1
|
Casas-Rodríguez A, López-Vázquez CM, Guzmán-Guillén R, Ayala N, Cameán AM, Jos A, Chicano-Gálvez E. A MALDI-MSI-based approach to characterize the spatial distribution of cylindrospermopsin and lipid alterations in rat intestinal tissue. Chem Biol Interact 2025; 412:111479. [PMID: 40088997 DOI: 10.1016/j.cbi.2025.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Global warming and eutrophication of water bodies are driving the increase in cyanobacterial blooms, which produce toxins such as cylindrospermopsin (CYN). This compound has multiple toxic effects, and following CYN exposure, its distribution in the body varies, particularly in organs such as the liver and kidneys, suggesting its potential for bioaccumulation in key tissues. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) enables visualization of the spatial distribution of a wide range of molecules. In this study, using MALDI-MSI, a new method was developed and optimized for the detection of CYN, and its quantitative spatiotemporal distribution was analyzed for the first time in intestinal samples from rats orally exposed to this toxin (500 μg/kg body weight) and sacrificed 0, 2, 4, 6 and 24 h after exposure. Furthermore, the impact of CYN on the intestinal lipid profile was evaluated. The method was validated in terms of linearity, sensitivity, and precision, measuring CYN in mimetic tissue sections at different concentrations (1-100 ppm), allowing its successful application to visualize CYN distribution in rat intestines. The results revealed alterations in different lipid families involved in the inflammatory response, increased oxidative stress, and progressive damage to the integrity of the cell membrane.
Collapse
Affiliation(s)
| | - Cristina María López-Vázquez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), 14004, Córdoba, Spain
| | | | - Nahúm Ayala
- Department of Comparative Anatomical and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Eduardo Chicano-Gálvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), 14004, Córdoba, Spain
| |
Collapse
|
2
|
de Sabóia-Morais SMT, de Lima Faria JM, da Silva Rabelo JC, Hanusch AL, Mesquita LA, de Andrade Silva R, de Oliveira JM, de Jesus LWO. Cylindrospermopsin exposure promotes redox unbalance and tissue damage in the liver of Poecilia reticulata, a neotropical fish species. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:120-132. [PMID: 37969104 DOI: 10.1080/15287394.2023.2282530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
There is a growing concern regarding the adverse risks exposure to cylindrospermopsin (CYN) might exert on animals and humans. However, data regarding the toxicity of this cyanotoxin to neotropical fish species are scarce. Using the fish species Poecilia reticulata, the influence of CYN concentrations equal to and above the tolerable for drinking water may produce on liver was determined by assessing biomarkers of antioxidant defense mechanisms and correlated to qualitative and semiquantitative histopathological observations. Adult females were exposed to 0.0 (Control); 0.5, 1 and 1.5 μg/L pure CYN for 24 or 96 hr, in triplicate. Subsequently the livers were extracted for biochemical assays and histopathological evaluation. Catalase (CAT) activity was significantly increased only by 1.5 μg/L CYN-treatment, at both exposure times. Glutathione -S-transferase (GST) activity presented a biphasic response for both exposure times. It was markedly decreased after exposure by 0.5 μg/L CYN treatment but significantly elevated by 1.5 μg/L CYN treatment. All CYN treatments produced histopathological alterations, as evidenced by hepatocyte cords degeneration, steatosis, inflammatory infiltration, melanomacrophage centers, vessel congestion, and areas with necrosis. Further, an IORG >35 was achieved for all treatments, indicative of the presence of severe histological alterations in P. reticulata hepatic parenchyma and stroma. Taken together, data demonstrated evidence that CYN-induced hepatotoxicity in P. reticulata appears to be associated with an imbalance of antioxidant defense mechanisms accompanied by histopathological liver alterations. It is worthy to note that exposure to low environmentally-relevant CYN concentrations might constitute a significant risk to health of aquatic organisms.
