1
|
Wang Y, Dong J, Yu G, Liu L, Fan M, Kang Y, Guo Z, Zhang J. Efficient remediation of Hg in soils by iron-based materials: Environmental variable effect and regulatory mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125361. [PMID: 40233617 DOI: 10.1016/j.jenvman.2025.125361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
The effectiveness of iron-based materials in soil remediation has gained significant attention. The mechanisms underlying the methylation and demethylation of mercury (Hg) by iron materials were still elusive. In this study, the effect of typical iron materials (pyrrhotite, hematite, and zero-valent iron (ZVI)) on the transformation of Hg were investigated. The supplementation of various iron-based material increased the THg removal efficiency in soil, particularly with ZVI, which was 5.6-14.2 % higher than that of the control. The iron-based materials also reduced the stress of Hg on plants and soil by decreasing the transformation and translocation of Hg and increasing oxidative enzyme activity of plants. The ZVI decreased the MeHg content in plants (0.1 mg/kg) compared to the control group (0.3 mg/kg). The relative abundances of genes that encoded Hg transportation (e.g. merA), glycolysis, TCA, and iron reduction were increased with the addition of iron materials. Iron-based materials also increased the complexity of the bacterial network, thereby enhancing the robustness of the microbial environmental systems that against Hg stress. The present study provided a comprehensive assessment of the efficacy of iron-based materials in remediating Hg-contaminated soils.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiahao Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Guangzhou Yu
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan, 250000, China
| | - Lixin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Minghao Fan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
2
|
Gao Q, Chen JN, Tian YL, Hao MM, Sha XL, Li A, Peng X, Yu T, Gu XJ, Xue YL. Effects of different crushing methods on the properties and flavor of selenium-enriched sweet potato leaves. Food Chem X 2025; 26:102266. [PMID: 40027115 PMCID: PMC11870210 DOI: 10.1016/j.fochx.2025.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
In this study, the physical, chemical, structural, and antioxidant characteristics of selenium (Se)-enriched sweet potato leaves (SSPL) powder produced through shear breaking and superfine grinding were examined. The superfine grinding SSPL powder had a brighter color, smaller particle size, and spherical shape. The superfine grinding SSPL powder showed improved dispersibility and solubility but reduced liquidity. Superfine grinding destroyed the crystalline area and decreased the thermal stability, while Se application did not significantly change the ordered structure. Correlation analysis showed that superfine grinding could improve crude fiber, crude lipid, total flavonoids, total polyphenol, and significantly enhance the antioxidant activities compared to shear breaking. Se enrichment can enhance the content of the crude protein and the DPPH• scavenging activity and reducing power. The flavor characteristic was not altered with the different crushing methods and Se concentrations. SSPL powder could serve as a potential resource for a new solid beverage.
Collapse
Affiliation(s)
- Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, PR China
| | - Jia-Nan Chen
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Liaoning Key Laboratory of Food Bioprocessing, Shenyang 110036, PR China
| | - Yu-Lu Tian
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Liaoning Key Laboratory of Food Bioprocessing, Shenyang 110036, PR China
| | - Miao-Miao Hao
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Liaoning Key Laboratory of Food Bioprocessing, Shenyang 110036, PR China
| | - Xuan-Li Sha
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Liaoning Key Laboratory of Food Bioprocessing, Shenyang 110036, PR China
| | - Ang Li
- Liaoning Institute of Standardization, Shenyang 110002, PR China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Liaoning Key Laboratory of Food Bioprocessing, Shenyang 110036, PR China
| | - Tao Yu
- Tuber Division, Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, PR China
| | - Xue-Jun Gu
- Institute of Rare and Scattered Elements, Liaoning University, Shenyang 110036, PR China
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, PR China
- Liaoning Key Laboratory of Food Bioprocessing, Shenyang 110036, PR China
| |
Collapse
|
3
|
