1
|
Hegab DY, El-Sharkawy NI, Moustafa GG, Abd-Elhakim YM, Said EN, Metwally MMM, Saber TM. Pumpkin seeds oil rescues colchicine-induced neurotoxicity in rats via modifying oxidative stress, DNA damage, and immunoexpression of BDNF and GFAP. Tissue Cell 2025; 94:102792. [PMID: 39965508 DOI: 10.1016/j.tice.2025.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Colchicine (CHC), a poisonous plant alkaloid, has been widely utilized for decades in the treatment of gout, but has a rather low therapeutic index, which causes oxidative stress leading to cognitive impairment, brain damage, apoptosis, and hitopathological alterations in humans and experimental animals. The present investigation evaluated the potential palliative effect of the pumpkin seeds oil (PSO) at a dose of 4 ml/kg b.wt against CHC (0.6 mg/kg b.wt) -induced neurotoxic and neurobehavioral effects in rats. Forty male rats weighing 245-260 g were assigned to four groups. The results displayed that CHC exposure induced neurobehavioral disorders and a remarkable decline in the serotonin and dopamine levels and the immunoexpression of BDNF and GFAP in the brain. Besides, CHC treatment evoked brain oxidative stress, as manifested by depleted antioxidant enzyme activities and elevated malondialdehyde (MDA) and protein carbonyl (PC) levels. Also, CHC triggered brain DNA damage, as indicated by a marked increment in the brain 8-Hydroxyguanosine (8-OHdG) level. However, concurrent treatment with the PSO effectively attenuated the CHC-induced toxic effects as evidenced by a noticeable increase in the serotonin (33 ± 3.05) and dopamine (2.48 ± 0.40) concentrations, and the BDNF and GFAP immunoexpression in the brain. Moreover, PSO mitigated CHC-induced brain oxidative stress and DNA damage as shown by elevated antioxidant enzyme activities (164 ± 3.46 SOD and 7.55 ± 0.43 CAT) and reduced MDA (1.62 ± 0.23), PC (1.35 ± 0.23), and 8-OHdG (3.02 ± 0.33) levels. These results concluded that PSO could serve as a therapeutic strategy to ameliorate the neurotoxic and neurobehavioral impacts of CHC.
Collapse
Affiliation(s)
- Dina Y Hegab
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N Said
- Department of Behavior and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Development of Animal Wealth, Faculty of Veterinary Medicine. The Egyptian Chinese University ECU, Cairo, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras surd, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Ma J, Diao C, Zhang Y, Kang H, Feng Y, Li Y, Li X. Developmental effects of fenpropathrin on zebrafish (Danio rerio) embryo-larvae: Toxic endpoints and potential mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106262. [PMID: 40015854 DOI: 10.1016/j.pestbp.2024.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
Fenpropathrin (FEN), a highly efficient and broad-spectrum synthetic pyrethroid insecticide. Although sufficient concern has been given to the negative impacts of FEN on non-target organisms, limited knowledge exists regarding the developmental effects of FEN. In this study, effects of FEN (0.45, 1.35, 4.05, and 12.15 μg/L) on various early life-stage endpoints of zebrafish were investigated from 3 to 144 h post-fertilization (hpf) in order to disclose the developmental effects and underlying mechanisms caused by FEN. The results indicate that exposure to FEN induced developmental toxicity in zebrafish, including decreased heart rate, reduced blood flow, shorter body length, smaller eye size, non-inflated swim bladder, and disrupted craniofacial chondrogenesis, which were possibly due to a significant decrease in the levels of thyroxine (T4), triiodothyronine (T3), insulin-like growth factor-1 (IGF-1), and growth hormone (GH), increase in lipid accumulation, and alteration in the contents of total cholesterol (T-CHO) and triglyceride (TG) in larvae exposed to FEN. Besides, FEN exposure also resulted in the inhibition of spontaneous movement of embryo at 24 hpf, a decline in touch evoke response (TER) at 72 hpf, and a reduction in free-swimming activity at 144 hpf, as well as the larval activity at 144 hpf during the dark-light transition stimulus. Mechanistic examinations have shown that FEN treatment inhibits the activities of AChE and elevates the ACh levels. In addition, FEN exposure increased ROS levels and altered the levels of malondialdehyde (MDA), and induced apoptosis as determined by acridine orange staining and elevated caspase-3 levels, suggesting that the involvement of oxidative stress and apoptosis in FEN-induced developmental toxicity of embryos. Transcriptome sequencing of larvae showed that FEN altered the expressions of multiple metabolic and nervous system pathways, including PPAR signaling pathway, lipid metabolism pathway, carbohydrate metabolism pathway, retinol metabolism pathway, and neuroactive ligand-receptor interaction pathway, demonstrating that FEN alters the normal development of zebrafish embryos, and multiple pathways mediating the FEN-induced developmental toxicity. Overall, these findings enhance our understanding of the developmental toxic effects of FEN and provide fundamental data for assessing the risk of FEN on non-target organisms.
