1
|
Ma Z, Wang H, Zhou Z, Lu C, Zhang M, Mu R, Zhang C, Yi Z, Deng Z, Zhao Y, Zhu J, Wen G, Jin H, An J, Tuo B, Yuan P, Liu X, Li T. SLC26A9 promotes the initiation and progression of breast cancer by activating the PI3K/AKT signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119912. [PMID: 39880129 DOI: 10.1016/j.bbamcr.2025.119912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
SLC26A9 is a member of the Slc26a family of multifunctional anion transporters that function as Cl- channels in the stomach. We reported for the first time that SLC26A9 is involved in gastric tumorigenesis. However, the role of SLC26A9 in breast cancer has not yet been investigated. We first demonstrated that the upregulation of SLC26A9 is associated with the clinicopathological progression and poor prognosis of patients with breast cancer and is positively correlated with HER2 amplification. SLC26A9 alters the proliferation, migration, and invasion potential of breast cancer cells by regulating the PI3K/AKT signaling pathway. SLC26A9 acts as an oncogene in the development of breast cancer. These findings provide valuable insights for the development of future diagnostic and therapeutic strategies for BC.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhengxing Zhou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengli Lu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Renmin Mu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengmin Zhang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingying Zhao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Peng Yuan
- The Affiliated Tumor Hospital of China Academy of Medical Science, Beijing, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Liang H, Yin G, Shi G, Liu X, Liu Z, Li J. Insights into the Molecular Mechanisms of Bushen Huoxue Decoction in Breast Cancer via Network Pharmacology and in vitro experiments. Curr Comput Aided Drug Des 2025; 21:50-66. [PMID: 39651565 DOI: 10.2174/0115734099269728231115060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 12/11/2024]
Abstract
AIMS Breast cancer (BC) is by far seen as the most common malignancy globally, with 2.261 million patients newly diagnosed, accounting for 11.7% of all cancer patients, according to the Global Cancer Statistics Report (2020). The luminal A subtype accounts for at least half of all BC diagnoses. According to TCM theory, Bushen Huoxue Decoction (BSHXD) is a prescription used for cancer treatment that may influence luminal A subtype breast cancer (LASBC). OBJECTIVES To analyze the clinical efficacy and underlying mechanisms of BSHXD in LASBC. MATERIALS AND METHODS Network pharmacology and in vitro experiments were utilized to foresee the underlying mechanism of BSHXD for LASBC. RESULTS According to the bioinformatics analysis, BSHXD induced several proliferation and apoptosis processes against LASBC, and the presumed targets of active components in BSHXD were mainly enriched in the HIF-1 and PI3K/AKT pathways. Flow cytometry assay and western blotting results revealed that the rate of apoptosis enhanced in a dose-dependent manner with BSHXD concentration increasing, respectively. BSHXD notably downregulated the expressions of HIF-1α, P-PI3K, PI3K, P-AKT and AKT proteins. However, adding an HIF-1α agonist restored those protein levels. CONCLUSION The study proved that the mechanism of BSHXD in LASBC may be connected to suppressing proliferation by inhibiting the activity of the HIF-1α/PI3K/AKT signaling pathway and promoting apoptosis via the Caspase cascade in LASBC cells.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Jia R, Meng D, Geng W. Advances in the anti-tumor mechanisms of saikosaponin D. Pharmacol Rep 2024; 76:780-792. [PMID: 38965200 DOI: 10.1007/s43440-024-00569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 07/06/2024]
Abstract
Saikosaponin D, a saponin compound, is extracted from Bupleurum and is a principal active component of the plant. It boasts a variety of pharmacologic effects including anti-inflammatory, antioxidant, immunomodulatory, metabolic, and anti-tumor properties, drawing significant attention in anti-tumor research in recent years. Research indicates that saikosaponin D inhibits the proliferation of numerous tumor cells, curbing the progression of cancers such as liver, pancreatic, lung, glioma, ovarian, thyroid, stomach, and breast cancer. Its anti-tumor mechanisms largely involve inhibiting tumor cell proliferation, promoting tumor cell apoptosis, thwarting tumor-cell invasion, and modulating tumor cell autophagy. Moreover, saikosaponin D enhances the sensitivity to anti-tumor drugs and augments body immunity. Given its multi-faceted anti-tumor roles, saikosaponin D offers promising potential in anti-tumor therapy. This paper reviews recent studies on its anti-tumor effects, aiming to furnish new theoretical insights for clinical cancer treatments.