Collapse
Affiliation(s)
| | - João Marcos de Lima Faria
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Jéssica Custódio da Silva Rabelo
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | | | - Lorena Alves Mesquita
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Raquel de Andrade Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Jerusa Maria de Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
3
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
4
|
Casas-Rodríguez A, Moyano R, Molina-Hernández V, Cameán AM, Jos A. Potential oestrogenic effects (following the OECD test guideline 440) and thyroid dysfunction induced by pure cyanotoxins (microcystin-LR, cylindrospermopsin) in rats. ENVIRONMENTAL RESEARCH 2023; 226:115671. [PMID: 36907345 DOI: 10.1016/j.envres.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Potential endocrine-disrupting properties of cyanotoxins, such as microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are of concern due to their increasing occurrence, the scarcity of reports on the topic (particularly for CYN) and the impact of human's health at different levels. Thus, this work performed for the first time the uterotrophic bioassay in rats, following the Organization for Economic Cooperation and Development (OECD) Test Guideline 440, to explore the oestrogenic properties of CYN and MC-LR (75, 150, 300 μg/kg b.w./day) in ovariectomized (OVX) rats. Results revealed neither changes in the wet and blotted uterus weights nor in the morphometric study of uteri. Moreover, among the steroid hormones analysed in serum, the most remarkable effect was the dose-dependent increase in progesterone (P) levels in rats exposed to MC-LR. Additionally, a histopathology study of thyroids and serum levels of thyroids hormones were determined. Tissue affectation (follicular hypertrophy, exfoliated epithelium, hyperplasia) was observed, as well as increased T3 and T4 levels in rats exposed to both toxins. Taken together, these results point out that CYN and MC-LR are not oestrogenic compounds at the conditions tested in the uterotrophic assay in OVX rats, but, however, thyroid disruption effects cannot be discarded.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| | - Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Cordoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Cordoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| |
Collapse
|
5
|
He Z, Chen Y, Huo D, Gao J, Xu Y, Yang R, Yang Y, Yu G. Combined methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121250. [PMID: 36813104 DOI: 10.1016/j.envpol.2023.121250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Global water bodies are now at risk from inevitable cyanobacterial blooms and their production of multiple cyanotoxins, in particular cylindrospermopsin (CYN). However, research on the CYN toxicity and its molecular mechanisms is still limited, whilst the responses of aquatic species against CYN are uncovered. By integrating behavioral observations, chemical detections and transcriptome analysis, this study demonstrated that CYN exerted multi-organ toxicity to model species, Daphnia magna. The present study confirmed that CYN could cause protein inhibition by undermining total protein contents, and altered the gene expression related to proteolysis. Meantime, CYN induced oxidative stress by increasing reactive oxygen species (ROS) level, decreasing the glutathione (GSH) concentration, and interfered with protoheme formation process molecularly. Neurotoxicity led by CYN was solidly determined by abnormal swimming patterns, reduced acetylcholinesterase (AChE), and downward expression of muscarinic acetylcholine receptor (CHRM). Importantly, for the first time, this research determined CYN directly interfered with energy metabolism in cladocerans. CYN distinctively reduced filtration and ingestion rate by targeting on heart and thoracic limbs, which declined the energy intake, and could be further displayed by the reduction of motional strength and the trypsin concentration. These phenotypic alterations were supported by transcriptomic profile, including the down-regulation of oxidative phosphorylation and ATP synthesis. Moreover, CYN was speculated to trigger the self-defense responses of D. magna, known as "abandon-ship" by moderating lipid metabolism and distribution. This study, overall, comprehensively demonstrated the CYN toxicity and the responses of D. magna against it, which is of great significance to the advancements of CYN toxicity knowledge.
