMGs: P24VSc = 0.0056; P72VS24 = 3.80 × 10− 5). Conclusions The findings depicted a landscape of genomic methylation and transcriptome changes of chondrocytes after T-2 toxin exposure and suggested that dysfunction of MAPK pathway may play important roles in the chondrocytes damage induced by T-2 toxin, which could provide new clues for understanding the potential biological mechanism of KBD cartilage damage induced by T-2 toxin. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00404-3.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bo Wang
- HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaan'xi, 710061, People's Republic of China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
23
|
Zhang D, Zhang D, Wang C, Zhang R, Li Q, Xiong Y. Mechanism of DNA methylation-mediated downregulation of O6-Methylguanine-DNA methyltransferase in cartilage injury of Kashin-Beck Disease. Rheumatology (Oxford) 2021; 61:3471-3480. [PMID: 34888649 DOI: 10.1093/rheumatology/keab913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Kashin-Beck Disease (KBD) is an endemic osteoarthropathy, in which excessive apoptosis of chondrocytes occurs. O6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair gene, plays an important role in apoptosis but the mechanism is unclear in KBD cartilage injury. This study was to investigate the expression and promoter methylation of MGMT in KBD patients and its role in DNA damage and apoptosis of chondrocytes. METHODS MGMT mRNA and protein level were detected by quantitative real-time PCR and immunohistochemistry. Demethylation of MGMT was carried out using 5-Aza-2'-deoxycytidine, and the methylation level of MGMT promoter was measured by quantitative methylation specific PCR. Next, shRNA was used to knockdown the expression of MGMT. Cell viability, apoptosis and DNA damage were determined by MTT assay, flow cytometry, Hoechst 33342 staining and alkaline comet assay following T-2 toxin and selenium treatment. RESULTS MGMT protein expression and mRNA levels were decreased (p = 0.02, p = 0.007) and promoter methylation was increased (p = 0.008) in KBD patients. Meanwhile, MGMT level was upregulated by 5-Aza-2'-deoxycytidine in chondrocytes (p = 0.0002). DNA damage and apoptosis rates were increased in MGMT-silenced chondrocytes (all p < 0.0001). Furthermore, DNA damage and apoptosis were increseaed in chondrocytes treated with T-2 toxin (all p < 0.0001), but were decreased after selenium treatment (p < 0.0001, p = 0.01). Decreased mRNA level and increased methylation of MGMT were found in T-2 toxin group (p = 0.005, p = 0.002), while selenium reversed it (p = 0.02, p = 0.004). CONCLUSIONS MGMT might play a crucial part in the pathogenesis of KBD cartilage injury, which providing a therapeutic target for KBD.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Huang L, Zhu L, Ou Z, Ma C, Kong L, Huang Y, Chen Y, Zhao H, Wen L, Wu J, Yuan Z, Yi J. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int Immunopharmacol 2021; 101:108210. [PMID: 34628148 DOI: 10.1016/j.intimp.2021.108210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpenoid compound with potential antioxidant and anti-inflammatory effects. In this study, T-2 toxin was injected intraperitoneally in mice to establish kidney damage model and to evaluate the protective effects of BA and further reveal the molecular mechanism. BA pretreatment inhibited the T-2 toxin-stimulated increase in serum Crea, but showed no significant effect on serum Urea. BA pretreatment alleviated excessive glomerular hemorrhage and inflammatory cell infiltration in kidneys caused by T-2 toxin. Moreover, pretreatment with BA mitigated T-2 toxin-induced renal oxidative damage by up-regulating the activities of SOD and CAT, and the content of GSH, while down-regulating the accumulation of ROS and MDA. Meanwhile, BA pretreatment markedly attenuated T-2 toxin-induced renal inflammatory response by decreasing the mRNA expression of IL-1β, TNF-α and IL-10, and increasing IL-6 mRNA expression. Furthermore, mechanism research found that pretreatment with BA could activate Nrf2 signaling pathway. It was suggested that BA ameliorated the oxidative stress and inflammatory response of T-2 toxin-triggered renal damage by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| |
