1
|
Sim SY, Cho HD, Lee SB. Amelioration of Alcoholic Hepatic Steatosis in a Rat Model via Consumption of Poly-γ-Glutamic Acid-Enriched Fermented Protaetia brevitarsis Larvae Using Bacillus subtilis. Foods 2025; 14:861. [PMID: 40077563 PMCID: PMC11899319 DOI: 10.3390/foods14050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Alcoholic hepatic steatosis (AHS) is a common early-stage symptom of liver disease caused by alcohol consumption. Accordingly, several aspects of AHS have been studied as potential preventive and therapeutic targets. In this study, a novel strategy was employed to inhibit fatty liver accumulation and counteract AHS through the consumption of microorganism-fermented Protaetia brevitarsis larvae (FPBs). By using an AHS rat model, we assessed the efficacy of FPB by examining the lipid profile of liver/serum and liver function tests to evaluate lipid metabolism modulation. After FPB administration, the lipid profile-including high-density lipoprotein, total cholesterol, and total triglycerides-and histopathological characteristics exhibited improvement in the animal model. Interestingly, AHS amelioration via FPBs administration was potentially associated with poly-γ-glutamic acid (PγG), which is produced by Bacillus species during fermentation. These findings support the formulation of novel natural remedies for AHS through non-clinical animal studies, suggesting that PγG-enriched FPBs are a potentially valuable ingredient for functional foods, providing an ameliorative effect on AHS.
Collapse
Affiliation(s)
- So-Yeon Sim
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Sunchon 57922, Republic of Korea;
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Yang M, Hutchinson N, Ye N, Timek H, Jennings M, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as Oral Probiotics To Enhance Clearance of Blood Lactate. ACS Synth Biol 2025; 14:101-112. [PMID: 39739838 DOI: 10.1021/acssynbio.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases, such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between the systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic Bacillus subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced the level of blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to "knocking down" circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hania Timek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Maria Jennings
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Justin D Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, Massachusetts 02142, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Zhang J, Li C, Duan M, Qu Z, Wang Y, Dong Y, Wu Y, Fang S, Gu S. The Improvement Effects of Weizmannia coagulans BC99 on Liver Function and Gut Microbiota of Long-Term Alcohol Drinkers: A Randomized Double-Blind Clinical Trial. Nutrients 2025; 17:320. [PMID: 39861457 PMCID: PMC11769147 DOI: 10.3390/nu17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation. METHODS This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group. Two groups were given BC99 (3 g/day, 1 × 1010 CFU) or placebo (3 g/day) for 60 days, respectively. Before and after the intervention, blood routine indicators, liver function, renal function, inflammatory factors and intestinal flora were evaluated. RESULTS The results showed that intervention with Weizmannia coagulans BC99 reduced the levels of alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, serum total bilirubin, blood urea nitrogen, uric acid and 'blood urea nitrogen/creatinine'. Weizmannia coagulans BC99 also reduced the levels of pro-inflammatory factors TNF-α and IL-6 and increased the levels of anti-inflammatory factor IL-10. The results of intestinal flora analysis showed that Weizmannia coagulans BC99 regulated the imbalance of intestinal flora, increased the beneficial bacteria abundance (Prevotella, Faecalibacterium and Roseburia) and reduced the conditionally pathogenic bacteria abundance (Escherichia-Shigella and Klebsiella). Both LEfSe analysis and random forest analysis indicated that the increase in the abundance of Muribaculaceae induced by BC99 was a key factor in alleviating alcohol-induced liver damage. CONCLUSIONS These findings demonstrate that Weizmannia coagulans BC99 has the potential to alleviate alcoholic liver injury and provide an effective strategy for liver protection in long-term drinkers.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhen Qu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuguang Fang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
4
|
Ji K, Zhang Y, Zhang T, Li D, Yuan Y, Wang L, Huang Q, Chen W. sll1019 and slr1259 encoding glyoxalase II improve tolerance of Synechocystis sp. PCC 6803 to methylglyoxal- and ethanol- induced oxidative stress by glyoxalase pathway. Appl Environ Microbiol 2024; 90:e0056424. [PMID: 39431850 PMCID: PMC11577758 DOI: 10.1128/aem.00564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