Collapse
Affiliation(s)
- Zhongshi He
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yewei Xu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rui Yang
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Hinojosa MG, Gutiérrez-Praena D, López S, Prieto AI, Moreno FJ, Jos Á, Cameán AM. Toxic effects of the cylindrospermopsin and chlorpyrifos combination on the differentiated SH-SY5Y human neuroblastoma cell line. Toxicon 2023; 227:107091. [PMID: 36965714 DOI: 10.1016/j.toxicon.2023.107091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Due to climate change and anthropogenic activities, the levels of pollution of aquatic and terrestrial environments have increased in the last decades. In this sense, the rise of cyanobacterial blooms, which release secondary metabolites with toxic properties, and the global use of pesticides for agricultural purposes have a negative impact on ecosystems. Thus, it would be interesting to study the concomitance of both types of toxicants in the same sample, since it is possible that they appear together. The aim of the present work was to state the effects of the interaction between the cyanotoxin cylindrospermopsin and the pesticide chlorpyrifos in differentiated SH-SY5Y neuronal cells to assess how they could affect the nervous system. To this end, cytotoxicity, morphological, and acetylcholinesterase activity studies were performed during 24 and 48 h. The results revealed a concentration-dependent decrease in viability and interaction between both toxicants, together with clear signs of apoptosis and necrosis induction. In this sense, different stages on the differentiation process would lead to differences in the toxicity exerted by the compounds both isolated as in combination, which it is not observed in non-differentiated cells. Additionally, the acetylcholinesterase activity appeared not to be affected, which is a clear difference compared to non-differentiated cells. These results show the importance of studying not only the toxicants themselves, but also in combination, to assess their possible effects in a more realistic scenario.
Collapse
Affiliation(s)
- María G Hinojosa
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | - Daniel Gutiérrez-Praena
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain.
| | - Sergio López
- Área de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes S/n, 41012, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, 41012, Sevilla, Spain
| | - Ana I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | - Francisco J Moreno
- Área de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes S/n, 41012, Sevilla, Spain
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| |
Collapse
|
7
|
Casas Rodríguez A, Diez-Quijada L, Prieto AI, Jos A, Cameán AM. Effect of cold food storage techniques on the contents of Microcystins and Cylindrospermopsin in leaves of spinach (Spinacia oleracea) and lettuce (Lactuca sativa). Food Chem Toxicol 2022; 170:113507. [PMID: 36334728 DOI: 10.1016/j.fct.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
The presence of Cylindrospermopsin (CYN) and Microcystins (MCs) in vegetables is considered as a significant worldwide toxicological risk. Thus, this work aims to assess for the first time the impact of refrigeration (4 °C) and freezing (-20 °C) on the levels of CYN, MCs and their mixtures (CYN + MCs) in lettuce and spinach. Samples were spiked with 750 μg cyanotoxins/g dry weight (d.w.). Several storage conditions were studied: refrigeration after 24, 48 h and 7 days, and freezing for 7 days, 1 and 3 months. Cyanotoxin concentrations were determined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). For CYN, refrigeration at 48 h and 7 days was effective to decrease its concentrations up to 26% and 32%, respectively, in spinach. For MCs, refrigeration was only effective in lettuce compared to spinach, showing an important decrease of 80.3% MC-LR and 85.1% MC-YR. In spinach, CYN was stable after 3 months freezing, whereas MC contents were still reduced up to 44%. Overall, cyanotoxins were less stable in the mixture compared to individual toxins for both processes, and the effect of these storage techniques were toxin and food-specific. Further studies of cyanotoxins in foods are required for evaluating the risk for humans.
Collapse
Affiliation(s)
- Antonio Casas Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| |
Collapse
|
8
|
Diez-Quijada L, Casas-Rodriguez A, Guzmán-Guillén R, Molina-Hernández V, Albaladejo RG, Cameán AM, Jos A. Immunomodulatory Effects of Pure Cylindrospermopsin in Rats Orally Exposed for 28 Days. Toxins (Basel) 2022; 14:144. [PMID: 35202170 PMCID: PMC8877299 DOI: 10.3390/toxins14020144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
Cylindrospermopsin (CYN) is a ubiquitous cyanotoxin showing increasing incidence worldwide. CYN has been classified as a cytotoxin and, among its toxic effects, its immunotoxicity is scarcely studied. This work investigates for the first time the influence of oral CYN exposure (18.75; 37.5 and 75 µg/kg b.w./day, for 28 days) on the mRNA expression of selected interleukin (IL) genes (IL-1β, IL-2, IL-6, Tumor Necrosis Factor alpha (TNF-α), Interferon gamma (IFN-γ)) in the thymus and the spleen of male and female rats, by quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, their serum levels were also measured by a multiplex-bead-based immunoassay, and a histopathological study was performed. CYN produced immunomodulation mainly in the thymus of rats exposed to 75 μg CYN/kg b.w./day in both sexes. However, in the spleen only IL-1β and IL-2 (males), and TNF-α and IFN-γ (females) expression was modified after CYN exposure. Only female rats exposed to 18.75 μg CYN/kg b.w./day showed a significant decrease in TNF-α serum levels. There were no significant differences in the weight or histopathology in the organs studied. Further research is needed to obtain a deeper view of the molecular mechanisms involved in CYN immunotoxicity and its consequences on long-term exposures.