Bai Y, Lan X, Xu S. Effects of combined application of Se and ammonium fertilizers on the growth and nutritional quality of maize in Hg-polluted soil under two irrigation conditions and its health risk assessment. CHEMOSPHERE 2024; 367:143644. [PMID: 39476982 DOI: 10.1016/j.chemosphere.2024.143644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024]
Abstract
The interactive effects of Se (Na2SeO3) and ammonium fertilizers ((NH4)2SO4 and NH4Cl) on the growth and quality of maize (Zea mays L.) in mercury (Hg)-contaminated soil were studied under different water conditions. This study determined how two nutrient sources (Se and NH4+-N) interacted to improve the yield, quality, and safety of maize to ensure food security and quality assurance under the stress of heavy metal Hg. The experiment was conducted under two irrigation conditions: W1 (complete irrigation condition, 60-70% of water-holding capacity) and W2 (restricted irrigation condition, 40-50% of water-holding capacity). The combined treatment of Se and ammonium fertilizers significantly improved the growth of maize and the quality of grain in Hg-polluted soil. When Na2SeO3 and (NH4)2SO4 were combined, the growth and quality of maize increased the highest among all treatments. The interaction between Na2SeO3 and ammonium fertilizers significantly affected the available Hg/methylmercury (MeHg) content in soil and the Hg/MeHg concentration in maize. NH4Cl significantly increased the content of available Hg/MeHg in soil and increased the accumulation of Hg/MeHg in maize tissues due to Cl-. However, the treatments containing Na2SeO3 or (NH4)2SO4 significantly reduced the content of available Hg/MeHg in soil, reduced the accumulation of Hg/MeHg in maize tissues, and significantly reduced the possible health risks to human beings. The treatments containing Na2SeO3 or (NH4)2SO4 promoted maize growth by increasing the Se content in maize tissues and reducing the Hg/MeHg content, relieving the stress induced by Hg, and increasing the nutrient content. The combined treatment of Na2SeO3 and (NH4)2SO4 had the best effect in this experiment. This study also showed that this strategy is helpful in reducing the opportunities for consumers to accumulate Hg/MeHg by eating maize and its derivatives, thus ensuring food safety. Se and ammonium fertilizer can be used together to increase maize yield and develop agricultural production in Hg-polluted areas, which may have a significant impact on global food production. In addition, this simple method can help farmers manage soil affected by heavy metal pollution.
Collapse
Affiliation(s)
- Yanzhen Bai
- College of Resources and Environment, Shanxi Agricultural University, Taigu District, Jinzhong, 030801, Shanxi, China.
| | - Xiaoling Lan
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu District, Jinzhong, 030801, Shanxi, China.
| | - Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu District, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
4
|
Frąszczak B, Kleiber T. Microgreens Biometric and Fluorescence Response to Iron (Fe) Biofortification. Int J Mol Sci 2022; 23:14553. [PMID: 36498881 PMCID: PMC9741105 DOI: 10.3390/ijms232314553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Microgreens are foods with high nutritional value, which can be further enhanced with biofortification. Crop biofortification involves increasing the accumulation of target nutrients in edible plant tissues through fertilization or other factors. The purpose of the present study was to evaluate the potential for biofortification of some vegetable microgreens through iron (Fe) enrichment. The effect of nutrient solution supplemented with iron chelate (1.5, 3.0 mg/L) on the plant's growth and mineral concentration of purple kohlrabi, radish, pea, and spinach microgreens was studied. Increasing the concentration of Fe in the medium increased the Fe content in the leaves of the species under study, except for radish. Significant interactions were observed between Fe and other microelements (Mn, Zn, and Cu) content in the shoots. With the increase in the intensity of supplementation with Fe, regardless of the species, the uptake of zinc and copper decreased. However, the species examined suggested that the response to Fe enrichment was species-specific. The application of Fe didn't influence plant height or fresh and dry weight. The chlorophyll content index (CCI) was different among species. With increasing fertilisation intensity, a reduction in CCI only in peas resulted. A higher dose of iron in the medium increased the fluorescence yield of spinach and pea microgreens. In conclusion, the tested species, especially spinach and pea, grown in soilless systems are good targets to produce high-quality Fe biofortified microgreens.