The glyoxalase pathway is the primary detoxification mechanism for methylglyoxal (MG), a ubiquitous toxic metabolite that disrupts redox homeostasis. In the glyoxalase pathway, glyoxalase II (GlyII) can completely detoxify MG. Increasing the activity of the glyoxalase system can enhance the resistance of plants or organisms to abiotic stress, but the relevant mechanism remains largely unknown. In this study, we investigated the physiological functions of GlyII genes (sll1019 and slr1259) in Synechocystis sp. PCC 6803 under MG or ethanol stress based on transcriptome and metabolome data. High-performance liquid chromatography (HPLC) results showed that proteins Sll1019 and Slr1259 had GlyII activity. Under stress conditions, sll1019 and slr1259 protected the strain against oxidative stress by enhancing the activity of the glyoxalase pathway and raising the contents of antioxidants such as glutathione and superoxide dismutase. In the photosynthetic system, sll1019 and slr1259 indirectly affected the light energy absorption by strains, synthesis of photosynthetic pigments, and activities of photosystem I and photosystem II, which was crucial for the growth of the strain under stress conditions. In addition, sll1019 and slr1259 enhanced the tolerance of strain to oxidative stress by indirectly regulating metabolic networks, including ensuring energy acquisition, NADH and NADPH production, and phosphate and nitrate transport. This study reveals the mechanism by which sll1019 and slr1259 improve oxidative stress tolerance of strains by glyoxalase pathway. Our findings provide theoretical basis for breeding, seedling, and field production of abiotic stress tolerance-enhanced variety.IMPORTANCEThe glyoxalase system is present in most organisms, and it is the primary pathway for eliminating the toxic metabolite methylglyoxal. Increasing the activity of the glyoxalase system can enhance plant resistance to environmental stress, but the relevant mechanism is poorly understood. This study revealed the physiological functions of glyoxalase II genes sll1019 and slr1259 in Synechocystis sp. PCC 6803 under abiotic stress conditions and their regulatory effects on oxidative stress tolerance of strains. Under stress conditions, sll1019 and slr1259 enhanced the activity of the glyoxalase pathway and the antioxidant system, maintained photosynthesis, ensured energy acquisition, NADH and NADPH production, and phosphate and nitrate transport, thereby protecting the strain against oxidative stress. This study lays a foundation for further deciphering the mechanism by which the glyoxalase system enhances the tolerance of cells to abiotic stress, providing important information for breeding, seedling, and selection of plants with strong stress resistance.
Collapse
Affiliation(s)
- Kai Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yihang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daixi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuan Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zhang L, Zhang Y, Liu S, Song J, Suo H. Degradation effects and mechanisms of Limosilactobacillus fermentum on ethanol. Food Funct 2024; 15:10283-10299. [PMID: 39233486 DOI: 10.1039/d4fo02918f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Acute heavy drinking can lead to a rapid increase in blood ethanol concentration, resulting in dizziness, liver damage, and other adverse effects. Although lactic acid bacteria possess the ability to degrade ethanol, the mechanisms remain unclear. For the first time, our study revealed that Limosilactobacillus fermentum DACN611, derived from traditional Chinese fermented yogurt, exhibited superior ethanol degradation capability, achieving a 90.87% ± 8.12% reduction in ethanol concentration in a 2.5% (v/v) ethanol MRS broth over 24 h, among fifty lactic acid bacteria strains. Notably, transcriptome analysis of DACN611 under ethanol stress conditions revealed that DACN611 degraded ethanol by adjusting the cell cycle, promoting protein synthesis, maintaining oxidative metabolic homeostasis, and modulating cell wall and membrane synthesis along with other metabolic pathways. Additionally, DACN611 showed excellent resistance to gastric acid and bile salts, along with a safe profile. In the acute heavy drinking Kunming mouse model, DACN611 significantly increased the latency of the loss of righting reflex (LORR) and reduced the LORR duration. Serum ethanol and acetaldehyde concentrations decreased by 35.36% and 33.56%, respectively. The gastric and hepatic activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) increased by 1.98-fold and 1.95-fold, and 1.79-fold and 1.70-fold, respectively. In addition, DACN611 decreased serum alanine aminotransferase and aspartate aminotransferase levels, and reduced hepatic cytochrome P450 2E1 expression. It also alleviated pathological liver changes, demonstrating protective effects against alcoholic liver injury in mice. In conclusion, DACN611 significantly degraded ethanol through adaptive metabolic changes under ethanol stress conditions and the promotion of ADH and ALDH activities in gastric and hepatic tissues.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Shijian Liu
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China.
