1
|
Suman, Gaurav P, Joshi M, Chaube R, Jiwatram GG. Toxicogenomic profiling of endocrine disruptor 4-Nonylphenol in male catfish Heteropneustes fossilis with respect to gonads. Sci Rep 2025; 15:14307. [PMID: 40274868 PMCID: PMC12022011 DOI: 10.1038/s41598-025-92226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
Toxicogenomics study reveals information of gene activity and proteins within the particular cells or tissue of an organism in response to toxic substances. 4-Nonylphenol is a potent environmental contaminant and endocrine disruptor. This study elucidates the toxic and xeno-estrogenic effect of 4-Nonylphenol from the cellular level to the gene level by in vivo and in silico approach. In vivo, studies show that exposure of 4-Nonylphenol at a low dose 64µgL- 1 and a high dose of 160µgL- 1 for 30 days to 60 days of duration during pre-spawning to the spawning period in testes of Heteropneustes fossilis causes cellular level toxicity i.e., dose and duration dependent clumping of spermatocytes. Dose and duration-dependent decrease in superoxide dismutase(SOD), Catalase, glutathione peroxidase(GPx) and increase in lipid peroxidase (LPO) level in testes. There was a dose and duration-dependent decrease in total antioxidant status and increased level of total oxidant status in the testicular tissue of H. fossilis along with an increase in cortisol level 0.4-NP caused alteration in antioxidant enzyme levels impedes the first line of defense mechanism in the body of an organism. There was a dose-dependent increase in necrosis percentage in testicular cells, cell death, and an increase in total ROS (reactive oxygen species) in a dose-dependent manner in testicular cells of H. fossilis. 4-NP causes gene level toxicity i.e., increased DNA migration or DNA fragmentation. Upregulation of gene expression of gonadal aromatase (CYP19a1a) and downregulation of the 3-beta-hydroxysteroid dehydrogenase (3-β HSD) gene in testes were observed. In silico studies also confirmed the interacting potency of 4-NP with steroid enzyme 3- β HSD and CYP19a1a. Present investigations shows that exposure to water bodies contaminated with xenoestrogens like 4-NP has significantly reduced reproductive parameters like fertilization, fecundity, hatching, and larval survival in numerous fish species.4-NP causes alteration in gene expression of the proteins which are very crucial for reproduction and maintenance of maleness. Due to chronic exposure to 4-NP, it becomes a toxicant causing tissue cell death. So, the harmful impact of 4-NP on reproduction in teleost fish is concerning, not just for the fish themselves but for the entire ecosystem. Therefore, efforts should be made to reduce the contamination of water bodies with xenoestrogens.
Collapse
Affiliation(s)
- Suman
- Zoology Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratibha Gaurav
- Zoology Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Megha Joshi
- Bioinformatics Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, 221005, India
| | - Gautam Geeta Jiwatram
- Zoology Department, M.M.V, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Men Y, Wang Y, Wu W, Chu M. Association between organophosphate pesticide exposure and atopic dermatitis: a cross-sectional study based on NHANES 1999-2007. Front Public Health 2025; 13:1555731. [PMID: 40115349 PMCID: PMC11922850 DOI: 10.3389/fpubh.2025.1555731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Background Organophosphate pesticides (OPPs) are widely used environmental chemicals with potential health impacts, but their relationship with atopic dermatitis (AD) remains unclear. Methods Using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2007, we investigated associations between urinary OPP metabolites and AD in 4,258 adults. Six dialkyl phosphate (DAP) metabolites were measured, and weighted quantile sum (WQS) regression was used to assess mixture effects. Results Both DMP (odds ratio [OR] = 1.17, 95% confidence interval [CI]: 1.05-1.31) and DMDTP (OR = 2.23, 95%CI: 1.08-4.60) showed significant positive associations with AD in fully adjusted models. WQS regression revealed significant associations between mixed OPP exposure and AD (OR = 1.25, 95%CI: 1.04-1.50), with DMP contributing most (45.8%) to the mixture effect. Stratified analyses indicated stronger associations in males, younger adults (<60 years), and smokers. Conclusion Our findings suggest that OPP exposure, particularly DMP, may be associated with increased AD risk in adults. These results provide new insights into environmental risk factors for AD.
Collapse
Affiliation(s)
- YueHua Men
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - YiMeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - WenTing Wu
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
3
|
Zheng H, Wang H, Cai M, Gao Y, Yang K, Chen Z. Summer profiles: Tracing currently used organophosphorus pollutants in the surface seawater of the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178258. [PMID: 39729839 DOI: 10.1016/j.scitotenv.2024.178258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
We investigate the spatial distribution and potential ecological impact of Currently Used Organophosphorus Pollutants (CUOPPs) in the Arctic Ocean, focusing on the East Siberian Sea, Laptev Sea, and high Arctic regions. Analyzing surface water samples collected during a scientific expedition aboard the "Xuelong 2" in August and September 2021, we detected 38 out of 83 targeted CUOPPs, including Phorate, Paraoxon, and Azinphos-ethyl, with concentrations exhibiting significant geographical variance. The results reveal a pronounced increase in CUOPP concentrations towards the Arctic poles, diverging markedly from the patterns observed in the East China Sea, thereby highlighting distinct regional pollution profiles and environmental interactions. Our findings suggest various potential sources and transport mechanisms for CUOPPs, indicating complex pollutant dynamics. Furthermore, the study delves into the influence of Arctic sea ice dynamics on the distribution patterns of CUOPPs, underscoring the pivotal role of environmental factors such as surface currents. Ecological risk assessments conducted for essential Arctic species pose a high ecological risk in the Arctic Ocean, with a "Summer Alert" effect. This investigation elucidates the intricate relationship between CUOPPs dispersal in the Arctic and the broader implications of climate change, offering critical insights into the emerging environmental challenges in polar ecosystems.