Collapse
Affiliation(s)
- Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Antonio Casas-Rodriguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Verónica Molina-Hernández
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain;
| | - Rafael G. Albaladejo
- Department of Plant Biology and Ecology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| |
Collapse
|
9
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
10
|
Han G, Tan Z, Jing H, Ning J, Li Z, Gao S, Li G. Comet Assay Evaluation of Lanthanum Nitrate DNA Damage in C57-ras Transgenic Mice. Biol Trace Elem Res 2021; 199:3728-3736. [PMID: 33403576 DOI: 10.1007/s12011-020-02500-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Due to the wide application of rare-earth elements (REEs) in the last decades, lanthanum has increasingly entered the environment and has gradually accumulated in the human body through the food chain. Lanthanum is worth paying attention in terms of food safety. Although the genotoxicity of lanthanum has been studied in vitro, data on its DNA damage in vivo rodent are limited, moreover, which have also presented some controversy. This study aimed to conduct an in vivo rodent alkaline comet assay, and as a companion test to the lanthanum nitrate carcinogenicity test. We conducted an oral gavage experiment for 180 days (26 weeks) to test for the persistence of DNA damage of long-term low-dose accumulation of lanthanum nitrate (12.5, 25, and 50 mg/kg body weight), in F1 hybrid C57-ras transgenic mice (CB6F1) by using alkaline comet assay in the blood and liver. The comet assay revealed that all the tested concentrations of lanthanum nitrate did not induce DNA damage in any of the tissues investigated, whereas DNA damage was induced in the positive control group. These results could indicate that lanthanum nitrate can accumulate in tissues and organs of the mice after exposure, and does not possess DNA damage in C57-ras transgenic mice after repeated treatments at oral doses up to 50 mg/kg·BW for 26 weeks; also, it did not cause pathological changes in the liver of the mice.
Collapse
Affiliation(s)
- Gaochao Han
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Zhuangsheng Tan
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
| | - Haiming Jing
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Zinan Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Shan Gao
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China
| | - Guojun Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceablity Technologies for Food Poisoning, No. 16, Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.
- School of Public Health, Capital Medical University, No. 10, West Toutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
11
|
Rabelo JCS, Hanusch AL, de Jesus LWO, Mesquita LA, Franco FC, Silva RA, Sabóia-Morais SMT. DNA damage induced by cylindrospermopsin on different tissues of the biomonitor fish Poecilia reticulata. ENVIRONMENTAL TOXICOLOGY 2021; 36:1125-1134. [PMID: 33576126 DOI: 10.1002/tox.23111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN) is the second biggest cause of poisoning worldwide, both in humans and animals. Although CYN primarily affects the aquatic environments and can be absorbed in fishes by multiple routes, data reporting its toxicity and mechanism of action are still scarce in this group. Using P. reticulata as model species, it was evaluated whether CYN promotes mutagenic and genotoxic effects in different fish target tissues. Adult females were exposed in a static way to 0 (control), 0.5, 1.0, and 1.5 μg L-1 of pure CYN for 24 and 96 hours. For the first time, DNA damage was detected in fish brain after CYN exposition. In brain cells, a concentration-response DNA damage was observed for both exposure times, suggesting a direct or indirect action of CYN in neurotoxicity. For the liver cells, 96 hours caused an increase in DNA damage, as well the highest percentage of DNA in the tail was reached when used 1.5 μg L-1 of CYN. In peripheral blood cells, an increase in DNA damage was observed for all tested concentrations after 96 hours. In erythrocytes, micronuclei frequency was higher at 1.5 μg L-1 treatment while the erythrocyte nuclear abnormalities (ENA) frequency was significantly higher even at the lowest CYN concentration. Such data demonstrated that acute exposition to CYN promotes genotoxicity in the brain, liver, and blood cells of P. reticulata, as well mutagenicity in erythrocytes. It rises an alert regarding to the toxic effects of CYN for aquatic organisms as well as for human health.