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wang J, Wang Z, Liu C, Song M, Xu Q, Liu Y, Yan H. Genome analysis of a newly isolated Bacillus velezensis-YW01 for biodegrading acetaldehyde. Biodegradation 2024; 35:539-549. [PMID: 38573500 DOI: 10.1007/s10532-024-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihao Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
7
|
Yang M, Hutchinson N, Ye N, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as oral probiotics to enhance clearance of blood lactate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569300. [PMID: 38076834 PMCID: PMC10705430 DOI: 10.1101/2023.11.30.569300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic B. subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced elevations in blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to 'knocking down' circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Justin D. Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
8
|
Kang S, Long J, Park MS, Ji GE, Ju Y, Ku S. Investigating human-derived lactic acid bacteria for alcohol resistance. Microb Cell Fact 2024; 23:118. [PMID: 38659044 PMCID: PMC11040769 DOI: 10.1186/s12934-024-02375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.
Collapse
Affiliation(s)
- Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826, South Korea
| | - Jing Long
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life Sciences and Health, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Myeong Soo Park
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117, South Korea
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826, South Korea
| | - Ying Ju
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826, South Korea.
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117, South Korea.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Gu X, Zhao R, Li H, Dong X, Meng M, Li T, Zhao Q, Li Y. Patterns of the Nutrients and Metabolites in Apostichopus japonicus Fermented by Bacillus natto and Their Ability to Alleviate Acute Alcohol Intoxication. Foods 2024; 13:262. [PMID: 38254563 PMCID: PMC10814447 DOI: 10.3390/foods13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference between the basic components of sea cucumber (SC) and fermented sea cucumber (FSC). The SC proteins were degraded after fermentation, and the amino acid content in FSC was significantly increased. The differentially abundant metabolites of SC and FSC were identified by LC-MS/MS. The contents of amino acid metabolites increased after fermentation, and arachidonic acid metabolism was promoted. The results demonstrated that FSC alleviated AAI by improving the activities of alcohol-metabolizing enzymes and antioxidant enzymes in the liver but did not alleviate the accumulation of triglycerides. Our results will provide beneficial information for the development and application of new products from FSC.
Collapse
Affiliation(s)
- Xingyu Gu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Ran Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Haiman Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Xinyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Meishan Meng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
| | - Qiancheng Zhao
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Li Z. Study on the Construction and Application of Engineering Bacteria. LECTURE NOTES IN COMPUTER SCIENCE 2024:329-342. [DOI: 10.1007/978-3-031-64636-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Zhang Y, Qin Y, Gu M, Xu Y, Dou X, Han D, Lin G, Wang L, Wang Z, Wang J, Sun Y, Wu Y, Chen R, Qiao Y, Zhang Q, Li Q, Wang X, Xu Z, Cong Y, Chen J, Wang Z. Association between the cashmere production performance, milk production performance, and body size traits and polymorphism of COL6A5 and LOC102181374 genes in Liaoning cashmere goats. Anim Biotechnol 2023; 34:4415-4429. [PMID: 36527393 DOI: 10.1080/10495398.2022.2155177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to analyze the relationship between COL6A5 (collagen type VI alpha 5 chain) and LOC102181374 (alcohol dehydrogenase 1) genes and the production performance of Liaoning cashmere goats by single nucleotide polymorphism (SNP). We have searched for SNP loci of COL6A5 and LOC102181374 genes through sequence alignment and PCR experiments, and have used SPSS and SHEsis software to analyze production data. We obtained five SNP loci in total, including three SNP loci (G50985A, G51140T, G51175A) in COL6A5 gene and two SNP loci (A10067G, T10108C) in LOC102181374 gene. The genotypes G50985A (AG), G51140T (GT), G51175A (AA), A10067G (AA), and T10108C (CC) of these loci have certain advantages in improving the production performance of Liaoning cashmere goats. The haplotype combinations that can improve production performance in COL6A5 gene were H1H5:AGGGAG, H4H4:GGGGAA, and H4H4:GGGGAA. H3H3:GGCC and H2H4:AGTT were the dominant combinations in LOC102181374 gene. At G51175A and A10067G loci, we found that H1H2:AAAG and H1H3:AGAA have dominant effects. These results may provide some support for the molecular breeding of production traits in Liaoning cashmere goats.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Di Han