Collapse
Affiliation(s)
- Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
6
|
Ki DW, Choi DC, Won YS, Lee SJ, Kim YH, Lee IK, Yun BS. Three new phthalide derivatives from culture broth of Dentipellis fragilis and their cytotoxic activities. J Antibiot (Tokyo) 2024; 77:338-344. [PMID: 38519550 DOI: 10.1038/s41429-024-00720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Three new phthalide derivatives (1‒3) together with two known compounds, erinaceolactone B (4) and hericerin III (5), were isolated from the culture broth of Dentipellis fragilis. The chemical structures of 1‒5 were determined by analyses of their 1D-, 2D-NMR, and MS. The absolute configuration of 1 was determined by CD analysis. The isolated compounds were assessed for their cytotoxic activities against A549, DU145, HCT116, and HT1080 cancer cell lines. Compounds 1‒5 showed strong cytotoxic activities against DU145, with IC50 values ranging from 14.3 to 16.1 µM. Additionally, all compounds showed moderate or weak cytotoxic activities against all cell lines except for compounds 4 and 1 which showed no cytotoxic activities against A549 and HCT116 cancer cell lines, respectively. Against HT1080 cancer cell line, only compound 2 displayed moderate cytotoxic activity.
Collapse
Affiliation(s)
- Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, 54596, Korea.
| | - Dae-Cheol Choi
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, 54596, Korea
| | - Yeong-Seon Won
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Korea
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, 58762, Republic of Korea
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Korea
- Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Young-Hee Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, 54596, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, 54596, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan-si, 54596, Korea.
| |
Collapse
|
7
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
8
|
Magri M, Bouricha EM, Hakmi M, Jaoudi REL, Belyamani L, Ibrahimi A. In Silico Identification of Natural Food Compounds as Potential Quorum-Sensing Inhibitors Targeting the LasR Receptor of Pseudomonas aeruginosa. Bioinform Biol Insights 2023; 17:11779322231212755. [PMID: 38020496 PMCID: PMC10664429 DOI: 10.1177/11779322231212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and is often associated with biofilm-mediated antibiotic resistance. The LasR protein is a key component of the quorum system in P. aeruginosa, allowing it to regulate its biofilm-induced pathogenicity. When the bacterial population reaches a sufficient density, the accumulation of N-(3-oxododecanoyl) acyl homoserine lactone (3O-C12-HSL) leads to the activation of the LasR receptor, which then acts as a transcriptional activator of target genes involved in biofilm formation and virulence, thereby increasing the bacteria's antibiotic resistance and enhancing its virulence. In this study, we performed a structure-based virtual screening of a natural food database of 10 997 compounds against the crystal structure of the ligand-binding domain of the LasR receptor (PDB ID: 3IX4). This allowed us to identify four molecules, namely ZINC000001580795, ZINC000014819517, ZINC000014708292, and ZINC000004098719, that exhibited a favorable binding mode and docking scores greater than -13 kcal/mol. Furthermore, the molecular dynamics simulation showed that these four molecules formed stable complexes with LasR during the 150-ns molecular dynamics (MD) simulation, indicating their potential for use as inhibitors of the LasR receptor in P. aeruginosa. However, further experimental validation is needed to confirm their activity.