Collapse
Affiliation(s)
- Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, 60-594 Poznan, Poland
| | - Tomasz Kleiber
- Laboratory of Plant Nutrition, Department of Plant Physiology, Poznań University of Life Sciences, 60-198 Poznan, Poland
| |
Collapse
|
5
|
Lv Z, Zhang M, Jin H, Wei M. An Ultrasensitive DNA Sensor for Hg
2+
Assay Based on Electrodeposited Au/Carbon Nanofibers‐chitosan and Reduced Graphene Oxide. ELECTROANAL 2022. [DOI: 10.1002/elan.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeping Lv
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Mingli Zhang
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Huali Jin
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| | - Min Wei
- College of Food Science and Technology Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou 450001 PR China
| |
Collapse
|
6
|
Wu ZZ, Zhang YX, Yang JY, Jia ZQ. Effect of vanadium on Lactuca sativa L. growth and associated health risk for human due to consumption of the vegetable. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9766-9779. [PMID: 34508309 DOI: 10.1007/s11356-021-15874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Elevated vanadium in the environment adversely affects organisms, including plants, animals, and humans. Plants act as the main conduit for environmental vanadium to enter the food chain, and simultaneously their growth response characteristics reflect vanadium toxicity efficacy for plants. The aim of the present study is to investigate lettuce (Lactuca sativa L.) growth involving morphological change, physiological adjustment, vanadium accumulation under vanadium stress, and the potential health risk (expressed as health risk index (HRI)) of adults and children who consume it. Lettuce was grown in nutrient solution with 0, 0.1, 0.5, 2.0, and 4.0 mg L-1 of pentavalent vanadium [V(V)]. Results showed that 0.1 mg L-1 V did not significantly affect lettuce growth versus control, and marked depression arose at ≥ 0.5 mg L-1 V. Foliar proline increased rapidly at ≥ 0.5 mg L-1 V. No striking change emerged in leaf cell membrane permeability at all treatments. V(V) and total vanadium concentration in plant tissues were ordered as root > stem > leaf, while tetravalent vanadium [V(IV)] was leaf > root > stem. No health risk (HRI < 1) exists for adults and children who consume lettuce at control treatment. However, the health risk occurs (HRI ˃ 1) when they both ingest the seedlings exposed to ≥ 0.1 mg L-1 V, and the risk overall markedly increases with increasing vanadium. Therefore, enough attention needs to be paid to the human health associated with the ingestion of vegetables like lettuce grown in substrata contaminated by vanadium.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - You-Xian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zong-Qian Jia
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Preface. Food Chem Toxicol 2021; 155:112372. [PMID: 34175404 DOI: 10.1016/j.fct.2021.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K. Biofortification of edible plants with selenium and iodine - A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141983. [PMID: 33254892 DOI: 10.1016/j.scitotenv.2020.141983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Soil depletion with absorbed forms of microelements is a realistic problem leading to the formation of many human, plant, animal diseases related with micronutrient deficiencies. Searching for new ways to solve this problem is a crucial for the agro-chemical approach to food production. There are many research papers on plant micronutrient fertilization. However, there is still a lack of systematic review of the literature, which summarizes the most recent knowledge on biofortification of food of plant origin with microelements. This work is a systematic review which presents the various methodologies and compares the results of the applied doses and types of fertilizer formulation with the yield and micronutrient content of edible parts of plants. The PRISMA protocol-based review of the most recent literature data from the last 5 years (2015-2020) concerns enrichment of plants with selenium and iodine. These elements, in contrast to other microelements (zinc, manganese, iron, copper and others) are given to plants most often in anionic form: selenium - SeO32- and SeO42-, iodine - I- and IO3-, making them a separate subgroup of microelements. The review focuses on original research papers (not reviews), collected in 3 popular scientific databases: Scopus, Web of Knowledge, PubMed. This study shows how to effectively cope with hidden hunger taking into account the significance of optimized fertilization. Based on the collected data, the best method of micronutrients administration an integrated fortification strategy for selected trace elements and prospects in research/action development was proposed. It was found that the best way to enrich plants with selenium is foliar fertilization with Se(VI), in increased doses. The effectiveness of fortification is supported by the balanced nutrients fertilization, the presence of microorganisms and selection of plant varieties. Foliar fertilization, in increased doses with iodide (I-) is in turn an effective way to enrich plants with iodine.
Collapse
Affiliation(s)
- Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland.
| | - Bartosz Ligas
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
9
|
Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high efficiency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.
Collapse
|