Collapse
Affiliation(s)
- Junguo Ma
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Chunyu Diao
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yidan Zhang
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huan Kang
- State Key Laboratory of Antiviral Drugs, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Metwally MMM, Helmi N, Alnajeebi AM, Alotaibi BS, Albaqami A, Mawkili W, Samak MA, Eissa SA. Exploring the CD3/CD56/TNF-α/Caspase3 pathway in pyrethroid-induced immune dysregulation: curcumin-loaded chitosan nanoparticle intervention. Front Pharmacol 2025; 16:1505432. [PMID: 39981186 PMCID: PMC11840570 DOI: 10.3389/fphar.2025.1505432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Conflict reports exist on the impact of pyrethroid insecticides on immune function and the probable underlying mechanisms. Methods This study evaluated the effect of an extensively used pyrethroid insecticide, fenpropathrin (FTN) (15 mg/kg b.wt), on the innate and humoral immune components, blood cells, splenic oxidative status, and mRNA expression of CD3, CD20, CD56, CD8, CD4, IL-6, TNF-α, and Caspase3 in a 60-day trial in rats. Besides, the possible defensive effect of curcumin-loaded chitosan nanoparticle (CML-CNP) (50 mg/kg b.wt) was evaluated. Results FTN exposure resulted in hypochromic normocytic anemia, thrombocytosis, leukocytosis, and lymphopenia. Besides, a significant reduction in IgG, not IgM, but increased C3 serum levels was evident in the FTN-exposed rats. Moreover, their splenic tissues displayed a substantial increase in the ROS, MDA, IL-6, and IL-1β content, altered splenic histology, and reduced GPX, GSH, and GSH/GSSG. Furthermore, a substantial upregulation of mRNA expression of splenic CD20, CD56, CD8, CD4, CD3, IL-6, and TNF-α, but downregulation of CD8 was detected in FTN-exposed rats. FTN exposure significantly upregulated splenic Caspase-3 and increased its immunohistochemical expression, along with elevated TNF-α immunoexpression. However, the alterations in immune function, splenic antioxidant status, blood cell populations, and immune-related gene expression were notably restored in the FTN + CML-CNP-treated group. Conclusion The findings of this study highlighted the immunosuppressive effects of FTN and suggested the involvement of many CD cell markers as a potential underlying mechanism. Additionally, the results demonstrated the effectiveness of CML-CNP in mitigating pollutant-induced immune disorders.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M. M. Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mai A. Samak
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Samar A. Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr ElSheikh, Egypt
| |
Collapse
|
4
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Alhegaili AS, Bafail DA, Bawahab AA, Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Khalifa NE, Elhamouly M, Dahran N, El Shetry ES. The interplay of oxidative stress, apoptotic signaling, and impaired mitochondrial function in the pyrethroid-induced cardiac injury: Alleviative role of curcumin-loaded chitosan nanoparticle. Food Chem Toxicol 2024; 194:115095. [PMID: 39515510 DOI: 10.1016/j.fct.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the consequence of exposure to a pyrethroid insecticide, fenpropathrin (FPN), on the heart and the probable underlying mechanisms in rats. Moreover, the probable protective effect of curcumin-loaded chitosan nanoparticles (CMN-CNP) was evaluated. Forty male Sprague Dawley rats were distributed into four groups orally given corn oil, CMN-CNP (50 mg/kg b.wt), FPN (15 mg/kg b.wt), or CMN-CNP + FPN for 60 days. The results revealed that FPN exposure increased serum cardiac damage indicators. In addition, a substantial increase in the reactive oxygen species and malondialdehyde content but reduced enzymatic and non-enzymatic antioxidants and altered architecture was recorded in the cardiac tissue of FPN-exposed rats. Additionally, a significant down-regulation of expression of the