Collapse
Affiliation(s)
- Meryam Magri
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - Rachid EL Jaoudi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
9
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
11
|
Escudero-Feliu J, García-Costela M, Moreno-SanJuan S, Puentes-Pardo JD, Arrabal SR, González-Novoa P, Núñez MI, Carazo Á, Jimenez-Lopez JC, León J. Narrow Leafed Lupin ( Lupinus angustifolius L.) β-Conglutin Seed Proteins as a New Natural Cytotoxic Agents against Breast Cancer Cells. Nutrients 2023; 15:nu15030523. [PMID: 36771230 PMCID: PMC9919070 DOI: 10.3390/nu15030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Breast cancer (BC) is the most widespread tumor in women and the second type of most common cancer worldwide. Despite all the technical and medical advances in existing therapies, between 30 and 50% of patients with BC will develop metastasis, which contributes to the failure of existing treatments. This situation urges the need to find more effective prevention and treatment strategies like the use of plant-based nutraceutical compounds. In this context, we purified three Narrow Leafed Lupin (NLL) β-conglutins isoforms using affinity-chromatography and evaluated their effectiveness in terms of viability, proliferation, apoptosis, stemness properties, and mechanism of action on both BC cell lines and a healthy one. NLL β-conglutins proteins have very promising effects at the molecular level on BC cells at very low concentrations, emerging as a potential natural cytotoxic agent and preserving the viability of healthy cells. These proteins could act through a dual mechanism involving tumorigenic and stemness-related genes such as SIRT1 and FoxO1, depending on the state of p53. More studies must be carried out to completely understand the underlying mechanisms of action of these nutraceutical compounds in BC in vitro and in vivo, and their potential use for the inhibition of other cancer cell types.
Collapse
Affiliation(s)
| | | | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - Jose D. Puentes-Pardo
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, E-18011 Granada, Spain
| | - Sandra Ríos Arrabal
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
| | | | - María Isabel Núñez
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
- Department of Radiology and Physical Medicine, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Center for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
| | - Ángel Carazo
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Plant Signalling, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), E-18008 Granada, Spain
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence: (J.C.J.-L.); (J.L.)
| | - Josefa León
- Biosanitary Research Institute of Granada (ibs.GRANADA), E-18012 Granada, Spain
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, E-18006 Granada, Spain
- Correspondence: (J.C.J.-L.); (J.L.)
| |
Collapse
|
12
|
Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Biomolecules 2023; 13:biom13010093. [PMID: 36671478 PMCID: PMC9856042 DOI: 10.3390/biom13010093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. The high incidence of breast cancer, which is continuing to rise, makes treatment a significant challenge. The PI3K-AKT pathway and its downstream targets influence various cellular processes. In recent years, mounting evidence has shown that natural products and synthetic drugs targeting PI3K-AKT signaling have the potential to treat breast cancer. In this review, we discuss the role of the PI3K-AKT signaling pathway in the occurrence and development of breast cancer and highlight PI3K-AKT-targeting natural products and drugs in clinical trials for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yeqin Yuan
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Huizhi Long
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ziwei Zhou
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuting Fu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Correspondence:
| |
Collapse
|
13
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
14
|