Collapse
Affiliation(s)
- Hongyuan Zheng
- Ocean Institute, Northwestern Polytechnical University, NO. 127, Taicang Road, Suzhou, Jiangsu, 215400, China; Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China
| | - Heng Wang
- Ocean Institute, Northwestern Polytechnical University, NO. 127, Taicang Road, Suzhou, Jiangsu, 215400, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, NO.1954, Huashan Road, Shanghai, 200030, China
| | - Yuan Gao
- Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China
| | - Kunde Yang
- Ocean Institute, Northwestern Polytechnical University, NO. 127, Taicang Road, Suzhou, Jiangsu, 215400, China
| | - Zhiyi Chen
- Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China; Zhejiang University of Water Resources and Electric Power, NO. 508, Second Avenue, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
4
|
Cang T, Huang N, Nie D, Chen L, Shao K, Wu C, Chen C, Wang Y. Mixture effect of parental exposure to triazophos and fenvalerate on the early development of zebrafish offspring. CHEMOSPHERE 2024; 365:143415. [PMID: 39332582 DOI: 10.1016/j.chemosphere.2024.143415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Triazophos (TRI) and fenvalerate (FEN) have been extensively used in the world and frequently coexist in the water environments, might pose health risk to aquatic species. However, investigations of their mixture toxic effects on offspring after parental exposure have been neglected, especially for aquatic vertebrates such fish. To address this knowledge gap, parental zebrafish (F0 generation) were exposed to TRI, FEN and their mixture for 60 days, as well as the embryos (F1 generation) were hatched without or with continued corresponding exposures at the same concentrations until 7 days post fertilization. The results exhibited that exposure to TRI and FEN altered the expression levels of biomarkers associated with several biological processes, such as apoptosis and inflammatory response. Compared to individual exposure in the F1 generation, the co-exposure to TRI and FEN resulted in increased the expression of T4 and cc-chem mRNA and decreased the expression of ROS, trα, il-8, and gpx mRNA when the F0 generation was similarly exposed. These results revealed that the co-exposure to TRI and FEN has detrimental effects on fish progeny following parental exposure, even if the progeny are not directly exposed to the pesticides, and such negative effects may be intensified if the offspring continue to be exposed. This study enhances the understanding of the harmful impacts of parental exposure to the pesticide mixture on descendants and holds implications for the ecological risk assessment of pesticide mixtures in aquatic vertebrates. Further mechanistic studies are necessary to gain a deeper insight into the mixture effects of pesticides and other kinds of pollutants on subsequent offspring following parental exposure.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongxing Nie
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Changxing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
5
|
Souza TL, da Luz JZ, Barreto LDS, de Oliveira Ribeiro CA, Neto FF. Structure-based modeling to assess binding and endocrine disrupting potential of polycyclic aromatic hydrocarbons in Daniorerio. Chem Biol Interact 2024; 398:111109. [PMID: 38871163 DOI: 10.1016/j.cbi.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Environmental contaminants, such as polycyclic aromatic hydrocarbons (PAHs), have raised concerns regarding their potential endocrine-disrupting effects on aquatic organisms, including fish. In this study, molecular docking and molecular dynamics techniques were employed to evaluate the endocrine-disrupting potential of PAHs in zebrafish, as a model organism. A virtual screening with 72 PAHs revealed a correlation between the number of PAH aromatic rings and their binding affinity to proteins involved in endocrine regulation. Furthermore, PAHs with the highest binding affinities for each protein were identified: cyclopenta[cd]pyrene for AR (-9.7 kcal/mol), benzo(g)chrysene for ERα (-11.5 kcal/mol), dibenzo(a,e)pyrene for SHBG (-8.7 kcal/mol), dibenz(a,h)anthracene for StAR (-11.2 kcal/mol), and 2,3-benzofluorene for TRα (-9.8 kcal/mol). Molecular dynamics simulations confirmed the stability of the protein-ligand complexes formed by the PAHs with the highest binding affinities throughout the simulations. Additionally, the effectiveness of the protocol used in this study was demonstrated by the receiver operating characteristic curve (ROC) analysis, which effectively distinguished decoys from true ligands. Therefore, this research provides valuable insights into the endocrine-disrupting potential of PAHs in fish, highlighting the importance of assessing their impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Luiza Dos Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Alniss HY, Kemp BM, Holmes E, Hoffmann J, Ploch RM, Ramadan WS, Msallam YA, Al-Jubeh HM, Madkour MM, Celikkaya BC, Scott FJ, El-Awady R, Parkinson JA. Spectroscopic, biochemical and computational studies of bioactive DNA minor groove binders targeting 5'-WGWWCW-3' motif. Bioorg Chem 2024; 148:107414. [PMID: 38733748 DOI: 10.1016/j.bioorg.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Bryony M Kemp
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Elizabeth Holmes
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Joanna Hoffmann
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Rafal M Ploch
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Moustafa M Madkour
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bekir C Celikkaya
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Fraser J Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - John A Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| |
Collapse
|
7
|
Glover F, Mehta A, Richardson M, Muncey W, Del Giudice F, Belladelli F, Seranio N, Eisenberg ML. Investigating the prevalence of erectile dysfunction among men exposed to organophosphate insecticides. J Endocrinol Invest 2024; 47:389-399. [PMID: 37574529 DOI: 10.1007/s40618-023-02155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) poses a significant disease morbidity and contributor to male infertility, where an estimated 20-40% of men are affected annually. While several risk factors have been identified in the etiology of ED (e.g., aging, heart disease, diabetes, and obesity), the complete pathogenesis remains to be elucidated. Over the last few decades, the contribution of environmental exposures to the pathogenesis of ED has gained some attention, though population studies are limited and results are mixed. Among environmental contaminants, organophosphate (OP) insecticides represent one of the largest chemical classes, and chlorpyrifos is the most commonly used OP in the U.S. OP exposure has been implicated in driving biological processes, including inflammation, reactive oxygen species