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Guangyu Lin
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Lingling Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Zhanhong Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Jiaming Wang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Liaoyang, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhiguo Xu
- Dalian Modern Agricultural Production Development Service Center, Dalian, China
| | - Yuyan Cong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jing Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
13
|
Moslemi M, Jannat B, Mahmoudzadeh M, Ghasemlou M, Abedi A. Detoxification activity of bioactive food compounds against ethanol-induced injuries and hangover symptoms: A review. Food Sci Nutr 2023; 11:5028-5040. [PMID: 37701198 PMCID: PMC10494618 DOI: 10.1002/fsn3.3520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 09/14/2023] Open
Abstract
Alcohol drinking is a popular activity among adolescents in many countries, largely due to its pleasant, relaxing effects. As a major concern, ethanol consumption put the drinkers at risk of nutrients' deficiency due to the disordered eating, anorexia, and malabsorption of nutrients. Moreover, alcohol drinking may lead to the development of hangover symptoms including diarrhea, thirsty, fatigue, and oxidative stress. A broad range of functional food components with antioxidant and/or anti-inflammatory properties including pectin, aloe vera polysaccharides, chito-oligosaccharides, and other herbal components have been explored due to their detoxification effects against ethanol. The underlying anti-hangover mechanisms include reducing the intestinal absorption of ethanol or its metabolites, increasing the activity of ethanol metabolizing enzymes, development of fatty acid β-oxidation in mitochondria, inhibition of inflammatory response, blocking the target receptors of ethanol in the body, and possession of antioxidant activity under the oxidative stress developed by ethanol consumption. Therefore, the development of bioactive food-based therapeutic formula can assist clinicians and also drinkers in the alleviation of alcohol side effects.
Collapse
Affiliation(s)
- Masoumeh Moslemi
- Halal Research Center of IRIMinistry of Health and Medical EducationTehranIran
| | - Behrooz Jannat
- Halal Research Center of IRIMinistry of Health and Medical EducationTehranIran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| | - Mehran Ghasemlou
- School of ScienceSTEM College, RMIT UniversityMelbourneVictoriaAustralia
| | - Abdol‐Samad Abedi
- Department of Research Deputy, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Ciocan D, Elinav E. Engineering bacteria to modulate host metabolism. Acta Physiol (Oxf) 2023; 238:e14001. [PMID: 37222395 PMCID: PMC10909415 DOI: 10.1111/apha.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
The microbial community of the gut, collectively termed the gut microbiota, modulates both host metabolism and disease development in a variety of clinical contexts. The microbiota can have detrimental effects and be involved in disease development and progression, but it can also offer benefits to the host. This has led in the last years to the development of different therapeutic strategies targeting the microbiota. In this review, we will focus on one of these strategies that involve the use of engineered bacteria to modulate gut microbiota in the treatment of metabolic disorders. We will discuss the recent developments and challenges in the use of these bacterial strains with an emphasis on their use for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dragos Ciocan
- Systems Immunology DepartmentWeisman Institute of ScienceRehovotIsrael
- School of MedicineParis‐Saclay UniversityLe Kremlin‐BicêtreFrance
| | - Eran Elinav
- Systems Immunology DepartmentWeisman Institute of ScienceRehovotIsrael
- Microbiota & Cancer DivisionDKFZHeidelbergGermany
| |
Collapse
|
15
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
16
|