Hussain Y, Khan H, Alam W, Aschner M, Abdullah, Alsharif KF, Saso L. Flavonoids Targeting the mTOR Signaling Cascades in Cancer: A Potential Crosstalk in Anti-Breast Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4831833. [PMID: 35795855 PMCID: PMC9252758 DOI: 10.1155/2022/4831833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/04/2022] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death worldwide. Breast cancer is the second leading cause of death in women, with triple-negative breast cancer being the most lethal and aggressive form. Conventional therapies, such as radiation, surgery, hormonal, immune, gene, and chemotherapy, are widely used, but their therapeutic efficacy is limited due to adverse side effects, toxicities, resistance, recurrence, and therapeutic failure. Many molecules have been identified and investigated as potential therapeutic agents for breast cancer, with a focus on various signaling pathways. Flavonoids are a versatile class of phytochemicals that have been used in cancer treatment to overcome issues with traditional therapies. Cell proliferation, growth, apoptosis, autophagy, and survival are all controlled by mammalian target of rapamycin (mTOR) signaling. Flavonoids target mTOR signaling in breast cancer, and when this signaling pathway is regulated or deregulated, various signaling pathways provide potential therapeutic means. The role of various flavonoids as phytochemicals in targeting mTOR signaling pathways in breast cancer is highlighted in this review.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy
| |
Collapse
|
15
|
Meng Y, Feng R, Yang Z, Liu T, Huo T, Jiang H. Oxidative stress induced by realgar in neurons: p38 MAPK and ERK1/2 perturb autophagy and induce the p62-Keap1-Nrf2 feedback loop to activate the Nrf2 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114582. [PMID: 34492322 DOI: 10.1016/j.jep.2021.114582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Due to the modernization of traditional Chinese medicine (TCM) and the influence of traditional medication habits (TCM has no toxicity or side effects), arsenic poisoning incidents caused by the abuse of realgar and realgar-containing Chinese patent medicines have occurred occasionally. However, the potential mechanism of central nervous system toxicity of realgar remains unclear. AIM OF THE STUDY This study aimed to clarify the specific mechanism of realgar-induced neurotoxicity. MATERIALS AND METHODS In this study, the roles of ERK1/2 and p38 MAPK in realgar-induced neuronal autophagy and overactivation of the nuclear factor erythroid-derived factor 2-related factor (Nrf2) signalling pathways was investigated in vivo and in vitro. RESULTS The arsenic in realgar passed through the blood-brain barrier and accumulated in the brain, resulting in damage to neurons, synapses and myelin sheaths in the cerebral cortex and a decrease in the total antioxidant capacity. The specific mechanism is that the excessive activation of Nrf2 is regulated by the upstream signalling molecules ERK1/2 and p38MAPK. At the same time, p38 MAPK and ERK1/2 interfere with autophagy, thereby promoting autophagy initiation but causing subsequent dysfunctional autophagic degradation and inducing the p62-Keap1-Nrf2 feedback loop to promote Nrf2 signalling pathway activation and nerve cell apoptosis. CONCLUSIONS This study confirmed the role of the signalling molecules p38 MAPK and ERK1/2 in perturbing autophagy and inducing the p62-Keap1-Nrf2 feedback loop to activate the Nrf2 signalling pathway in realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tingting Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
16
|
Chi F, Chen L, Jin X, He G, Liu Z, Han S. CKAP2L, transcriptionally inhibited by FOXP3, promotes breast carcinogenesis through the AKT/mTOR pathway. Exp Cell Res 2022; 412:113035. [DOI: 10.1016/j.yexcr.2022.113035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
|
17
|
Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci 2021; 22:12455. [PMID: 34830339 PMCID: PMC8621356 DOI: 10.3390/ijms222212455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is, globally, one of the main causes of death. Even though various therapies are available, they are still painful because of their adverse side effects. Available treatments frequently fail due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemotherapy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies have suggested small dietary molecules as complementary treatments for cancer patients. Different components of herbal/edible plants, known as flavonoids, have recently garnered attention due to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory, anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown anticancer activity by affecting different signaling cascades. This article summarizes the key progress made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR pathway in various cancers.