mitochondrial complexes I-V, mitochondrial dynamics, and antioxidants-related genes but up-regulation of apoptosis-related genes was detected in the FPN-exposed group. Immunofluorescence analyses revealed higher amounts of the harmful protein 4-hydroxynonenal in the heart tissue of FPN-exposed rats. Nevertheless, the earlier disturbances were significantly rescued in the FPN + CMN-CNP treated group. Conclusively, our findings reported the cardiotoxic activity of FPN and the involvement of several mitochondrial imbalances as a probable underlying mechanism. Also, the study findings proved the efficacy of CMN-CNP in combating FPN cardiotoxic effects.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Soliman MM, Tohamy AF, Prince AM, Hussien AM, Nashed MS. The mechanistic pathway induced by fenpropathrin toxicity: Oxidative stress, signaling pathway, and mitochondrial damage. J Biochem Mol Toxicol 2024; 38:e70020. [PMID: 39415699 DOI: 10.1002/jbt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Fenpropathrin (FNP) is a kind of insecticide and acaricide known as pyrethroid. It is very effective, has a wide range of activities, and works quickly. Internationally, it is commonly considered the most powerful pyrethroid insecticide. Nevertheless, an increasing amount of data indicates a substantial link between Fenpropathrin and adverse effects on nontarget species, including liver toxicity, kidney toxicity, nerve damage, and reproductive toxicity. Oxidative stress plays a vital role in the toxicity of fenpropathrin, in addition to its mechanical mechanism. This study offers a thorough examination of the harmful effects of Fenpropathrin on oxidative and mitochondrial processes, as well as the signaling pathways involved in these effects. The significant impact of oxidative stress emphasizes the toxicity of Fenpropathrin.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Behrouz S, Mohammadi M, Sarir H, Mohammadian Roshan N, Boskabady MH. Camel milk inhibits pulmonary oxidative stress and inflammation in a rat model of COPD induced by cigarette smoke exposure. Heliyon 2024; 10:e39416. [PMID: 39497967 PMCID: PMC11532301 DOI: 10.1016/j.heliyon.2024.e39416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Background One of the main causes of death in the world is chronic obstructive pulmonary disease (COPD) with partially reversible airflow limitation, which is defined as a preventable and treatable pathological condition. Anti-inflammatory and antioxidant properties of camel milk (CM) were indicated previously. The effect of CM in cigarette smoke induced-COPD in rats was evaluated in this study. Methods Five groups of rats including a) control, b) chronic obstructive pulmonary diseases (COPD, cigarette smoke exposed), c) COPD group treated with dexamethasone, d) COPD group treated with low dose of camel milk (CM) and e) COPD group treated with high dose of CM by gavage during the cigarette smoke exposure period (n = 7) were studied. Results In the COPD group, total and differential white blood cells (WBC) count in the bronchoalveolar fluid (BALF), tumor necrosis factor-alpha (TNF-α) level in the lung tissue and malondialdehyde (MDA) level in the BALF and lung tissue, lung pathological changes and tracheal responsiveness to methacholine were significantly increased, but catalase (CAT) and superoxide dismutase (SOD) activities and the level of thiol in the BALF and lung tissue were significantly decreased compared to the control group (all, p < 0.001). However, in the COPD groups treated with both doses of CM and dexamethasone, most variable did not achieved to the control levels and were significantly different with the control group (p < 0.05 to p < 0.001). In the COPD group treated with both doses of CM (dose dependently) and dexamethasone, almost all measured variables were significantly improved (p < 0.05 to p < 0.001). Conclusion The potential effect of CM on lung inflammation and oxidative stress in a rat model of COPD comparable to dexamethasone was demonstrated.
