1
|
Stalwick JA, Ratelle M, Gurney KEB, Drysdale M, Lazarescu C, Comte J, Laird B, Skinner K. Sources of exposure to lead in Arctic and subarctic regions: a scoping review. Int J Circumpolar Health 2023; 82:2208810. [PMID: 37196187 PMCID: PMC10193883 DOI: 10.1080/22423982.2023.2208810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Understanding lead exposure pathways is a priority because of its ubiquitous presence in the environment as well as the potential health risks. We aimed to identify potential lead sources and pathways of lead exposure, including long-range transport, and the magnitude of exposure in Arctic and subarctic communities. A scoping review strategy and screening approach was used to search literature from January 2000 to December 2020. A total of 228 academic and grey literature references were synthesised. The majority of these studies (54%) were from Canada. Indigenous people in Arctic and subarctic communities in Canada had higher levels of lead than the rest of Canada. The majority of studies in all Arctic countries reported at least some individuals above the level of concern. Lead levels were influenced by a number of factors including using lead ammunition to harvest traditional food and living in close proximity to mines. Lead levels in water, soil, and sediment were generally low. Literature showed the possibility of long-range transport via migratory birds. Household lead sources included lead-based paint, dust, or tap water. This literature review will help to inform management strategies for communities, researchers, and governments, with the aim of decreasing lead exposure in northern regions.
Collapse
Affiliation(s)
- Jordyn A. Stalwick
- Environment and Climate Change Canada, Science and Technology Branch, Prairie and Northern Wildlife Research Centre, Saskatoon, Canada
| | - Mylène Ratelle
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Kirsty E. B. Gurney
- Environment and Climate Change Canada, Science and Technology Branch, Prairie and Northern Wildlife Research Centre, Saskatoon, Canada
| | - Mallory Drysdale
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Calin Lazarescu
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Jérôme Comte
- Institut National de Recherche Scientifique (INRS), Eau Terre Environnement Centre, Québec, Canada
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
2
|
Li M, Tang B, Zheng J, Luo W, Xiong S, Ma Y, Ren M, Yu Y, Luo X, Mai B. Typical organic contaminants in hair of adult residents between inland and coastal capital cities in China: Differences in levels and composition profiles, and potential impact factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161559. [PMID: 36649778 DOI: 10.1016/j.scitotenv.2023.161559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The growing of urbanization, industrialization, and agricultural production have resulted in the increasing contamination of typical organic contaminants (OCs) in China. However, data on differences in exposure characteristics of typical OCs between the coastal and inland cities among residents in China are limited. In this study, hair samples were collected from adult residents in 10 and 17 provincial capital cities in coastal and inland China, respectively, to investigate the differences in the levels and composition profiles of typical OCs. The potential factors impacting the human exposure to OCs were also examined based on the relationship among the hair OC levels and the population characteristics and statistical indicators. The median concentrations of dichlorodiphenyltrichloroethane's (DDTs), polybrominated diphenyl ethers (PBDEs), and organophosphorus flame retardants (PFRs) in hair of coastal urban residents were 3.64, 5.58, and 268 ng/g, respectively, while their concentrations in samples from inland urban residents were 1.84, 3.85, and 202 ng/g, respectively. Coastal residents showed significantly higher hair OC concentrations than inland residents (p < 0.05). BDE209 and p,p'-DDE were the predominant chemicals for PBDEs and DDTs, respectively, in both coastal and inland cities. Tris(2-chloroisopropyl) phosphate (TCIPP) was the dominant PFR in coastal residents' hair, while triphenyl phosphate (TPHP) was the major PFR in inland residents' hair, possibly owing to the different usages of the PFRs. Significant gender differences were observed in the levels and composition profiles of OCs (p < 0.05). The levels of p,p'-DDE and TCIPP were significantly related to the gross domestic product (GDP), gross secondary industry product, and the per capita consumption of aquatic products (p < 0.05). This study provides scientific data for evaluating human exposure to OCs in urban residents at a large scale and its associations with statistical indicators including urbanization, industrialization, agricultural production, and diet in China.