Collapse
Affiliation(s)
- Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Xi H, He Z, Lv C. FOXG1 improves mitochondrial function and promotes the progression of nasopharyngeal carcinoma. Mol Med Rep 2021; 24:651. [PMID: 34278485 PMCID: PMC8299199 DOI: 10.3892/mmr.2021.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Forkhead‑box gene 1 (FOXG1) has been reported to serve an important role in various malignancies, but its effects on nasopharyngeal cancer (NPC) remain unknown. Thus, the present study aimed to investigate the specific regulatory relationship between FOXG1 and NPC progression. Tumor tissues and matching para‑carcinoma tissues were obtained from patients with NPC. Small interfering (si)RNA‑FOXG1 and pcDNA3.1‑FOXG1 were transfected into SUNE‑1 and C666‑1 cells to knockdown and overexpress FOXG1 expression, respectively. FOXG1 expression was detected using reverse transcription‑quantitative PCR and immunohistochemistry. Cell proliferation was detected using MTT and 5‑ethynyl‑20‑deoxyuridine assays. Transwell invasion assay, wound healing assay and flow cytometry were used to detect cell invasion, migration and apoptosis, respectively. Western blotting was conducted to detect the expression levels of mitochondrial markers (succinate dehydrogenase complex flavoprotein subunit A, heat shock protein 60 and pyruvate dehydrogenase), epithelial‑mesenchymal transition (EMT) related proteins (N‑cadherin, Snail and E‑cadherin) and apoptosis‑related proteins [Bax, Bcl‑2, poly(ADP‑ribose) polymerase 1 (PARP), cleaved PARP, cleaved caspase‑3, cleaved caspase‑8, cleaved caspase‑9, caspase‑3, caspase‑8 and caspase‑9]. The mitochondrial membrane potential was detected via flow cytometry, while the ATP/ADP ratio was determined using the ADP/ATP ratio assay kit. The present results demonstrated that FOXG1 expression was upregulated in NPC tissues and cells, and was associated with distant metastasis and TNM stage. Moreover, knockdown of FOXG1 inhibited the proliferation, migration, invasion, EMT and mitochondrial function of SUNE‑1 cells, as well as promoted cell apoptosis, while the opposite results were observed in C666‑1 cells. In conclusion, FOXG1 enhanced proliferation, migration and invasion, induced EMT and improved mitochondrial function in NPC cells. The current findings provide an adequate theoretical basis for the treatment of NPC.
Collapse
Affiliation(s)
- Huajun Xi
- Department of Otolaryngology and Stomatology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Zhengxiang He
- Department of Otolaryngology and Maxillofacial Surgery, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Cao Lv
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
19
|
Wei L, Lu X, Weng S, Zhu S, Chen Y. Cholesteryl Ester Promotes Mammary Tumor Growth in MMTV-PyMT Mice and Activates Akt-mTOR Pathway in Tumor Cells. Biomolecules 2021; 11:biom11060853. [PMID: 34201030 PMCID: PMC8228430 DOI: 10.3390/biom11060853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
The association between intratumoral cholesteryl ester (CE) and tumor progression has been reported previously. The objective of our study was to investigate a causal effect of CE on mammary tumor progression. Using MMTV-PyMT (MMTV-polyoma virus middle T) transgenic mice and breast tumor cell MCF-7, we show that both exogenous and endogenous CE can increase mammary tumor growth, that CE upregulates the AKT/mTOR pathway, and that CE synthesis blockade suppresses this signaling pathway. Our data suggest that SOAT1, a sterol O-acyltransferase, may be a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lengyun Wei
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xuyang Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengmei Weng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (L.W.); (X.L.); (S.W.); (S.Z.)