production, and endocrine and metabolism disruption, which have been demonstrated to adversely affect the hypothalamus and testes and may contribute to ED. Currently, studies evaluating the association between OPs and ED within the U.S. general population are sparse. METHODS Data were leveraged from the National Health and Nutrition Examination Survey (NHANES), which is an annually conducted, population-based cross-sectional study. Urinary levels of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of the most pervasive OP insecticide chlorpyrifos, were quantified as measures of OP exposure. ED was defined by responses to questionnaire data, where individuals who replied "sometimes able" or "never able" to achieve an erection were classified as ED. Chi-square, analysis of variance (ANOVA), and multivariable, weighted linear and logistic regression analyses were used to compare sociodemographic variables between quartiles of TCPy exposure, identify risk factors for TCPy exposure and ED, and to analyze the relationship between TCPy and ED. RESULTS A total of 671 adult men were included in final analyses, representing 28,949,379 adults after survey weighting. Approximately 37% of our cohort had ED. Smoking, diabetes, aging, Mexican-American self-identification, and physical inactivity were associated with higher ED prevalence. Analysis of TCPy modeled as a continuous variable revealed nonsignificant associations with ED (OR = 1.02 95% CI [0.95, 1.09]). Stratification of total TCPy into quartiles revealed increased odds of ED among adults in the second and fourth quartiles, using the first quartile as the reference (OR = 2.04 95% CI [1.11, 3.72], OR = 1.51 95% CI [0.58, 3.93], OR = 2.62 95% CI [1.18, 5.79], for quartiles 2, 3, and 4, respectively). CONCLUSIONS The results of our study suggest a potential role for chlorpyrifos and other OPs the pathogenesis of ED. Future studies are warranted to validate these findings, determine clinical significance, and to investigate potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- F Glover
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - A Mehta
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Richardson
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - W Muncey
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Del Giudice
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Belladelli
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - N Seranio
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - M L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Xiao J, Li M, Zhang M, Dai K, Ju X, Liu Y, Liu Z, Cao H, Shi Y. Transport and interaction mechanism of four pesticide residues from Chaenomeles speciosa across Caco-2 cells. Food Chem 2024; 431:137156. [PMID: 37591142 DOI: 10.1016/j.foodchem.2023.137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The presence of multiple pesticide residues in agricultural production highlights the need for studying mixture interaction during transepithelial transport. This study applied the Caco-2 cell model to investigate the interaction of four pesticide residues (carbendazim, epoxiconazole, phoxim, and chlorpyrifos) in Chaenomeles speciosa during transepithelial transport. Results demonstrated that co-treatment with pesticide mixtures generally increased the cumulative transport amount of carbendazim and epoxiconazole by 0.32-1.60 times and 0.32-0.98 times, respectively, compared to individual treatments. Notably, the combination of carbendazim and epoxiconazole displayed a significant synergistic effect. The use of transporter inhibitors and molecular docking analysis provided insights into the interaction mechanism, suggesting that the competitive inhibition of MRP2 and/or BCRP binding via π-bonds contributed to the inhibition of BL-to-AP efflux and a significant increase in AP-to-BL influx of carbendazim and epoxiconazole. The results are of great theoretical significance and practical value for risk assessment of multiple pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Minkun Li
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Mengya Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Kaijie Dai
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Xiaowei Ju
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Ziqi Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, PR China.
| |
Collapse
|
9
|
Suhas KS, Vijapure S, Yadav S, Ramesh M, Saminathan M, Jambagi K, Suresh B, Madhu CL, Kumar A, Chandra V, Telang AG. Nano-quercetin mitigates triazophos-induced testicular toxicity in rats by suppressing oxidative stress and apoptosis. Food Chem Toxicol 2024; 183:114331. [PMID: 38061569 DOI: 10.1016/j.fct.2023.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The present study was designed to evaluate the testicular toxicity of triazophos in rats and to check the ameliorative effect of nano-quercetin against triazophos-induced toxicity. Nano-quercetin was synthesized from quercetin and characterized. Male Wistar rats were divided into seven groups. The control group received olive oil as a vehicle orally. The high-dose triazophos group and the low-dose triazophos group received 1/10th LD50 of triazophos (7.6 mg/kg) and 1/20th LD50 of triazophos (3.8 mg/kg), respectively. Two groups of animals were dosed with quercetin and nano-quercetin, both at 50 mg/kg body weight orally. The final two groups received high-dose triazophos with co-administration of quercetin and nano-quercetin, respectively. Triazophos disrupted the male endocrine axis by reducing the levels of steroidogenic enzymes 3-β-HSD and 17-β-HSD in testicular cells, further reducing FSH and testosterone. Also, triazophos increased the reactive oxygen species, induced lipid peroxidation, decreased the mitochondrial membrane potential, and elevated the number of apoptotic cells in rat testes. Nano-quercetin ameliorated the testicular oxidative stress and apoptotic and endocrine parameters more efficiently than quercetin. Besides, nano-quercetin alleviated the histopathological and biochemical alterations of triazophos. It is concluded that nano-quercetin has higher anti-oxidant efficacy than quercetin in protecting rats against triazophos-induced testicular toxicity.
Collapse
Affiliation(s)
- K S Suhas
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Shubham Vijapure
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Supriya Yadav
- Division of Medicine, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Madhu Ramesh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka, India
| | - M Saminathan
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Kaveri Jambagi
- Division of Medicine, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Bindu Suresh
- Division of Microbiology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - C L Madhu
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | - Avinash G Telang
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India.