Peng Z, Wang R, Xia X, Zhang J. Engineered acetaldehyde dehydrogenase for the efficient degradation of acetaldehyde. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117258. [PMID: 36669314 DOI: 10.1016/j.jenvman.2023.117258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Acetaldehyde is highly cytotoxic and widely presents in food and the environment. Aldehyde dehydrogenase (ALDH) can degrade acetaldehyde to non-toxic acetic acid, showing potential for acetaldehyde elimination. However, a lack of high-throughput methods for screening efficient variants is a significant obstacle to ALDH design. Here, we established a visualized high-throughput method to screen recombinantly expressed ALDH variants in Bacillus subtilis by fluorescent probes of dual-acceptor cyanine-based in response to NADH, the acetaldehyde degradation product. Molecular docking revealed key amino acids in the binding region of acetaldehyde to ALDH. Combined with saturation mutagenesis and visualization high-throughput methods, a variant ALDHS273N with an activity of 119.82 U·mL-1 was screened. The optimal reaction temperature and pH of ALDHS273N were 60 °C and 9.0, respectively. ALDHS273N showed stability at 30-50 °C and pH 5.0-9.0. The activity of ALDHS273N was increased to 263.52 U∙mL-1 by fermentation optimization, which was 5.58 times that of ALDHWT. The degradation rate of ALDHS273N to 100 mmol L-1 acetaldehyde was 87.34% within 2 h, which was 4.2 times that of the wild enzyme (20.81%). As far as we know, this is the ALDH with the highest activity reported so far, and it is also the first time that ALDH has been used for the efficient degradation of acetaldehyde. Overall, the reported high-throughput screening method and developed mutants represent a significant advance in green bio-elimination technologies of acetaldehyde.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ran Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiaofeng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
17
|
Qiao JY, Li W, Zeng RY, Yu YJ, Chen QW, Liu XH, Cheng SX, Zhang XZ. An orally delivered bacteria-based coacervate antidote for alcohol detoxification. Biomaterials 2023; 296:122072. [PMID: 36878091 DOI: 10.1016/j.biomaterials.2023.122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.
Collapse
Affiliation(s)
- Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Run-Yao Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
High-level expression of an acetaldehyde dehydrogenase from Lactiplantibacillus plantarum and preliminary evaluation of its potential as a functional food additive. ELECTRON J BIOTECHN 2023. [DOI: 10.1016/j.ejbt.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
19
|
Optimal Secretory Expression of Acetaldehyde Dehydrogenase from Issatchenkia terricola in Bacillus subtilis through a Combined Strategy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030747. [PMID: 35164011 PMCID: PMC8838704 DOI: 10.3390/molecules27030747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/20/2023]
Abstract
Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 °C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.
Collapse
|
20
|
Genetically encoded probiotic EcN 1917 alleviates alcohol-induced acute liver injury and restore gut microbiota homeostasis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
21
|
Regulation of Alcohol and Acetaldehyde Metabolism by a Mixture of Lactobacillus and Bifidobacterium Species in Human. Nutrients 2021; 13:nu13061875. [PMID: 34070917 PMCID: PMC8228388 DOI: 10.3390/nu13061875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive alcohol consumption is one of the most significant causes of morbidity and mortality worldwide. Alcohol is oxidized to toxic and carcinogenic acetaldehyde by alcohol dehydrogenase (ADH) and further oxidized to a non-toxic acetate by aldehyde dehydrogenase (ALDH). There are two major ALDH isoforms, cytosolic and mitochondrial, encoded by ALDH1 and ALDH2 genes, respectively. The ALDH2 polymorphism is associated with flushing response to alcohol use. Emerging evidence shows that Lactobacillus and Bifidobacterium species encode alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) mediate alcohol and acetaldehyde metabolism, respectively. A randomized, double-blind, placebo-controlled crossover clinical trial was designed to study the effects of Lactobacillus and Bifidobacterium probiotic mixture in humans and assessed their effects on alcohol and acetaldehyde metabolism. Here, twenty-seven wild types (ALDH2*1/*1) and the same number of heterozygotes (ALDH2*2/*1) were recruited for the study. The enrolled participants were randomly divided into either the probiotic (Duolac ProAP4) or the placebo group. Each group received a probiotic or placebo capsule for 15 days with subsequent crossover. Primary outcomes were measurement of alcohol and acetaldehyde in the blood after the alcohol intake. Blood levels of alcohol and acetaldehyde were significantly downregulated by probiotic supplementation in subjects with ALDH2*2/*1 genotype, but not in those with ALDH2*1/*1 genotype. However, there were no marked improvements in hangover score parameters between test and placebo groups. No clinically significant changes were observed in safety parameters. These results suggest that Duolac ProAP4 has a potential to downregulate the alcohol and acetaldehyde concentrations, and their effects depend on the presence or absence of polymorphism on the ALDH2 gene.