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
20
|
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188569. [PMID: 34015412 DOI: 10.1016/j.bbcan.2021.188569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Apoptosis deficiency is one of the most important features observed in neoplastic diseases. The Bcl-2 family is composed of a subset of proteins that act as decisive apoptosis regulators. Research and clinical studies have both demonstrated that the hyperactivation of Bcl-2-related anti-apoptotic effects correlates with cancer occurrence, progression and prognosis, also having a role in facilitating the radio- and chemoresistance of various malignancies. Therefore, targeting Bcl-2 inactivation has provided some compelling therapeutic advantages by enhancing apoptotic sensitivity or reversing drug resistance. Therefore, this pharmacological route turned into one of the most promising routes for cancer treatment. This review discusses some of the well-defined and emerging roles of Bcl-2 as well as its potential clinical value in cancer therapeutics.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
21
|
Lu Q, Wang L, Gao Y, Zhu P, Li L, Wang X, Jin Y, Zhi X, Yu J, Li X, Qin X, Zhou P. lncRNA APOC1P1-3 promoting anoikis-resistance of breast cancer cells. Cancer Cell Int 2021; 21:232. [PMID: 33902604 PMCID: PMC8074441 DOI: 10.1186/s12935-021-01916-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anoikis resistance plays a critical role in the tumor metastasis by allowing survival of cancer cells in the systemic circulation. We previously showed that long non-coding RNAs APOC1P1-3 (lncRNA APOC1P1-3) inhibit apoptosis of breast cancer cells. In this study, we explored its role in anoikis resistance. METHODS We induced anoikis resistance in two breast cancer cell lines (MCF-7 and MDA-MB-231) under anchorage-independent culture conditions and studied lncRNA APOC1P1-3 effects on apoptosis. Using Dual-Luciferase activity assay, we determined whether it specifically binds to miRNA-188-3P. We further explored its role in lung metastasis by injecting MDA-MB-231 and MDA-MB-231-APOC1P1-3-knock-down cells in female BALB/c nude mice. RESULTS We found that lncRNA APOC1P1-3 suppressed early apoptosis of these cells (demonstrated by gain or loss of their function, respectively) and promoted anoikis resistance via reducing activated- Caspase 3, 8, 9 and PARP. Moreover, it specifically binds to the target miRNA-188-3p acting as a "sponge" to block the inhibition of Bcl-2 (an anti-apoptosis protein). CONCLUSIONS Our study supports a theory that lncRNA APOC1P1-3 can promote development of breast cancer metastasis via anoikis resistance by specifically binding to miRNA-188-3p to block the inhibition of Bcl-2.
Collapse
Affiliation(s)
- Qi Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Li Wang
- Institutes of Biomedical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yabiao Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Ping Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Luying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Youping Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Jerry Yu
- Department of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Xin Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Xingjun Qin
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
22
|
Zhao H, Zhang X, Wang M, Lin Y, Zhou S. Stigmasterol Simultaneously Induces Apoptosis and Protective Autophagy by Inhibiting Akt/mTOR Pathway in Gastric Cancer Cells. Front Oncol 2021; 11:629008. [PMID: 33708631 PMCID: PMC7940753 DOI: 10.3389/fonc.2021.629008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Stigmasterol (SS) has been proven to possess potential anticancer activities in several cancer cell lines, but its molecular mechanism is still unknown. Thus, we investigated whether SS has the capabilities of inducing autophagy and its molecular mechanisms in gastric cancer cells. METHODS We used CCK8 assay, clone formation assay, and EdU proliferation assay to assess the effects of SS on cell proliferation in SGC-7901 and MGC-803 cells in vitro, and its inhibition on the tumor growth of gastric cancer was observed in vivo. Apoptosis induced by SS was demonstrated using Hoechst and TUNEL staining, annexin V-FITC/PI assay. Immunofluorescence staining is used to detect the formation of autophagosomes triggered by SS. Apoptosis and autophagy related proteins were analyzed by western blot. RESULTS The results indicated that SS treatment inhibited cell proliferation in SGC-7901 and MGC-803 cells. Furthermore, SS treatment induced apoptosis and autophagy by blocking Akt/mTOR signaling pathway. The pretreatment with the Akt inhibitor MK-2206 could promote apoptosis and autophagy induced by SS, predicting that Akt/mTOR pathway is involved in SS-induced apoptosis and autophagy. In addition, blockade of autophagy with 3-MA (an inhibitor of autophagy) enhanced SS-induced apoptosis in SGC-7901 and MGC-803 cells, implying that autophagy mediated by SS plays a cytoprotective role against apoptosis. Finally, an in vivo study demonstrated that tumor growth of gastric cancer was suppressed by SS in a xenograft model. CONCLUSION Our findings illustrate for the first time that SS simultaneously induces apoptosis and protective autophagy by inhibiting Akt/mTOR pathway in gastric cancer cells, and SS may become a potential anticancer drug in treating gastric cancer in the future.