Collapse
Affiliation(s)
- Jéssica C S Rabelo
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Alex L Hanusch
- Laboratory of Radiobiology and Mutagenesis, Department of Genetic, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Lázaro Wender O de Jesus
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Brazil
| | - Lorena A Mesquita
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda C Franco
- Laboratory of Mutagenicity, Department of Genetic, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Raquel A Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Simone M T Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
12
|
Yilmaz S, Ülger TG, Göktaş B, Öztürk Ş, Karataş DÖ, Beyzi E. Cyanotoxin genotoxicity: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1922922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Serkan Yilmaz
- Department of Midwifery, Faculty of Nursing, University of Ankara, Institute for Forensic Sciences, Ankara, Turkey
| | - Taha Gökmen Ülger
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Bayram Göktaş
- Department of Health Management, Faculty of Health Sciences, University of Ankara, Ankara, Turkey
| | - Şahlan Öztürk
- Department of Environmental Engineering, Faculty of Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Duygu Öztaş Karataş
- Department of Midwifery, Faculty of Nursing, University of Ankara, Ankara, Turkey
| | - Ebru Beyzi
- Vocational School of Health Services, University of Gazi, Ankara, Turkey
| |
Collapse
|
13
|
Evaluation of toxic effects induced by repeated exposure to Cylindrospermopsin in rats using a 28-day feeding study. Food Chem Toxicol 2021; 151:112108. [PMID: 33741479 DOI: 10.1016/j.fct.2021.112108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022]
Abstract
Cylindrospermopsin (CYN) is a toxin with a world-wide increasing occurrence. It can induce toxic effects both in humans and the environment, and toxicity studies are needed to complete its toxicological profile. In this sense, in vivo oral toxicity studies with pure CYN are scarce. The aim of this work was to perform a repeated dose 28-day oral study in rats following the OECD guideline 407 to provide information on health hazard likely to arise from this kind of exposure. Male and female Sprague-Dawley rats were dosed with 18.75, 37.5 and 75 μg CYN/kg b.w./day. After the study period, no clinical signs or mortality and no significant differences in final body weight, body weight gain and total feed intake in both sexes were observed. Only in females some biochemical parameters (triglycerides (TRIG) levels and aspartate aminotransferase (AST) activity) as well as changes in the weight of organs (absolute liver weight values, relative kidney/body weight ratios or relative liver weight/brain weight ratios) were altered, but without toxicological relevance. Histopathological analysis revealed a very mild affectation of liver and kidney in rats. These results suggest the need to perform longer oral toxicity studies to define the potential consequences of long term CYN exposure.
Collapse
|
14
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
15
|
Díez-Quijada Jiménez L, Guzmán-Guillén R, Cătunescu GM, Campos A, Vasconcelos V, Jos Á, Cameán AM. A new method for the simultaneous determination of cyanotoxins (Microcystins and Cylindrospermopsin) in mussels using SPE-UPLC-MS/MS. ENVIRONMENTAL RESEARCH 2020; 185:109284. [PMID: 32244106 DOI: 10.1016/j.envres.2020.109284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to optimize the extraction conditions of Microcystin-LR (MC-LR), Microcystin-RR (MC-RR), Microcystin-YR (MC-YR) and Cylindrospermopsin (CYN) simultaneously from mussels by using response surface methodology (RSM) and to validate the method by a dual solid phase extraction (SPE) system combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The optimal parameters were: 90% MeOH (% v/v) for the extraction, a solvent/sample ratio of 75 and 15% MeOH in the extract before loading onto SPE. Mussels were spiked at 10; 37.5 and 75 ng g-1 fresh weight (f.w) of the 4 toxins, showing linear ranges of 0.5-75 ng g-1 f.w; low values for the limits of detection (0.01-0.39 ng g-1 f.w.) and quantification (0.23-0.40 ng g-1 f.w.); acceptable recoveries (70.37-114.03%) and relative standard deviation (%RSDIP) values (2.61-13.73%). The method was successfully applied to edible mussels exposed to cyanobacterial extracts under laboratory conditions, and it could allow the monitoring of these cyanotoxins in environmental mussel samples.