Collapse
|
22
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
23
|
Baburam C, Feto NA. Mining of two novel aldehyde dehydrogenases (DHY-SC-VUT5 and DHY-G-VUT7) from metagenome of hydrocarbon contaminated soils. BMC Biotechnol 2021; 21:18. [PMID: 33648490 PMCID: PMC7923466 DOI: 10.1186/s12896-021-00677-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Aldehyde dehydrogenases are vital for aerobic hydrocarbon degradation and is involved in the last step of catalysing the oxidation of aldehydes to carboxylic acids. With the global increase in hydrocarbon pollution of different environments, these enzymes have the potential to be used in enzymatic bioremediation applications. Results Fifteen fosmid clones with hydrocarbon degrading potential were functionally screened to identify dehydrogenase enzymes. Accordingly, the fosmid insert of the positive clones were sequenced using PacBio next generation sequencing platform and de novo assembled using CLC Genomic Work Bench. The 1233 bp long open reading frame (ORF) for DHY-SC-VUT5 was found to share a protein sequence similarity of 97.7% to short-chain dehydrogenase from E. coli. The 1470 bp long ORF for DHY-G-VUT7 was found to share a protein sequence similarity of 23.9% to glycine dehydrogenase (decarboxylating) (EC 1.4.4.2) from Caulobacter vibrioides (strain NA1000 / CB15N) (Caulobacter crescentus). The in silico analyses and blast against UNIPROT protein database with the stated similarity show that the two dehydrogenases are novel. Biochemical characterization revealed, that the highest relative activity was observed at substrate concentrations of 150 mM and 50 mM for DHY-SC-VUT5 and DHY-G-VUT7, respectively. The Km values were found to be 13.77 mM with a Vmax of 0.009135 μmol.min− 1 and 2.832 mM with a Vmax of 0.005886 μmol.min− 1 for DHY-SC-VUT5 and DHY-G-VUT7, respectively. Thus, a potent and efficient enzyme for alkyl aldehyde conversion to carboxylic acid. Conclusion The microorganisms overexpressing the novel aldehyde dehydrogenases could be used to make up microbial cocktails for biodegradation of alkanes. Moreover, since the discovered enzymes are novel it would be interesting to solve their structures by crystallography and explore the downstream applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00677-8.
Collapse
Affiliation(s)
- Cindy Baburam
- OMICS Research Group, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Naser Aliye Feto
- OMICS Research Group, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1911, South Africa.
| |
Collapse
|
24
|
Tan Y, Shen J, Si T, Ho CL, Li Y, Dai L. Engineered Live Biotherapeutics: Progress and Challenges. Biotechnol J 2020; 15:e2000155. [DOI: 10.1002/biot.202000155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Yang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT) Chinese Academy of Sciences Shenzhen 518055 China
| | - Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT) Chinese Academy of Sciences Shenzhen 518055 China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT) Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun Loong Ho
- Department of Biomedical Engineering, SUSTech Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yinqing Li
- School of Pharmaceutical Sciences Tsinghua University IDG‐McGovern Institute for Brain Research Beijing 100084 China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT) Chinese Academy of Sciences Shenzhen 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
25
|
Cespedes-Acuña CL, Wei ZJ. X th International Symposium on Natural Products Chemistry and Applications (2019 X ISNPCA Chillan Chile). Food Chem Toxicol 2020; 140:111316. [PMID: 32246955 DOI: 10.1016/j.fct.2020.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello, Avenue, Chillan, Chile.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|