| |
Collapse
|
10
|
Liang C, Zeng MX, Yuan XZ, Liu LY. An overview of current knowledge on organophosphate di-esters in environment: Analytical methods, sources, occurrence, and behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167656. [PMID: 37813257 DOI: 10.1016/j.scitotenv.2023.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Organophosphate di-esters (di-OPEs) are highly related to tri-OPEs. The presence of di-OPEs in the environment has gained global concerns, as some di-OPEs are more toxic than their respective tri-OPE compounds. In this study, current knowledge on the analytical methods, sources, environmental occurrence, and behavior of di-OPEs were symmetrically reviewed by compiling data published till March 2023. The determination of di-OPEs in environmental samples was exclusively achieved with liquid chromatography mass spectrometry operated in negative mode. There are several sources of di-OPEs, including industrial production, biotic and abiotic degradation from tri-OPEs under environmental conditions. A total of 14 di-OPE compounds were determined in various environments, including dust, sediment, sludge, water, and atmosphere. The widespread occurrence of di-OPEs suggested that human and ecology are generally exposed to di-OPEs. Among all environmental matrixes, more data were recorded for dust, with the highest concentration of di-OPEs up to 32,300 ng g-1. Sorption behavior, phase distribution, gas-particle partitioning behavior was investigated for certain di-OPEs. Suggestions on future studies in the perspective of human exposure to and environmental behavior of di-OPEs were proposed.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Meng-Xiao Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
11
|
Sirikul W, Sapbamrer R. Exposure to pesticides and the risk of hypothyroidism: a systematic review and meta-analysis. BMC Public Health 2023; 23:1867. [PMID: 37752464 PMCID: PMC10523800 DOI: 10.1186/s12889-023-16721-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Knowledge surrounding the association between exposure to pesticides and hypothyroidism is inconsistent and controversial. METHODS The aim of present study was, therefore, to review scientific evidence systematically and conduct a meta-analysis into the contribution of exposure to pesticides to hypothyroidism. PubMed, Scopus, Web of Science, and Google Scholar were searched. The findings are presented as OR, HR, PR, IRR, and 95% confidence interval (95%CI). A fixed-effect model using the inverse-variance method and random-effects inverse-variance model with DerSimonian-Laird method were used for estimating the pooled estimates. Cochran Q and I2 tests were used to confirm the heterogeneity of selected studies. RESULTS Twelve studies were included in the systematic review, and 9 studies in the meta-analysis. Epidemiological evidence suggested that exposure to insecticides including organochlorines, organophosphates, and pyrethroids increased risk of hypothyroidism (adjusted odds ratio (aOR) = 1.23, 95%CI = 1.14, 1.33 for organochlorines, aOR = 1.12, 95%CI = 1.07, 1.17 for organophosphates, aOR = 1.15, 95%CI = 1.03, 1.28 for pyrethroids). Exposure to herbicides also increased risk of hypothyroidism (aOR = 1.06, 95%CI = 1.02, 1.10). However, exposure to fungicides and fumigants was not found to be associated with hypothyroidism. CONCLUSION To increase current knowledge and confirm evidence to date future research needs to center on large-scale longitudinal epidemiological and biological studies, examination of dose-response relationships, the controlling of relevant confounding variables, using standardized and high sensitivity tools, and investigating the effects of environmental exposure.
Collapse
Affiliation(s)
- Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, 110 Inthavaroros Road, Sri Phum Subdistrict, Muang District, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Yang F, Li Y, Xie Y, Yao W, Ren F. Diethyl phosphate disrupts hypothalamus-pituitary-adrenal axis endocrine hormones via nuclear receptors GR and Nur77: Integration of evidences from in vivo, in vitro and in silico approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157015. [PMID: 35777568 DOI: 10.1016/j.scitotenv.2022.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plenty of population epidemiology and cohort studies have found dialkyl phosphates (DAPs) in the urine were related to endocrine hormone disorders. However, we did not know whether these effects were caused by parent organophosphorus pesticides (OPs) or metabolite DAPs, especially the non-specific metabolite diethyl phosphate (DEP), which was the metabolic end product of most widely used diethyl OPs. In this study, animal experiments (in vivo), cell experiments (in vitro), small molecule-protein binding interaction experiments and computer molecular simulations (in silico) were used to explore the disturbing effects and molecular mechanisms of DEP on the hypothalamic-pituitary-adrenal (HPA) axis endocrine hormones. The animal experiments showed that chronic DEP exposure significantly disturbed the serum contents of HPA axis hormones in adult male rats. The target genes of glucocorticoid receptor (GR) in rat liver, including 11β-hsd1 and Pepck1 and PEPCK protein expressions, were down-regulated. Moreover, the gluconeogenic abilities of rats were impaired. However, it did not affect the expression of GR in the rat hypothalamus. These results indicated that the physiological functions of glucocorticoids and GR were damaged. Furthermore, spectroscopy experiments, cell experiments, molecular docking and molecular dynamics simulations also suggested that DEP can bind to nuclear receptors GR and Nur77, affecting their transcription factor functions, and the transcriptional expression levels of their downstream target genes were reduced. The biosynthesis and secretion of adrenocorticotropic hormone and glucocorticoids were blocked. Therefore, DEP can inhibit the production and physiological functions of HPA axis endocrine hormones by disrupting these related proteins and antagonizing nuclear receptors. These results were considered to provide a theoretical basis for strictly controlling the residue limits of OPs and their metabolites in foods, agricultural products and the environment. They also revealed new targets for evaluating the toxicities and risks of pesticide metabolites.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Yixuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
13
|
Nanoparticle Emulsions Enhance the Inhibition of NLRP3. Int J Mol Sci 2022; 23:ijms231710168. [PMID: 36077562 PMCID: PMC9456257 DOI: 10.3390/ijms231710168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Antibacterial delivery emulsions are potential materials for treating bacterial infections. Few studies have focused on the role and mechanism of emulsions in inflammation relief. Therefore, based on our previous analysis, in which the novel and natural Pickering emulsions stabilized by antimicrobial peptide nanoparticles were prepared, the regulation effect of emulsion on inflammasome was explored in silico, in vitro and in vivo. Firstly, the interactions between inflammasome components and parasin I or Pickering emulsion were predicted by molecular docking. Then, the inflammasome stimulation by different doses of the emulsion was tested in RAW 264.7 and THP-1 cells. Finally, in Kunming mice with peritonitis, NLRP3 and IL-1β expression in the peritoneum were evaluated. The results showed that the Pickering emulsion could combine with ALK, casp-1, NEK7, or NLRP3 to affect the assembly of the NLRP3 and further relieve inflammation. LPNE showed a dose–dependent inhibition effect on the release of IL-1β and casp-1. With the concentration of parasin I increased from 1.5 mg/mL to 3 mg/mL, the LDH activity decreased in the chitosan peptide-embedded nanoparticles emulsion (CPENE) and lipid/peptide nanoparticles emulsion (LPNE) groups. However, from 1.5 to 6 mg/mL, LPNE had a dose–dependent effect on the release of casp-1. The CPENE and parasin I-conjugated chitosan nanoparticles emulsion (PCNE) may decrease the release of potassium and chloride ions. Therefore, it can be concluded that the LPNE may inhibit the activation of the inflammasome by decreasing LDH activity, potassium and chloride ions through binding with compositions of NLRP3.