Collapse
Affiliation(s)
- Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Shimao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
3
|
Knowledge and Behavioral Habits to Reduce Mycotoxin Dietary Exposure at Household Level in a Cohort of German University Students. Toxins (Basel) 2021; 13:toxins13110760. [PMID: 34822544 PMCID: PMC8618271 DOI: 10.3390/toxins13110760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins pose a health concern for humans. Therefore, strategies at pre- and post-harvest and maximum levels for food have been implemented, aimed to minimize the risk of dietary exposure. Yet, consumers’ dietary habits and life style play a substantial role in overall exposure. The aim of this study was to investigate knowledge of mycotoxins and accordance to behavioral practices or habits that may affect the risk of mycotoxin dietary exposure at the household level or when food commodities are obtained from non-regulated trade markets. For this purpose, an online survey was applied to a university student cohort (n = 186). The survey consisted of 23 questions grouped in five categories: Socio-demographic and income data, general life style and habits, knowledge about mycotoxins, compliance with the “17 golden rules to prevent mycotoxin contamination” of the German Federal Institute for Risk Assessment (BfR), and measures towards reducing health risks. We paid particular attention to knowledge and compliance of a group acquiring food items in markets outside regulation and surveillance, namely, adherents of food movements such as food sharing or dumpster diving. The results of our study indicate a generally rather low level of knowledge about mycotoxins in the investigated cohort, as well as a weak perception of their associated risks compared to similar studies; around half of the cohort was unfamiliar with the term “mycotoxin” and the health risks of mycotoxins were considered comparable to those of pesticides, heavy metals, microplastics and food additives. We observed, in general, a relatively high degree of compliance with the proposed golden rules. The rules with the highest compliance related to deteriorated foods with visible signs of fungal infestation, probably because these are already considered as food waste. Rules that were less followed included those that require a specific knowledge of food storage and early fungal contamination stages, namely preventive measures related to storage of bread. Adherents of food movements did not differ significantly with the control group in terms of knowledge, risk perception and compliance with the 17 golden rules. This may be due to the homogeneity of the cohort in terms of demography, age and educational level. However, significant low compliance in the food movements group was observed with the rules “Buy fruit and vegetables that are as intact as possible, i.e., without injuries and bruises” and “Rotten fruit should neither be eaten nor further processed into compote or jam”, possibly because of ideological convictions around reducing food waste. In conclusion, mycotoxin prevention strategies should not end at the retail level; in particular, clarification and information regarding health risk from mycotoxins are suggested in order to reduce the risk of exposure in private households or in informal trade markets. The results of this study should, however, be interpreted with caution due to the specific characteristics of the cohort in terms of age and educational level and the disparity in size between the control and the food movement group. This study is a starting point for evaluating and understanding the consumer perspective on mycotoxins.
Collapse
|
4
|
Jørgensen LH, Sindahl CH, Pedersen L, Nielsen F, Jensen TK, Tolstrup J, Ekholm O, Grandjean P. Reference intervals for trace elements in the general Danish population and their dependence on serum proteins. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:523-531. [PMID: 34369211 DOI: 10.1080/00365513.2021.1959050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Reference intervals that indicate the anticipated results of clinical chemistry parameters in a healthy background population are essential for the proper interpretation of laboratory data. In the present study, we analysed major trace elements in blood samples from 400 randomly selected members of the general Danish population. Reference intervals were established for trace elements in both whole blood and serum, and associations with major plasma transport proteins were investigated. In the case of a statistically significant correlation, a corresponding protein-adjusted reference interval was established for comparison with the unadjusted interval. While several trace elements correlated with albumin, ferritin and transferrin, the overall impact of transport proteins was minor and resulted in only marginal changes in the reference intervals. In conclusion, the updated reference intervals for trace elements can be employed without adjusting for plasma protein concentrations.
Collapse
Affiliation(s)
- Louise H Jørgensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Camilla H Sindahl
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lise Pedersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Biochemistry, Holbaek Hospital, Holbaek, Denmark
| | - Flemming Nielsen
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tina K Jensen
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Janne Tolstrup
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Ola Ekholm
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Boberg J, Bredsdorff L, Petersen A, Löbl N, Jensen BH, Vinggaard AM, Nielsen E. Chemical Mixture Calculator - A novel tool for mixture risk assessment. Food Chem Toxicol 2021; 152:112167. [PMID: 33823229 DOI: 10.1016/j.fct.2021.112167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022]
Abstract
Humans are continuously exposed to complex chemical mixtures from foods and the environment. Experimental models in vivo and in vitro have increased our knowledge on how we can predict mixture effects. To accommodate a need for tools for efficient mixture risk assessment across different chemical classes and exposure sources, we have developed fit-for-purpose criteria for grouping of chemicals and a web-based tool for mixture risk assessment. The Chemical Mixture Calculator (available at www.chemicalmixturecalculator.dk) can be used for mixture risk assessment or identification of main drivers of risk. The underlying database includes hazard and exposure estimates for more than 200 chemicals in foods and environment. We present a range of cumulative assessment groups for effects on haematological system, kidney, liver, nervous system, developmental and reproductive system, and thyroid. These cumulative assessment groups are useful for grouping of chemicals at several levels of refinement depending on the question addressed. We present a mixture risk assessment case for phthalates, evaluated with and without contributions from other chemicals with similar effects. This case study shows the usefulness of the tool as a starting point for mixture risk assessment by the risk assessor, and emphasizes that solid scientific insight regarding underlying assumptions and uncertainties is crucial for result interpretation.
Collapse
Affiliation(s)
- Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Lea Bredsdorff
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Annette Petersen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Nathalie Löbl
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Bodil Hamborg Jensen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Elsa Nielsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
6
|
Zhang H, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Meat Products. Curr Drug Metab 2020; 21:779-789. [PMID: 32838714 DOI: 10.2174/1389200221999200820164650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| |
Collapse
|
7
|
Elemental (As, Zn, Fe and Cu) analysis and health risk assessment of rice grains and rice based food products collected from markets from different cities of Gangetic basin, India. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|