Collapse
Affiliation(s)
- Sepide Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Mohammadi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Kocyigit E, Abdurakhmanov R, Kocyigit BF. Potential role of camel, mare milk, and their products in inflammatory rheumatic diseases. Rheumatol Int 2024; 44:425-434. [PMID: 38183445 PMCID: PMC10867071 DOI: 10.1007/s00296-023-05516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/08/2024]
Abstract
Milk and dairy products serve as a significant dietary component for people all over the world. Milk is a source of essential nutrients such as carbohydrates, protein, fats, and water that support newborns' growth, development, and physiological processes. Milk contains various essential biological compounds that contribute to overall health and well-being. These compounds are crucial in immune system regulation, bone health, and gut microbiota. Milk and dairy products are primarily from cows, buffalos, goats, and sheep. Recently, there has been a notable increase in camel and mare milk consumption and its associated products due to an increasing attraction to ethnic cuisines and a greater awareness of food biodiversity. Camel and mare milk possess diverse nutritional and therapeutic properties, displaying potential functional foods. Camel milk has been linked to various health advantages, encompassing antihypertensive, antidiabetic, antiallergic, anticarcinogenic, antioxidant, and immunomodulatory properties. Camel milk has exhibited notable efficacy in mitigating inflammation and oxidative stress, potentially offering therapeutic benefits for inflammatory disorders. Nevertheless, although extensively recorded, the potential health benefits of mare's milk have yet to be investigated, including its impact on inflammatory conditions. This article highlights the therapeutic potential of camel and mare milk and its derived products in treating inflammatory rheumatic disorders, specifically focusing on their anti-inflammatory and immune-regulatory capabilities. These alternative types of milk, which do not come from cows, offer potential avenues for investigating innovative strategies to regulate and reduce inflammatory conditions.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey.
| | - Ruslan Abdurakhmanov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Burhan Fatih Kocyigit
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Adana Health Practice and Research Center, Adana, Turkey
| |
Collapse
|
9
|
Abd-Elhakim YM, Mohamed AAR, Noreldin AE, Khamis T, Eskandrani AA, Shamlan G, Alansari WS, Alotaibi BS, Alosaimi ME, Hakami MA, Abuzahrah SS. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD-mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol Appl Pharmacol 2024; 484:116869. [PMID: 38382713 DOI: 10.1016/j.taap.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1β (IL-1β), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1β, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 11451, Riyadh 11362, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 34, 21959, Saudi Arabia
| |
Collapse
|
10
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
11
|
Wang W, Mou S, Xiu W, Li Y, Liu Z, Feng Y, Ma J, Li X. Fenpropathrin disrupted the gills of common carp (Cyprinus carpio L.) through oxidative stress, inflammatory responses, apoptosis, and transcriptional alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116007. [PMID: 38280339 DOI: 10.1016/j.ecoenv.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Fenpropathrin (FEN) is an extensively utilized synthetic pyrethroid insecticide frequently found in aquatic ecosystems. However, the adverse effects and potential mechanisms of FEN on aquatic species are poorly understood. In this work, common carp were treated with FEN at concentrations of 0.45 and 1.35 μg/L FEN for 14 days, after which the tissue structure, physiological alterations, and mRNA transcriptome of the gills were evaluated. Specifically, FEN exposure caused pathological damage to the gills of carp, downregulated the levels of claudin-1, occludin, and zonula occluden-1 (ZO-1), and inhibited Na+-K+-ATPase activity in the gills. In addition, FEN exposure promoted an increase in reactive oxygen species (ROS) levels and significantly upregulated the levels of malondialdehyde (MDA), 8-hydroxy-2 deoxyguanosine (8-OHdG), and protein carbonyl (PC) in the gills. Moreover, the inflammation-related indices (TNF-α, IL-1β, and IFN-γ) and the apoptosis-related parameter caspase-3 were generally increased, especially in the 1.35 μg/L FEN group, and these indices were significantly greater than those in the control group. These findings suggest that FEN exposure can cause oxidative stress, the inflammatory response, and apoptosis in carp gills. Importantly, the results of RNA-seq analysis showed that 0.45 and 1.35 μg/L FEN could significantly interfere with multiple immune and metabolic pathways, including the phagosome, NOD-like receptor (NLR) signalling pathway, Toll-like receptor (TLR) signalling pathway, necroptosis, and arachidonic acid metabolism pathways, indicating that the effects of FEN on the gills of fish are intricate. In summary, our findings confirm the toxic effects of FEN on common carp gills and provide additional comprehensive information for evaluating the toxicity and underlying molecular mechanisms of FEN in aquatic organisms.