Collapse
|
14
|
Wongta A, Sawang N, Tongjai P, Jatiket M, Hongsibsong S. The Assessment of Organophosphate Pesticide Exposure among School Children in Four Regions of Thailand: Analysis of Dialkyl Phosphate Metabolites in Students' Urine and Organophosphate Pesticide Residues in Vegetables for School Lunch. TOXICS 2022; 10:toxics10080434. [PMID: 36006115 PMCID: PMC9416577 DOI: 10.3390/toxics10080434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/05/2023]
Abstract
In Thailand, pesticides containing organophosphates (OP) are frequently applied to crops to suppress insects. School children can be exposed to OPs on a daily basis, from food consumption to breathing and touching pesticides drifted near classrooms. Living in an agricultural area can also be one of the causes. As a result, it is important to monitor OPs residues in the food chain and biomarkers of exposure. The Gas Chromatography-Flame Photometric Detector method was employed to examine the relationship between OPs residue and DAPs (Diakly phosphate) in four targeted locations in Thailand, as well as to examine the residues of OPs in vegetable samples and DAPs in 395 school children's urine samples. Vegetables were found to contain at least one OP, with chlorpyrifos being the most prevalent. The OPs detected frequencies for Sakon Nakhon, Chiang Mai, Phang Nga, and Pathum Thani are 96.1%, 94%, 91.7%, and 83.3%, respectively. The overall centration level of OPs showed 0.3261 mg/kg, 0.0636 mg/kg, 0.0023 mg/kg, 0.0150 mg/kg, 0.2003 mg/kg, 0.0295 mg/kg, and 0.0034 mg/kg for diazinon, dimethoate, pirimiphos-methyl, chlorpyrifos, profenofos, ethion, and triazophos, respectively. Nearly 98% of school children were detected with at least one DAP. The overall level of dimethyl phosphate metabolites (5.258 µmole/mole creatinine) in urine samples is higher than diethyl phosphate metabolites (2.884 µmole/mole creatinine), especially in the case of Pathum Thani. Our findings show a consistent relationship between OPs in vegetables from wet markets and DAPs in urine samples of school children in various parts of Thailand.
Collapse
Affiliation(s)
- Anurak Wongta
- Environmental, Occupational and NCD Center of Excellent, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (N.S.); (P.T.)
| | - Nootchakarn Sawang
- Environmental, Occupational and NCD Center of Excellent, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (N.S.); (P.T.)
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phanika Tongjai
- Environmental, Occupational and NCD Center of Excellent, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (N.S.); (P.T.)
- School of Health Science Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Surat Hongsibsong
- Environmental, Occupational and NCD Center of Excellent, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.W.); (N.S.); (P.T.)
- School of Health Science Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Yang F, Cui Y, Yu H, Guo Y, Cheng Y, Yao W, Xie Y. Identifying potential thyroid hormone disrupting effects among diphenyl ether structure pesticides and their metabolites in silico. CHEMOSPHERE 2022; 288:132575. [PMID: 34656618 DOI: 10.1016/j.chemosphere.2021.132575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The environmental and dietary pesticide exposures can cause thyroid hormones (THs) disorders, which are associated with the high incidence of thyroid diseases worldwide. The structures of diphenyl ether pesticides and their metabolites are very similar to the structure of THs. Based on this, in silico molecular simulation approaches were used to predict, screen, evaluate and identify the binding interactions of 98 diphenyl ether structure pesticides and their metabolites (DEPMs) with 10 THs related proteins in the study. The research results indicated that these DEPMs such as fluoroglycofen (FOG), rafoxanide, diclofop, ethoxyfen and difenopenten were considered to have the greater potentials to interfere with the related proteins of THs biosynthesis, blood transport, receptor binding and metabolism. And FOG can interact with thyroid hormone receptor beta (TRβ) to form non-bond interactions. Furthermore, the results of molecular dynamics simulations showed that there were strong and stable interactions between FOG and TRβ. These results suggested that the herbicide FOG was likely to disturb THs nuclear receptor. And benzene rings and hydrophobic groups might be the characteristic chemical functional groups for DEPMs to disrupt TRβ. The relevant results of this study can be used to provide references for environmental toxicology evaluation, food safety risk assessment, and formulation and revision of pesticides and their metabolites residue limits in agricultural products and food.
Collapse
Affiliation(s)
- Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot, 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yiwen Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot, 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot, 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wux, 214122, Jiangsu Province, China.