Collapse
|
25
|
Jiang J, Zhu J, Liu Q, Zhang T, Wen J, Xia J, Deng Y. Role of DNA methylation-related chromatin remodeling in aryl hydrocarbon receptor-dependent regulation of T-2 toxin highly inducible Cytochrome P450 1A4 gene. FASEB J 2021; 35:e21469. [PMID: 33788981 DOI: 10.1096/fj.202002570rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by food-contaminating fungi, which lead to global epigenetic changes and cause toxicity to both farm animals and humans. However, whether mycotoxins induce gene-specific epigenetic alterations associated with inducible downstream gene expression is unclear as are the underlying regulatory mechanisms. Here, we found that T-2 toxin and its deacetylated metabolites but not deoxynivalenol (DON) or other representative mycotoxins highly induced the expression of cytochrome P450 1A4 (CYP1A4) in both Leghorn male hepatoma (LMH) cells and chicken primary hepatocytes, and this effect was related to the regulation of both aryl hydrocarbon receptor (AhR) and DNA methylation. We used methylation-sensitive restriction enzyme digestion-qPCR (MSRE-qPCR) and chromatin immunoprecipitation (ChIP) assays and found that the binding of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) to highly methylated CpG island 3-2 at the enhancer of CYP1A4 was accompanied by the recruitment of the repressive histone modification marker H3K27me3, inducing a silent state. In turn, T-2 toxin stimulation enriched the binding of AhR to demethylated CpG island 3-2, which facilitated p300 and H3K9ac recruitment and ultimately generated an activated chromatin structure at the enhancer by increasing the active histone modification markers, including H3K4me3, H3K27ac, and H3K14ac. Interestingly, T-2 toxin-induced AhR activation also facilitated RNA polymerase II binding to CpG island 2, which may form a transcriptionally active chromatin structure at the promoter and ultimately transactivate CYP1A4. Our findings provide novel insights into the epigenetic regulation of T-2 toxin-induced gene expression.
Collapse
Affiliation(s)
- Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jiahui Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Qian Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| | - Jianhong Xia
- Key Laboratory of Regenerative Biology of Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, P.R. China.,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
26
|
You L, Wang X, Wu W, Jaćević V, Nepovimova E, Wu Q, Kuca K. Hypothesis: Long non-coding RNA is a potential target of mycotoxins. Food Chem Toxicol 2021; 155:112397. [PMID: 34246706 DOI: 10.1016/j.fct.2021.112397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
The molecular target of mycotoxins is not fully understood. Extensive data derived from cell and animal experimental studies demonstrate that long non-coding RNAs (lncRNAs) play crucial roles in mycotoxin-induced toxicities. Mycotoxins stimulate the upregulation/downregulation of lncRNA expression, which further promote apoptosis, is related to the mTOR/FoxO signaling pathway, and contributes to tumor cell growth, death, and liver and chondrocyte damage. Moreover, lncRNA can establish interactions with NF-κB and cause immune evasion. These preliminary data suggest that lncRNAs are involved in potential upstream regulatory events and further regulate downstream apoptosis, oxidative stress, and anti-apoptotic events that affect cell death and survival. Therefore, we hypothesize that lncRNAs are potential targets of mycotoxins. Investigation of the expression of the potential target lncRNAs by mycotoxin-mediated stimulation, and exploration of the upstream and downstream relationship between lncRNA and the key proteins involved in mycotoxin toxicity, should be performed. This Hypothesis provides clues for further understanding of the molecular mechanisms of mycotoxins.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic; Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11000, Belgrade, Serbia; Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, 11000, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, 50003, Czech Republic.