Collapse
Affiliation(s)
- Wenhua Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenyao Xiu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhihui Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Pingyuan Laboratory, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
He S, Qu Q, Chen X, Zhao L, Jiao Z, Wan Z, Kwok HF, Qu S. Downregulation of Ambra1 by altered DNA methylation exacerbates dopaminergic neuron damage in a fenpropathrin-induced Parkinson-like mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115995. [PMID: 38245935 DOI: 10.1016/j.ecoenv.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Fenpropathrin (Fen), a volatile pyrethroid insecticide, is used widely for agricultural applications and has been reported to increase the risk of Parkinson's disease (PD). However, the molecular basis, underlying mechanisms, and pathophysiology of Fen-exposed Parkinsonism remain unknown. Recent studies have revealed epigenetic mechanisms underlying PD-related pathway regulation, including DNA methylation. Epigenetic mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. After whole-genome bisulfite sequencing (WGBS) of midbrain tissues from a Fen-exposed PD-like mouse model, we performed an association analysis of DNA methylation and gene expression. Then we successfully screened for the DNA methylation differential gene Ambra1, which is closely related to PD. The hypermethylation-low expression Ambra1 gene aggravated DA neuron damage in vitro and in vivo through the Ambra1/Parkin/LC3B-mediated mitophagy pathway. We administered 5-aza-2'-deoxycytidine (5-Aza-dC) to upregulate Ambra1 expression, thereby reducing Ambra1-mediated mitophagy and protecting DA neurons against Fen-induced damage. In conclusion, these findings elucidate the potential function of Ambra1 under the regulation of DNA methylation, suggesting that the inhibition of DNA methylation may alleviate Fen-exposed neuron damage.
Collapse
Affiliation(s)
- Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinic Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Qi Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhigang Jiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
13
|
Xiu W, Ding W, Mou S, Li Y, Sultan Y, Ma J, Li X. Adverse effects of fenpropathrin on the intestine of common carp (Cyprinus carpio L.) and the mechanism involved. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105799. [PMID: 38458669 DOI: 10.1016/j.pestbp.2024.105799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Fenpropathrin (FEN), a pyrethroid pesticide, is frequently detected in natural water bodies, unavoidable pose adverse effects to aquatic organisms. However, the harmful effects and potential mechanisms of FEN on aquatic species are poorly understood. In this study, common carp were treatment with FEN at 0.45 and 1.35 μg/L for 14 d, and the toxic effects and underlying mechanisms of FEN on the intestine of carp were revealed. RNA-seq results showed that FEN exposure cause a wide range of transcriptional alterations in the intestine and the differentially expressed genes were mainly enrichment in the pathways related to immune and metabolism. Specifically, FEN exposure induced pathological damage and altered submicroscopic structure of the intestine, elevated the levels of Bacteroides fragilis enterotoxin, altered the contents of claudin-1, occludin, and zonula occluden-1 (ZO-1), and causing injury to the intestinal barrier. In addition, inflammation-related index TNF-α in the serum and IL-6 in the intestinal tissues were generally increased after FEN exposure. Moreover, FEN exposure promoted an increase in reactive oxygen species (ROS), altered the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), upregulated the contents of malondialdehyde (MDA) in the intestines. The apoptosis-related parameter cytochrome c, caspase-9, and caspase-3 were significantly altered, indicating that inflammation reaction, oxidative stress, and apoptosis may be involved in the toxic mechanism of FEN on carp. Moreover, FEN treatment also altered the intestinal flora community significantly, which may affect the intestinal normal physiological function and thus affect the growth of fish. Overall, the present study help to clarify the intestinal reaction mechanisms after FEN treatment, and provide a basis for the risk assessment of FEN.