| |
Collapse
|
17
|
Ahmad S, Sharma S, Afjal MA, Habib H, Akhter J, Goswami P, Parvez S, Akhtar M, Raisuddin S. mRNA expression and protein-protein interaction (PPI) network analysis of adrenal steroidogenesis in response to exposure to phthalates in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103780. [PMID: 34864161 DOI: 10.1016/j.etap.2021.103780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Phthalate esters such as di-butyl phthalate (DBP) and di-ethyl hexyl phthalate (DEHP) used in personal care and consumer products and medical devices have potential to affect human health. We studied the effect of DBP and DEHP on critical enzymes of glucocorticoid biosynthesis pathway in the adrenal gland and pro-inflammatory cytokines in the serum in male Wistar rats. DEHP and DBP treatment altered the mRNA expression of enzymes of glucocorticoid biosynthesis pathway accompanied by a reduction in glucocorticoid production and elevation in the level of glucocorticoid regulated pro-inflammatory cytokines indicating a cascading effect of phthalates. The analysis of PPI (protein - protein interaction) network involving Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) of enzymes through STRING database revealed that all the proteins have the maximum level of interaction with the selected number of proteins. The STRING database analysis together with in vivo data indicates the potential effects of phthalates on various targets of steroidogenesis pathway with a global biological impact.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Shikha Sharma
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohd Amir Afjal
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Haroon Habib
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Juheb Akhter
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Poonam Goswami
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohammad Akhtar
- Department of Pharmacology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
18
|
Halawa E, Ryad L, El-Shenawy NS, Al-Eisa RA, EL-Hak HNG. Evaluation of acetamiprid and azoxystrobin residues and their hormonal disrupting effects on male rats using liquid chromatography-tandem mass spectrometry. PLoS One 2021; 16:e0259383. [PMID: 34855766 PMCID: PMC8638893 DOI: 10.1371/journal.pone.0259383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting compounds as pesticides affect the hormonal balance, and this can result in several diseases. Therefore, the analysis of representative hormones with acetamiprid (AC) and azoxystrobin (AZ) was a good strategy for the investigation of the endocrine-disrupting activity of pesticides. Hence, a sensitive and rapid analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The method was validated for the analysis of AC, AZ, estriol, estrone, progesterone, and testosterone in the serum, testis, and liver of rats. The correlation between the residues of pesticides and the disturbance of the endocrine system was evaluated. The different mass parameters, mobile phase types, analytical columns, injection volumes, and extraction solvents were compared to get the lowest limit of detection of the studied compounds. The detection limits of AC, AZ, estriol, estrone, progesterone, and testosterone were 0.05, 0.05, 1.0, 10, and 1.0 ng/ml, respectively. The method developed was applied to evaluate the changes in these hormones induced by the duration of exposure to AC and AZ in rat testis and serum. The hormones level in rat serum and testis had a significant decrease as they were oral gavage treated with different high concentrations of studied pesticides. Both pesticides were distributed in the body of rats by the multi-compartment model (liver, testis, and serum).
Collapse
Affiliation(s)
- Ekramy Halawa
- Agricultural Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Ismailia, Egypt
| | - Lamia Ryad
- Agricultural Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Ismailia, Egypt
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rasha A. Al-Eisa
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Heba N. Gad EL-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Zhang N, Zhu L, Zhang R, Zhang C, Cheng J, Tao L, Zhang Y, Xu W. Evaluation of toxicological effects of organophosphorus pesticide metabolites on human HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103741. [PMID: 34517121 DOI: 10.1016/j.etap.2021.103741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Trichloropyridinol (TCP); 3, 5, 6-trichloro-2-pyridinol is the primary metabolites of the organophosphorus pesticide chlorpyrifos. It is more highly persistent than parent compounds in the environment and might represent serious risks to human health. In this study, we investigated the toxicological effects and mechanism of TCP on HepG2 cells. The results revealed that TCP induced DNA damage and apoptosis on HepG2 cells. Besides, up-regulating the expression level of Bax /Bcl-2, a reduction in mitochondrial membrane potential, caspase-9/-3 activation and the release of cytochrome-c are contributed to the toxicological effects of TCP on HepG2 cells. These data indicated that the cytotoxic effects of TCP might be associated with the activity of mitochondrial apoptotic pathways. In conclusion, the results demonstrated that TCP poses a potential threat to human health by inducing toxicological effects in the liver.
Collapse
Affiliation(s)
- Nan Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lianhua Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruizhi Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
20
|
Type 2 Diabetes Mellitus Mediation by the Disruptive Activity of Environmental Toxicants on Sex Hormone Receptors: In Silico Evaluation. TOXICS 2021; 9:toxics9100255. [PMID: 34678951 PMCID: PMC8538912 DOI: 10.3390/toxics9100255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
This study investigates the disruptive activity of environmental toxicants on sex hormone receptors mediating type 2 diabetes mellitus (T2DM). Toxicokinetics, gene target prediction, molecular docking, molecular dynamics, and gene network analysis were applied in silico techniques. From the results, permethrin, perfluorooctanoic acid, dichlorodiphenyltrichloroethane, O-phenylphenol, bisphenol A, and diethylstilbestrol were the active toxic compounds that could modulate androgen (AR) and estrogen-α and -β receptors (ER) to induce T2DM. Early growth response 1 (EGR1), estrogen receptor 1 (ESR1), and tumour protein 63 (TP63) were the major transcription factors, while mitogen-activated protein kinases (MAPK) and cyclin-dependent kinases (CDK) were the major kinases upregulated by these toxicants via interactions with intermediary proteins such as PTEN, AKT1, NfKβ1, SMAD3 and others in the gene network analysis to mediate T2DM. These toxicants pose a major challenge to public health; hence, monitoring their manufacture, use, and disposal should be enforced. This would ensure reduced interaction between people and these toxic chemicals, thereby reducing the incidence and prevalence of T2DM.