Collapse
Affiliation(s)
- Huange Zhao
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Xian Zhang
- Schools of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Min Wang
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Yingying Lin
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
23
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
24
|
Islam R, Lam KW. Recent progress in small molecule agents for the targeted therapy of triple-negative breast cancer. Eur J Med Chem 2020; 207:112812. [DOI: 10.1016/j.ejmech.2020.112812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
25
|
Wang S, Zhang Y, Ren T, Wu Q, Lu H, Qin X, Liu Y, Ding H, Zhao Q. A novel 4-aminoquinazoline derivative, DHW-208, suppresses the growth of human breast cancer cells by targeting the PI3K/AKT/mTOR pathway. Cell Death Dis 2020; 11:491. [PMID: 32606352 PMCID: PMC7327080 DOI: 10.1038/s41419-020-2690-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
Breast cancer is one of the most frequent cancers among women worldwide. However, there is still no effective therapeutic strategy for advanced breast cancer that has metastasized. Aberrant activation of the PI3K/AKT/mTOR pathway is an essential step for the growth of human breast cancers. In our previous study, we designed and synthesized DHW-208 (2,4-difluoro-N-(5-(4-((1-(2-hydroxyethyl)-1H-pyrazol-4-yl)amino)quinazolin-6-yl)-2-methoxypyridin-3-yl)benzenesulfonamide) as a novel pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in breast cancer and investigate its underlying mechanism. We found that DHW-208 inhibited the growth, proliferation, migration, and invasion of breast cancer cells. Moreover, DHW-208 induced breast cancer cell apoptosis via the mitochondrial pathway and induced G0/G1 cell-cycle arrest. In vitro results show that DHW-208 is a dual inhibitor of PI3K and mTOR, and suppress the growth of human breast cancer cells by targeting the PI3K/AKT/mTOR pathway. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in breast cancer. Above all, we report for the first time that DHW-208 suppressed the growth of human breast cancer cells by inhibiting the PI3K/AKT/mTOR-signaling pathway both in vivo and in vitro. Our study may provide evidence for the use of DHW-208 as an effective, novel therapeutic candidate for the treatment of human breast cancers in clinical trials.
Collapse
Affiliation(s)
- Shu Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Tianshu Ren
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, 110840, Shenyang, China
| | - Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, 110840, Shenyang, China
| | - Hongyuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yuyan Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China.
- Department of Pharmacy, General Hospital of Northern Theater Command, 110840, Shenyang, China.
| |
Collapse
|
26
|
Won YS, Seo KI. Sanggenol L Induces Apoptosis and Cell Cycle Arrest via Activation of p53 and Suppression of PI3K/Akt/mTOR Signaling in Human Prostate Cancer Cells. Nutrients 2020; 12:nu12020488. [PMID: 32075054 PMCID: PMC7071324 DOI: 10.3390/nu12020488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is the most common cancer in Western countries. Recently, Asian countries are being affected by Western habits, which have had an important role in the rapid increase in cancer incidence. Sanggenol L (San L) is a natural flavonoid present in the root barks of Morus alba, which induces anti-cancer activities in ovarian cancer cells. However, the molecular and cellular mechanisms of the effects of sanggenol L on human prostate cancer cells have not been elucidated. In this study, we investigated whether sanggenol L exerts anti-cancer activity in human prostate cancer cells via apoptosis and cell cycle arrest. Sanggenol L induced caspase-dependent apoptosis (up-regulation of PARP and Bax or down-regulation of procaspase-3, -8, -9, Bid, and Bcl-2), induction of caspase-independent apoptosis (up-regulation of AIF and Endo G on cytosol), suppression of cell cycle (down-regulation of CDK1/2, CDK4, CDK6, cyclin D1, cyclin E, cyclin A, and cyclin B1 or up-regulation of p53 and p21), and inhibition of PI3K/Akt/mTOR signaling (down-regulation of PI3K, p-Akt, and p-mTOR) in prostate cancer cells. These results suggest the induction of apoptosis via suppression of PI3K/Akt/mTOR signaling and cell cycle arrest via activation of p53 in response to sanggenol L in prostate cancer cells.
Collapse
|