Collapse
Affiliation(s)
- Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shaoyu Mou
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Ma J, Xiu W, Diao C, Miao Y, Feng Y, Ding W, Li Y, Sultan Y, Li X. Fenpropathrin induces neurotoxic effects in common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105644. [PMID: 38072519 DOI: 10.1016/j.pestbp.2023.105644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
Fenpropathrin (FEN) is a synthetic pyrethroid that has been frequently detected in aquatic environments, yet the neurotoxic impacts and underlying mechanisms on nontarget organisms are lacking. In this experiment, common carp were exposed to 0.45 and 1.35 μg/L FEN for 14 d and exhibited abnormal locomotor behaviour. Biochemical and molecular analysis results indicated that FEN altered the contents of tight junction proteins (claudin-1, occludin, and ZO-1), disturbed Na+-K+-ATPase and AChE activities, caused abnormal expression of neurotransmitters (ACh, DA, GABA, 5-HT, and glutamate) and caused histological damage in the brain, suggesting that FEN may damage the blood-brain barrier and induce neurotoxicity in carp. Furthermore, FEN also promoted an increase in ROS, changed SOD and CAT activities, and generally upregulated the contents of MDA, 8-OHdG, and protein carbonyl in the brain, indicating that FEN can induce oxidative stress and cause damage to lipids, DNA, and proteins. Moreover, inflammation-related indicators (TNF-α, IL-1β, IL-6, and IL-10), mitophagy-related genes (PINK1, parkin, ulk1, beclin1, LC3, p62, tfeb, and atg5), and apoptosis-related parameters (p53, bax, bcl-2, caspase-3, caspase-8, and caspase-9) were also significantly changed, suggesting that inflammation, mitophagy, and apoptosis may participate in FEN-induced neurotoxicity in carp. This study refines the understanding of the toxicity mechanism of FEN and thus provides data support for the risk assessment of FEN.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wenyao Xiu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunyu Diao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yumeng Miao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Alqahtani LS, Abd-Elhakim YM, Mohamed AAR, Khalifa NE, Khamis T, Alotaibi BS, Alosaimi M, El-Kholy SS, Abuzahrah SS, ElAshmouny N, Eskandrani AA, Gaber RA. Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 2023; 180:114036. [PMID: 37714448 DOI: 10.1016/j.fct.2023.114036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1β, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.
Collapse
Affiliation(s)
- Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Naira ElAshmouny
- Histology and Cell biology, Faculty of Medicine, Kafr Elsheikh University, Egypt
| | - Areej Adeeb Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, 30002, Saudi Arabia
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
16
|
Abd-Elhakim YM, Saber TM, Metwally MMM, Abd-Allah NA, Mohamed RMSM, Ahmed GA. Thymol abates the detrimental impacts of imidacloprid on rat brains by lessening oxidative damage and apoptotic and inflammatory reactions. Chem Biol Interact 2023; 383:110690. [PMID: 37648049 DOI: 10.1016/j.cbi.2023.110690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Imidacloprid (IMID) is one of the most widely used neonicotinoid insecticides globally and, consequently, a probable widespread environmental contaminant. The potential neurotoxic effects of IMID have been previously reported. This study aimed to investigate the possible beneficial effect of thymol (TML) in relieving IMID-induced harmful effects on the brain of male Sprague-Dawley rats. For this aim, four groups (10 rats/group) were orally administered corn oil, TML (30 mg/kg b.wt), IMID (22.5 mg/kg b.wt), or TML + IMID for 56 days. The brain tissues were biochemically, histopathologically, and immunohistochemically evaluated. The results displayed that TML significantly restored the IMID-induced depletion of the total antioxidant capacity of the brain tissues. At the same time, the IMID-associated increased levels of lipid peroxidation in terms of malondialdehyde content were markedly suppressed in the TML + IMID group. Also, TML oral dosing markedly reduced the release of inflammatory elements, including nitric oxide and myeloperoxidase, resulting from IMID exposure. Furthermore, the IMID-induced decrease in gamma-aminobutyric acid but the increase in acetylcholinesterase was considerably reversed by TML oral dosing. Additionally, TML oral administration significantly counteracted the IMID-induced brainepatic DNA damage, as revealed by the comet assay. Besides, a significant downregulatibrainepatic Caspase-3 was evident in the TML + IMID group compared to the IMID group. However, TML oral dosing has not significantly altered the IMID-induced nuclear factor (NF-κB p65) increase. Therefore, TML could be a protective agent against IMID-induced detrimental impacts on brain tissue, possibly through its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gehan A Ahmed