Collapse
|
21
|
Liu Y, Gong S, Ye L, Li J, Liu C, Chen D, Fang M, Letcher RJ, Su G. Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. ENVIRONMENT INTERNATIONAL 2021; 155:106691. [PMID: 34146766 DOI: 10.1016/j.envint.2021.106691] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Over the course of the continual phase-outs of toxic halogenated flame retardants (HFRs), there has been an increasing demand for organophosphate esters (OPEs) in global FR markets. OPE-FRs have largely been identified as OP triesters, which have a basic chemical structure of O = P(OR)3. In addition to OP triesters, OPEs can refer to another class of related substances, namely, OP diesters that have a typical chemical structure of O = P(OR)2(OH)). OP diesters are known as biotic or abiotic degradation products of OP triesters. In recent years, environmental scientists have proven that OP diesters widely exist in a variety of environmental matrices and biotic samples around the world, implying the potential risks from OP diester exposure to biota and humans in the environment. Here, we have reviewed the scientific literature for studies involving OP diesters and up to the end of 2020. The aim of the present review is to assess the present understanding of the physicochemical properties, sources (industrial production and degradation), environmental occurrence of OP diesters, and adverse effects to exposed organisms. Based on the literature in the Web of Science core collection, we found that at least 23 OP diesters have been reported as contaminants in various environments or as degradation products of OP triesters. The physicochemical properties of OP diesters vary depending on their specific chemical structures. OP diesters containing halogen atoms and aryl groups seem to be more persistent (with greater estimated half-life (t1/2) values) in environmental matrices. There were multiple sources of OP diesters, including industrial production and biotic or abiotic degradation from OP triesters. Specifically, we found that ten OP diesters are produced somewhere in the world, and the total annual output was estimated to be 17,050 metric tons (this number is underestimated due to the limitation of the available information). In addition, the wide application of OP triesters worldwide makes the degradation of OP triesters another critical source of OP diesters to the environment and to organisms. Current monitoring studies have demonstrated that some OP diesters were detectable in the human body (via both blood and urine samples), indoor dust, wastewater, or sewage sludge worldwide. The highest concentrations of diphenyl phosphate (DPHP) in human urine have been reported as high as 727 ng/mL (children (aged 0-5 years) urine samples from Australia). In addition, adverse effects following direct or indirect exposure to 11 OP diesters in organisms (including animals, bacteria, and algae) have been reported, and the recorded adverse outcomes following exposure to OP diesters included developmental toxicity, alteration of gene expression, and disturbance of nuclear receptor activity. Biomonitoring studies regarding human samples have frequently reported statistically significant associations between the concentrations of OP diesters and markers of human health (mainly related to reproductive toxicity). Finally, on the basis of current knowledge on OP diesters, we propose prospects for related research directions in future studies.
Collapse
Affiliation(s)
- Yaxin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
22
|
Kim HM, Seo H, Park Y, Lee HS, Lee SH, Ko KS. Development of a Human Estrogen Receptor Dimerization Assay for the Estrogenic Endocrine-Disrupting Chemicals Using Bioluminescence Resonance Energy Transfer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168875. [PMID: 34444624 PMCID: PMC8395052 DOI: 10.3390/ijerph18168875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are found in food and various other substances, including pesticides and plastics. EDCs are easily absorbed into the body and have the ability to mimic or block hormone function. The radioligand binding assay based on the estrogen receptors binding affinity is widely used to detect estrogenic EDCs but is limited to radioactive substances and requires specific conditions. As an alternative, we developed a human cell-based dimerization assay for detecting EDC-mediated ER-alpha (ERα) dimerization using bioluminescence resonance energy transfer (BRET). The resultant novel BRET-based on the ERα dimerization assay was used to identify the binding affinity of 17β-estradiol (E2), 17α-estradiol, corticosterone, diethylhexyl phthalate, bisphenol A, and 4-nonylphenol with ERα by measuring the corresponding BRET signals. Consequently, the BRET signals from five chemicals except corticosterone showed a dose-dependent sigmoidal curve for ERα, and these chemicals were suggested as positive chemicals for ERα. In contrast, corticosterone, which induced a BRET signal comparable to that of the vehicle control, was suggested as a negative chemical for ERα. Therefore, these results were consistent with the results of the existing binding assay for ERα and suggested that a novel BRET system can provide information about EDCs-mediated dimerization to ERα.
Collapse
Affiliation(s)
- Hye Mi Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea;
| | - Hyeyeong Seo
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea;
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
- Correspondence: (S.-H.L.); (K.S.K.); Tel.: +82-31-961-5187 (S.-H.L.); +82-2-3277-6859 (K.S.K.)
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (S.-H.L.); (K.S.K.); Tel.: +82-31-961-5187 (S.-H.L.); +82-2-3277-6859 (K.S.K.)
| |
Collapse
|
23
|
Kim JT, Lee HJ, Lee HS. Organophosphorus pesticides exert estrogen receptor agonistic effect determined using Organization for Economic Cooperation and Development PBTG455, and induce estrogen receptor-dependent adipogenesis of 3T3-L1 adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117090. [PMID: 33872936 DOI: 10.1016/j.envpol.2021.117090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
24
|
Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
26
|
Suarez-Lopez JR, Nguyen A, Klas J, Gahagan S, Checkoway H, Lopez-Paredes D, Noble M. Associations of acetylcholinesterase inhibition between pesticide spray seasons with depression and anxiety symptoms in adolescents, and the role of sex and adrenal hormones on gender moderation. EXPOSURE AND HEALTH 2021; 13:51-64. [PMID: 33748533 PMCID: PMC7968045 DOI: 10.1007/s12403-020-00361-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cholinesterase inhibitor pesticides, especially organophosphates, are endocrine disruptors and a few existing studies have linked self-reports of exposure with increased depression and anxiety. Some evidence suggests that associations may be stronger in women, but the mechanism of this gender difference is unclear. We assessed whether acetylcholinesterase (AChE) inhibition between 2 time points (reflecting greater cholinesterase inhibitor exposure) during different agricultural seasons in the year was associated with anxiety/depression symptoms. METHODS We examined 300 adolescents (ages 11-17y, 51% female) living near agricultural settings in Ecuador (ESPINA study) twice in 2016: April and July-October. We assessed AChE activity (finger stick), estradiol, testosterone, dehydroepiandrosterone, cortisol (saliva) and anxiety and depression scales (CDI-2 and MASC-2). RESULTS The mean (SD) depression and anxiety scores were 52.8 (9.3) and 58.1 (9.6), respectively. The median (25th, 75th percentile) AChE change (July-October vs April) was -3.94% (-10.45%, 5.13%). For every 10% decrease in AChE activity, there was a 0.96 unit (95%CI: 0.01, 1.90) increase in depression symptoms and an OR of elevated depression score of 1.67 (1.04, 2.66). These associations were stronger in girls (OR=2.72 [1.23, 6.00]) than boys (1.18 [0.59, 2.37]). Adjustment for cortisol, testosterone and dehydroepiandrosterone reduced gender differences by 18-62%. No associations were observed with anxiety. DISCUSSION Inhibition of AChE activity at 2 points in time during different pesticide spray periods was associated with greater depression symptoms, affecting girls more than boys. Gender differences may be partly explained by endocrine disruption. These findings suggest that AChE inhibition may transiently affect the mood of adolescents.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew Nguyen