| |
Collapse
|
27
|
Zhao X, Wang Y, Li J, Huo B, Huang H, Bai J, Peng Y, Li S, Han D, Ren S, Wang J, Gao Z. A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Anal Chim Acta 2021; 1160:338450. [PMID: 33894966 DOI: 10.1016/j.aca.2021.338450] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
T-2 toxin is a class A trichothecene mycotoxin produced by Fusarium, which exhibits genotoxic, cytotoxic, and immunotoxic effects in animals and humans. In this study, we developed an aptasensor for the sensitive detection of T-2 toxin, which was based on fluorescence resonance energy transfer (FRET), and acted by adjusting the electric potential on the surface of upconversion nanoparticles (UCNPs) and MIL-101(Cr). In addition, it combined the excellent spectral properties of UCNPs with the good adsorption quenching abilities of metal organic frameworks (MOFs). Under the action of π-π stacking interactions, the UCNPs-aptamer was adsorbed onto the surface of MIL-101, leading to fluorescence quenching due to the occurrence of FRET. After the addition of T-2 toxin, owing to its selective binding to the UCNPs-aptamer, the UCNPs-aptamer moved away from MIL-101(Cr), resulting in fluorescence recovery. Moreover, the extent of fluorescence recovery was positively correlated with the concentration of T-2 toxin. The limit of detection (LOD) of this sensor was 0.087 ng mL-1 (S/N = 3), and a good linear correlation was observed between the fluorescence intensity and the T-2 toxin concentration in the range of 0.1-100 ng mL-1. Moreover, the recovery of this method was 97.52-109.53% for corn meal samples (relative standard deviation, RSD = 1.7-2.4%) and 90.81-100.02% for beer samples (RSD = 2.4-2.7%). By adjusting the surface electric potentials, the efficient fluorescence aptasensor combined the advantages of UCNPs and MIL-101(Cr) and allowed the first application of such a system in toxin detection, thereby indicating its potential food sample analysis and biochemical sensing.
Collapse
Affiliation(s)
- Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jingzhi Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Public Health, Lanzhou University, Lanzhou, 730030, PR China
| | - Bingyang Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Chemistry, Sun Yat-Sen University, Guangzhou, 510000, PR China
| | - Hui Huang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| |
Collapse
|
28
|
You L, Zhao Y, Kuca K, Wang X, Oleksak P, Chrienova Z, Nepovimova E, Jaćević V, Wu Q, Wu W. Hypoxia, oxidative stress, and immune evasion: a trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON). Arch Toxicol 2021; 95:1899-1915. [PMID: 33765170 DOI: 10.1007/s00204-021-03030-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023]
Abstract
T-2 toxin and deoxynivalenol (DON) are type A and B trichothecenes, respectively. They widely occur as pollutants in food and crops and cause a series of toxicities, including immunotoxicity, hepatotoxicity, and neurotoxicity. Oxidative stress is the primary mechanistic basis of these toxic effects. Increasing amounts of evidence have shown that mitochondria are significant targets of apoptosis caused by T-2 toxin- and DON-induced oxidative stress via regulation of Bax/B-cell lymphoma-2 and caspase-3/caspase-9 signaling. DNA methylation and autophagy are involved in oxidative stress related to apoptosis, and hypoxia and immune evasion are related to oxidative stress in this context. Hypoxia induces oxidative stress by stimulating mitochondrial reactive oxygen species production and regulates the expression of cytokines, such as interleukin-1β and tumor necrosis factor-α. Programmed cell death-ligand 1 is upregulated by these cytokines and by hypoxia-inducible factor-1, which allows it to bind to programmed cell death-1 to enable escape of immune cell surveillance and achievement of immune evasion. This review concentrates on novel findings regarding the oxidative stress mechanisms of the trichothecenes T-2 toxin and DON. Importantly, we discuss the new evidence regarding the connection of hypoxia and immune evasion with oxidative stress in this context. Finally, the trinity of hypoxia, oxidative stress and immune evasion is highlighted. This work will be conducive to an improved understanding of the oxidative stress caused by trichothecene mycotoxins.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11000, Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, 11000, Belgrade, Serbia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
29
|
Betulinic Acid Alleviates Spleen Oxidative Damage Induced by Acute Intraperitoneal Exposure to T-2 Toxin by Activating Nrf2 and Inhibiting MAPK Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10020158. [PMID: 33499152 PMCID: PMC7912660 DOI: 10.3390/antiox10020158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, which is mainly produced by specific strains of Fusarium in nature, can induce immunotoxicity and oxidative stress, resulting in immune organ dysfunction and apoptosis. Betulinic acid (BA), a pentacyclic triterpenoids from nature plants, has been demonstrated to possess immunomodulating and antioxidative bioactivities. The purpose of the study was to explore the effect of BA on T-2 toxin-challenged spleen oxidative damage and further elucidate the underlying mechanism. We found that BA not only ameliorated the contents of serum total cholesterol (TC) and triglyceride (TG) but also restored the number of lymphocytes in T-2 toxin-induced mice. BA dose-dependently reduced the accumulation of reactive oxygen species (ROS), enhanced superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content, as well as increased the total