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Eleiwa NZH, Ali MAA, Said EN, Metwally MMM, Abd-ElHakim YM. Bee venom (Apis mellifera L.) rescues zinc oxide nanoparticles induced neurobehavioral and neurotoxic impact via controlling neurofilament and GAP-43 in rat brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88685-88703. [PMID: 37442924 PMCID: PMC10412495 DOI: 10.1007/s11356-023-28538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
This study investigated the possible beneficial role of the bee venom (BV, Apis mellifera L.) against zinc oxide nanoparticles (ZNPs)-induced neurobehavioral and neurotoxic impacts in rats. Fifty male Sprague Dawley rats were alienated into five groups. Three groups were intraperitoneally injected distilled water (C 28D group), ZNPs (100 mg/kg b.wt) (ZNPs group), or ZNPs (100 mg/kg.wt) and BV (1 mg/ kg.bwt) (ZNPs + BV group) for 28 days. One group was intraperitoneally injected with 1 mL of distilled water for 56 days (C 56D group). The last group was intraperitoneally injected with ZNPs for 28 days, then BV for another 28 days at the same earlier doses and duration (ZNPs/BV group). Depression, anxiety, locomotor activity, spatial learning, and memory were evaluated using the forced swimming test, elevated plus maze, open field test, and Morris water maze test, respectively. The brain contents of dopamine, serotonin, total antioxidant capacity (TAC), malondialdehyde (MDA), and Zn were estimated. The histopathological changes and immunoexpressions of neurofilament and GAP-43 protein in the brain tissues were followed. The results displayed that BV significantly decreased the ZNPs-induced depression, anxiety, memory impairment, and spatial learning disorders. Moreover, the ZNPs-induced increment in serotonin and dopamine levels and Zn content was significantly suppressed by BV. Besides, BV significantly restored the depleted TAC but minimized the augmented MDA brain content associated with ZNPs exposure. Likewise, the neurodegenerative changes induced by ZNPs were significantly abolished by BV. Also, the increased neurofilament and GAP-43 immunoexpression due to ZNPs exposure were alleviated with BV. Of note, BV achieved better results in the ZNPs + BV group than in the ZNPs/BV group. Conclusively, these results demonstrated that BV could be employed as a biologically effective therapy to mitigate the neurotoxic and neurobehavioral effects of ZNPs, particularly when used during ZNPs exposure.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Abo-Alkasem Ali
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Yasmina M Abd-ElHakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
18
|
Abd-Elhakim YM, El Sharkawy NI, Gharib HSA, Hassan MA, Metwally MMM, Elbohi KM, Hassan BA, Mohammed AT. Neurobehavioral Responses and Toxic Brain Reactions of Juvenile Rats Exposed to Iprodione and Chlorpyrifos, Alone and in a Mixture. TOXICS 2023; 11:toxics11050431. [PMID: 37235246 DOI: 10.3390/toxics11050431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Herein, male juvenile rats (23th postnatal days (PND)) were exposed to chlorpyrifos (CPS) (7.5 mg/kg b.wt) and/or iprodione (IPD) (200 mg IPD /kg b.wt) until the onset of puberty (60th day PND). Our results demonstrated that IPD and/or CPS exposure considerably reduced locomotion and exploration. However, CPS single exposure induced anxiolytic effects. Yet, neither IPD nor IPD + CPS exposure significantly affected the anxiety index. Of note, IPD and/or CPS-exposed rats showed reduced swimming time. Moreover, IPD induced significant depression. Nonetheless, the CPS- and IPD + CPS-exposed rats showed reduced depression. The individual or concurrent IPD and CPS exposure significantly reduced TAC, NE, and AChE but increased MDA with the maximum alteration at the co-exposure. Moreover, many notable structural encephalopathic alterations were detected in IPD and/or CPS-exposed rat brain tissues. The IPD + CPS co-exposed rats revealed significantly more severe lesions with higher frequencies than the IPD or CPS-exposed ones. Conclusively, IPD exposure induced evident neurobehavioral alterations and toxic reactions in the brain tissues. IPD and CPS have different neurobehavioral effects, particularly regarding depression and anxiety. Hence, co-exposure to IPD and CPS resulted in fewer neurobehavioral aberrations relative to each exposure. Nevertheless, their simultaneous exposure resulted in more brain biochemistry and histological architecture disturbances.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba S A Gharib