Collapse
Affiliation(s)
| | | | - Giorgiana M Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania.
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal; Department of Biology, Faculty of Science, University of Porto, Portugal.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain.
| |
Collapse
|
16
|
Díez-Quijada L, Medrano-Padial C, Llana-Ruiz-Cabello M, Cătunescu GM, Moyano R, Risalde MA, Cameán AM, Jos Á. Cylindrospermopsin-Microcystin-LR Combinations May Induce Genotoxic and Histopathological Damage in Rats. Toxins (Basel) 2020; 12:E348. [PMID: 32466519 PMCID: PMC7354441 DOI: 10.3390/toxins12060348] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022] Open
Abstract
Cylindrospermopsin (CYN) and microcystins (MC) are cyanotoxins that can occur simultaneously in contaminated water and food. CYN/MC-LR mixtures previously investigated in vitro showed an induction of micronucleus (MN) formation only in the presence of the metabolic fraction S9. When this is the case, the European Food Safety Authority recommends a follow up to in vivo testing. Thus, rats were orally exposed to 7.5 + 75, 23.7 + 237, and 75 + 750 μg CYN/MC-LR/kg body weight (b.w.). The MN test in bone marrow was performed, and the standard and modified comet assays were carried out to measure DNA strand breaks or oxidative DNA damage in stomach, liver, and blood cells. The results revealed an increase in MN formation in bone marrow, at all the assayed doses. However, no DNA strand breaks nor oxidative DNA damage were induced, as shown in the comet assays. The histopathological study indicated alterations only in the highest dose group. Liver was the target organ showing fatty degeneration and necrotic hepatocytes in centrilobular areas, as well as a light mononuclear inflammatory periportal infiltrate. Additionally, the stomach had flaking epithelium and mild necrosis of epithelial cells. Therefore, the combined exposure to cyanotoxins may induce genotoxic and histopathological damage in vivo.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Giorgiana M. Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain;
| | - Maria A. Risalde
- Animal Pathology Department. Faculty of Veterinary Medicine, University of Córdoba, Campus Universitario de Rabanales s/n, 14014 Cordoba, Spain;
- Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía de Córdoba-Universidad de Córdoba, Avenida Menendez Pidal s/n, 14006 Cordoba, Spain
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| |
Collapse
|
17
|
Genotoxic potential of a novel PDE-4B inhibitor Apremilast by chromosomal aberration and micronucleus assay in mice. Saudi Pharm J 2020; 28:615-620. [PMID: 32435143 PMCID: PMC7229325 DOI: 10.1016/j.jsps.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/29/2020] [Indexed: 11/20/2022] Open
Abstract
Objective Researchers have confirmed that chronic administration of drugs at high doses causes genotoxicity which serve as first step in development of cancers. Apremilast, a phosphodiesterase-4 inhibitor is Food and Drug Administration (FDA) approved drug for Psoriatic Arthritis. The present study designed to conduct genotoxicity testing using the genotoxic study which give simple, sensitive, economical and fast tools for the assessment of damage of genetic material. Methods To conduct genotoxicity study of Apremilast, 60 Swiss albino male mice divided into 6 groups (n = 10). Group1 served as a normal control group without any treatment, Group 2 treated as a disease control and administered with cyclophosphamide 40 mg/kg, IP. Group 3, 4, 5 and 6 treated as test groups and received 10, 20, 40 and 80 mg/kg/day Apremilast respectively. The total duration of study was 13 weeks. At termination day animals were sacrificed and chromosomal aberration assay (BMCAA) and micronucleus assay (BMMNA) were performed to know the genotoxicity potential of Apremilast. Results The results indicates significant rise in chromosomal aberrations (CA) frequency in bone marrow cells and decrease in the MI of the disease control animals as well as Apremilast treated groups. Further significant (p < 0.001; p < 0.0001) increase in score of micronucleated polychromatic erythrocytes (MNPCEs) and percentage of micronucleated PCEs per 1000 PCEs and decrease in the ratio of polychromatic/normochromatic erythrocytes (PCE/NCE) was observed in micronucleus assay. Genotoxic effect increases with the increase of Apremilast dose. Conclusion: Finding of present indicates that Apremilast shows genotoxic potential on high administration although further detailed toxicity studies required for confirmations.