antioxidant capacity (T-AOC) in the spleen of T-2-toxin-exposed mice. Moreover, BA reduced inflammatory cell infiltration in the spleen, improved the morphology of mitochondria and enriched the number of organelles in splenocytes, and dramatically attenuated T-2 toxin-triggered splenocyte apoptosis. Furthermore, administration of BA alleviated the protein phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases (ERK); decreased the protein expression of kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein1 (Keap1); and increased the protein expression of nuclear factor erythroid 2 [NF-E2]-related factor (Nrf2) and heme oxygenase-1 (HO-1) in the spleen. These findings demonstrate that BA defends against spleen oxidative damage associated with T-2 toxin injection by decreasing ROS accumulation and activating the Nrf2 signaling pathway, as well as inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
|
30
|
Liu T, Gao Q, Yang B, Yin C, Chang J, Qian H, Xing G, Wang S, Li F, Zhang Y, Chen D, Cai J, Shi H, Aschner M, Appiah-Kubi K, He D, Lu R. Differential susceptibility of PC12 and BRL cells and the regulatory role of HIF-1α signaling pathway in response to acute methylmercury exposure under normoxia. Toxicol Lett 2020; 331:82-91. [PMID: 32461003 PMCID: PMC7366344 DOI: 10.1016/j.toxlet.2020.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a critical nuclear transcription factor for adaptation to hypoxia; its regulatable subunit, HIF-1α, is a cytoprotective regulatory factor. We examined the effects of methylmercury (MeHg) in rat adrenal pheochromocytoma (PC12) cells and the rat hepatocyte cell line BRL. MeHg treatment led to time- and concentration-dependent toxicity in both lines with statistically significant cytotoxic effects at 5 μM and 10 μM in PC12 and BRL, respectively, at 0.5 h. HIF-1α protein levels were significantly decreased at 2.5 (PC12) and 5 (BRL) μM MeHg. Furthermore, MeHg reduced the protein levels of HIF-1α and its target genes (glucose transporter-1, vascular endothelial growth factor-A and erythropoietin). Overexpression of HIF-1α significantly attenuated MeHg-induced toxicity in both cell types. Notably, cobalt chloride, a pharmacological inducer of HIF-1α, significantly attenuated MeHg-induced toxicity in BRL but not PC12. In both cell lines, an inhibitor of prolyl hydroxylase, 3, 4-dihydroxybenzoic acid, and the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal(MG132), antagonized MeHg toxicity, while 2-methoxyestradiol, a HIF-1α inhibitor, significantly increased it. These data establish that: (a) neuron-like PC12 cells are more sensitive to MeHg than non-neuronal BRL cells; (b) HIF-1α plays a similar role in MeHg-induced toxicity in both cell lines; and (c) upregulation of HIF-1α offers general cytoprotection against MeHg toxicity in PC12 and BRL cell lines.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Gao
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Chang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiyang Cai
- Department of Physiology, College of Medicine, University of Oklahoma Health Science Center, Lindsay, Oklahoma City, OK 73104, USA
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kwaku Appiah-Kubi
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, UK-0215-5321, Ghana
| | - Dawei He
- Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215130, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215130, China.
| |
Collapse
|
31
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
32
|
Zhang C, Chi C, Liu J, Ye M, Zheng X, Zhang D, Liu W. Protective effects of dietary arginine against oxidative damage and hepatopancreas immune responses induced by T-2 toxin in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2020; 104:447-456. [PMID: 32553565 DOI: 10.1016/j.fsi.2020.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
T-2 toxin is a secondary metabolite produced by Fusarium spp. that is a major cereal and animal feed contaminant. T-2 toxin has numerous adverse effects on animals, including hepatotoxicity. Arginine (Arg) is closely associated with the regulation of immune responses and antioxidant activity in tissues. The objective of the present study was to evaluate the protective effects of dietary Arg against oxidative damage and immune responses of the hepatopancreas induced by T-2 toxin in Chinese mitten crab. According to the results, 3.17% Arg in the diet decreased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity in the haemolymph significantly, when compared with the levels of activity in the T-2 toxin group. Arg supplementation also increased superoxide dismutase and glutathione peroxidase activity, while decreasing malondialdehyde concentrations in the hepatopancreas, when compared with the levels in the T-2 toxin group. In addition, 3.17% Arg in the diet increased acid phosphatase and alkaline phosphatase activity in the hepatopancreas, as well as albumin concentrations in the haemolymph, when compared with the T-2 toxin group. Dietary Arg also regulated the expression of antioxidant enzyme-related genes (mitochondrial manganese superoxide dismutase, cytosolic manganese superoxide dismutase, and catalase) and immune related genes (prophenoloxidase, NF-κB-like transcription factor Relish, and lipopolysaccharide-induced TNF-α factor) to alleviate the damage associated with the T-2 toxin. Furthermore, Arg ameliorated damage to the hepatopancreas microstructure in the crabs. The results of the present study indicate that dietary Arg could enhance the antioxidant and immune capacity of Chinese mitten crab against oxidative damage and immune injury to the hepatopancreas induced by T-2 toxin.