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joel Klas
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Madison Noble
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Shen C, Zhu K, Ruan J, Li J, Wang Y, Zhao M, He C, Zuo Z. Screening of potential oestrogen receptor α agonists in pesticides via in silico, in vitro and in vivo methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116015. [PMID: 33352482 DOI: 10.1016/j.envpol.2020.116015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In modern agricultural management, the use of pesticides is indispensable. Due to their massive use worldwide, pesticides represent a latent risk to both humans and the environment. In the present study, 1056 frequently used pesticides were screened for oestrogen receptor (ER) agonistic activity by using in silico methods. We found that 72 and 47 pesticides potentially have ER agonistic activity by the machine learning methods random forest (RF) and deep neural network (DNN), respectively. Among endocrine-disrupting chemicals (EDCs), 14 have been reported as EDCs or ER agonists by previous studies. We selected 3 reported and 7 previously unreported pesticides from 76 potential ER agonists to further assess ERα agonistic activity. All 10 selected pesticides exhibited ERα agonistic activity in human cells or zebrafish. In the dual-luciferase reporter gene assays, six pesticides exhibited ERα agonistic activity. Additionally, nine pesticides could induce mRNA expression of the pS2 and NRF1 genes in MCF-7 cells, and seven pesticides could induce mRNA expression of the vtg1 and vtg2 genes in zebrafish. Importantly, the remaining 48 out of 76 potential ER agonists, none of which have previously been reported to have endocrine-disrupting effects or oestrogenic activity, should be of great concern. Our screening results can inform environmental protection goals and play an important role in environmental protection and early warnings to human health.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
28
|
Leonel Javeres MN, Raza S, Judith N, Anwar F, Habib R, Batool S, Nurulain SM. Mixture of Organophosphates Chronic Exposure and Pancreatic Dysregulations in Two Different Population Samples. Front Public Health 2020; 8:534902. [PMID: 33194944 PMCID: PMC7655777 DOI: 10.3389/fpubh.2020.534902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organophosphates (OP) are a major agrochemical. The application of OP pesticides is expected to increase multifold in the coming decades. The etiology of diabetic diseases is attributed to multiple factors including OP pesticide exposure. The present study investigates pancreatic dysregulation with respect to exocrine enzymes and diabesity in groups of Pakistani and Cameroonian people exposed to a mixture of OP pesticides. Nine hundred and four OP exposed individuals were enrolled for this cross-sectional study after due consent and approval from an ethical review committee. Pesticides' residues were measured by GC-MS spectrometry. Cholinergic enzymes were measured by Elman's method. Serum glucose, insulin, serum amylase, lipase, and triglyceride were measured by spectrophotometry and ELISA; HOMA-IR was determined in OP exposed and non-exposed participants. Stata 15 and R 3.2.0 software were used for statistical analysis of the data. Malathion, chlorpyrifos, and parathion residues were evident in plasma samples. RBC-acetylcholinesterase was significantly depressed in OP exposed groups. In both population samples, investigated pancreatic functions were found to be statistically significantly more dysregulated than non-exposed. OP exposure indicated risk of diabetes and insulin, glycaemia, adiponectin, triglycerides, and TNF-α dysregulations. The study concludes that both OP exposed population groups exhibited a mixture of OP residues and pancreatic dysregulation, although the effect was more pronounced in the Cameroonian population. In addition, serum lipase has a positive correlation with OP exposure and diabetes and may be suggested as an alternate/additional diagnostic marker for diabesity under OP exposure. However, screening of other environmental co-factors with OP for pancreatic dysregulation is suggested.
Collapse
Affiliation(s)
| | - Saqlain Raza
- Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ngondi Judith
- Department of Biochemistry, Yaoundé I University, Yaoundé, Cameroon
| | - Fozia Anwar
- Department of Health Informatic, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Habib
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sajida Batool
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
29
|
Hernández AF, Bennekou SH, Hart A, Mohimont L, Wolterink G. Mechanisms underlying disruptive effects of pesticides on the thyroid function. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Yang FW, Zhao GP, Ren FZ, Pang GF, Li YX. Assessment of the endocrine-disrupting effects of diethyl phosphate, a nonspecific metabolite of organophosphorus pesticides, by in vivo and in silico approaches. ENVIRONMENT INTERNATIONAL 2020; 135:105383. [PMID: 31835022 DOI: 10.1016/j.envint.2019.105383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Organophosphorus pesticides (OPs) remain one of the most commonly used pesticides, and their detection rates and residues in agricultural products, foods and environmental samples have been underestimated. Humans and environmental organisms are at high risk of exposure to OPs. Most OPs can be degraded and metabolized into dialkyl phosphates (DAPs) in organisms and the environment, and can be present in urine as biomarkers for exposure to OPs, of which diethyl phosphate (DEP) is a high-exposure metabolite. Epidemiological and cohort studies have found that DAPs are associated with endocrine hormone disorders, especially sex hormone disorders and thyroid hormone disorders, but there has been no direct causal evidence to support these findings. Our study explored the effects of chronic exposure to DEP on endocrine hormones and related metabolic indicators in adult male rats at actual doses that can be reached in the human body. The results showed that chronic exposure to DEP could cause thyroid-related hormone disorders in the serum of rats, causing symptoms of hyperthyroidism in rats, and could also lead to abnormal expression of thyroid hormone-related genes in the rat liver. However, DEP exposure did not seem to affect serum sex hormone levels, spermatogenesis or sperm quality in rats. The molecular interactions between DEP and thyroid hormone-related enzymes/proteins were investigated by molecular docking and molecular dynamics methods in silico. It was found that DEP could strongly interact with thyroid hormone biosynthesis, blood transport, receptor binding and metabolism-related enzymes/proteins, interfering with the production and signal regulation of thyroid hormones. In vivo and in silico experiments showed that DEP might be a potential thyroid hormone-disrupting chemical, and therefore, we need to be more cautious and rigorous regarding organophosphorus chemical exposure.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|