Collapse
|
18
|
Díez-Quijada Jiménez L, Guzmán-Guillén R, Cascajosa Lira A, Jos Á, Cameán AM. In vitro assessment of cyanotoxins bioaccessibility in raw and cooked mussels. Food Chem Toxicol 2020; 140:111391. [PMID: 32353443 DOI: 10.1016/j.fct.2020.111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
The oral route by ingestion of water and food contaminated with cyanotoxins is the main route of exposure to these toxins. This study addresses for the first time the bioaccessibility of some of the most common Microcystins (MC-LR, MC-RR and MC-YR) and Cylindrospermopsin (CYN) simultaneously in raw and steamed mussels spiked at 250 ng/g fresh weight of each cyanotoxin, after an in vitro digestion, including the salivary (incubation with artificial saliva, 30s), gastric (with pepsin, 2h, pH 2), duodenal (with pancreatin and bile salts, 2h, pH 6.5) and colonic phases (with lactic-acid bacteria, 48h, pH 7.2). The results obtained suggest that the potential absorption of these cyanotoxins by consumption of contaminated mussels is lower than expected. After the total effect of cooking and digestion, the mean bioaccessibility levels recorded were 24.65% (CYN), 31.51% (MC-RR), 17.51% (MC-YR) and 13.20% (MC-LR). Moreover, toxins were transferred to the steaming waters at 3.77 ± 0.24 μg L-1 CYN, 2.29 ± 0.13 μg L-1 MC-LR, 6.60 ± 0.25 μg L-1 MC-RR and 3.83 ± 0.22 μg L-1 MC-YR. These bioaccessibility results should be considered for a more accurate risk assessment related to these cyanotoxins in mussels, including the fact that the steaming waters could also represent a risk after human consumption.
Collapse
Affiliation(s)
| | | | | | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
19
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
20
|
Plastics in Cyanobacterial Blooms-Genotoxic Effects of Binary Mixtures of Cylindrospermopsin and Bisphenols in HepG2 Cells. Toxins (Basel) 2020; 12:toxins12040219. [PMID: 32244372 PMCID: PMC7232240 DOI: 10.3390/toxins12040219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Ever-expanding environmental pollution is causing a rise in cyanobacterial blooms and the accumulation of plastics in water bodies. Consequently, exposure to mixtures of cyanotoxins and plastic-related contaminants such as bisphenols (BPs) is of increasing concern. The present study describes genotoxic effects induced by co-exposure to one of the emerging cyanotoxins-cylindrospermopsin (CYN)-(0.5 µg/mL) and BPs (bisphenol A (BPA), S (BPS), and F (BPF); (10 µg/mL)) in HepG2 cells after 24 and 72 h of exposure. The cytotoxicity was evaluated with an MTS assay and genotoxicity was assessed through the measurement of the induction of DNA double strand breaks (DSB) with the γH2AX assay. The deregulation of selected genes (xenobiotic metabolic enzyme genes, DNA damage, and oxidative response genes) was assessed using qPCR. The results showed a moderate reduction of cell viability and induction of DSBs after 72 h of exposure to the CYN/BPs mixtures and CYN alone. None of the BPs alone reduced cell viability or induced DSBs. No significant difference was observed between CYN and CYN/BPs exposed cells, except with CYN/BPA, where the antagonistic activity of BPA against CYN was indicated. The deregulation of some of the tested genes (CYP1A1, CDKN1A, GADD45A, and GCLC) was more pronounced after exposure to the CYN/BPs mixtures compared to single compounds, suggesting additive or synergistic action. The present study confirms the importance of co-exposure studies, as our results show pollutant mixtures to induce effects different from those confirmed for single compounds.
Collapse
|