Collapse
Affiliation(s)
- Caiyan Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiadai Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingwen Ye
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
34
|
Li Y, Chen A, Mao X, Sun M, Yang S, Li J, You Y, Wu Y, Jiang G. Multiple antibodied based immunoaffinity columns preparation for the simultaneous analysis of deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass spectrometry. Food Chem 2020; 337:127802. [PMID: 32795851 DOI: 10.1016/j.foodchem.2020.127802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/15/2020] [Accepted: 08/06/2020] [Indexed: 01/06/2023]
Abstract
Deoxynivalenol (DON) and T-2 toxin are major trichothecenes contaminated in cereals, which might bring harmful effects to humans. In this research, mixed anti-DON and anti-T-2 mAb were used for multiple immunoaffinity columns (mIACs) preparation. Under the optimal conditions, column capacities were tested at 1280 ng/mL for DON and 1160 ng/mL for T-2 toxin. Regeneration investigation showed mIACs capacities were over 510 ng/mL for DON and 440 ng/mL for T-2 toxin in 10 recycle usages. Good performances were obtained when applying mIACs purification coupled UHPLC-MS/MS for spiked samples with limit of detection at 3-13 μg/kg and mean recoveries at 79.0-97.6%. Applying to estimate the exposure of DON and T-2 toxin in commercial samples, maize samples were 100% DON positive and rice samples were 40% DON positive while T-2 toxin was negative in all tested samples. The proposed method is reliable and suitable for monitoring DON and T-2 toxin in cereal samples.
Collapse
Affiliation(s)
- Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China.
| | - Anqi Chen
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingxue Sun
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A5B9, Canada
| | - Yanli You
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
35
|
Guo P, Qiao F, Huang D, Wu Q, Chen T, Badawy S, Cheng G, Hao H, Xie S, Wang X. MiR-155-5p plays as a "janus" in the expression of inflammatory cytokines induced by T-2 toxin. Food Chem Toxicol 2020; 140:111258. [PMID: 32240701 DOI: 10.1016/j.fct.2020.111258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Although many studies have shown that inflammatory response plays a crucial role in the various toxic effects of T-2 toxin, there are relatively few reports on the mechanism of this phenomenon. Meanwhile, accumulating evidence has shown that miR-155-5p is activated in the inflammatory response. As molecular pathways and mechanisms involved in T-2 toxin-induced inflammatory response are poorly elucidated, we assessed whether miR-155-5p is involved in the inflammation effects mediated by T-2 toxin. Treatment of RAW264.7 cells with T-2 toxin (14 nM and 12 h) resulted in inflammatory response and associated with alteration of the gene expression signature of miR-155-5p. Knockdown or overexpression of miR-155-5p both indicated that miR-155-5p positively regulated the expression of the inflammation factors. Moreover, bioinformatics prediction and luciferase assay indicated that atg3 and rheb are targets of miR-155-5p. However, atg3 and SOCS1 play positive roles in the inflammatory response regulated by miR-155-5p, while rheb plays a negative role. In addition, the in vivo study showed that single administration of T-2 toxin in mice enhances spleen immune response, which was accompanied by an overexpression of miR-155-5p. These findings indicate that miR-155-5p might have an important role associated with the inflammatory response induced by T-2 toxin. In conclusion, a dual character of miR-155-5p in inflammation response was revealed, which might exist in other reactions in which miR-155-5p is involved.
Collapse
Affiliation(s)
- Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fang Qiao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tianlun Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sara Badawy
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guyue Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|