- Department of Behaviour and Management of Animal, Poultry, and Aquatics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Khlood M Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Amany Tharwat Mohammed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
19
|
Rilwan HB, Adebisi SS, Timbuak JA, Oladele SB, Muhammad A, Sadeeq AA, Makena W. Camel milk ameliorates diabetes in pigs by preventing oxidative stress, inflammation and enhancing beta cell function. J Diabetes Metab Disord 2022; 21:1625-1634. [PMID: 36404858 PMCID: PMC9672245 DOI: 10.1007/s40200-022-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
Purpose The purpose of the study was to determine how camel milk affects hyperglycemia, beta-cell function, oxidative stress, and inflammatory markers in type 2 diabetic pigs. Methods Twenty-five (25) pigs were separated into five (5) groups of five pigs each, with five (5) non-diabetic and twenty (20) diabetic pigs in each group. Groups 1 and 2 received distilled water as the standard control and diabetic control groups, respectively, while Groups 3 and 4 received camel milk at 250 mL/day and 500 mL/day, respectively, and Group 5 received metformin at 500 mg/day. The experiment lasted ten weeks. At the end of the ten weeks, all the pigs were euthanized. Results Treatments with camel milk substantially enhance glucose fasting levels by reducing hyperglycemia in diabetic pigs, significant level at (p < 0.05). When pigs given camel milk were compared with untreated diabetic pigs, there was a substantial rise (p < 0.05) in superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) levels. Also, camel milk substantially lowered the levels of interleukin (IL-1β) and tumour necrosis factor-alpha (TNF-α) in diabetic pig serum. Similarly, immunohistochemical analysis of islet cells revealed an increase in insulin production, implying improved glycemic control and the eventual commitment of glucose to glycolysis. Conclusion The bioactive-mediated anti-hyperglycemic and insulin release potential of camel milk treatments contributed to improving type 2 diabetes mellitus. Camel milk improved beta-cell function while reducing oxidative stress and inflammation in type 2 diabetic pigs.
Collapse
Affiliation(s)
- Hadiza Bello Rilwan
- Department of Human Anatomy, Kaduna State University, Kaduna, Kaduna State Nigeria
| | | | - James Abrak Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State Nigeria
| | | | - Aliyu Muhammad
- Department of Human Physiology, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | | | - Wusa Makena
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|
20
|
Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats. Food Chem Toxicol 2022; 171:113537. [PMID: 36442736 DOI: 10.1016/j.fct.2022.113537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-β protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-β and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.
Collapse
|
21
|
Saber TM, Abo-Elmaaty AMA, Said EN, Beheiry RR, Moselhy AAA, Abdelgawad FE, Arisha MH, Saber T, Arisha AH, Fahmy EM. Alhagi maurorum Ethanolic Extract Rescues Hepato-Neurotoxicity and Neurobehavioral Alterations Induced by Lead in Rats via Abrogating Oxidative Stress and the Caspase-3-Dependent Apoptotic Pathway. Antioxidants (Basel) 2022; 11:1992. [PMID: 36290715 PMCID: PMC9598489 DOI: 10.3390/antiox11101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 09/29/2023] Open
Abstract
This work investigated the probable protective effect of an Alhagi maurorum ethanolic extract on the hepatotoxicity and neurotoxicity accompanied by neurobehavioral deficits caused by lead in rats. Rats in four groups were orally administered distilled water, ethanolic extract of A. maurorum (300 mg/kg BW daily), lead (100 mg/kg BW daily for 3 months), and lead + A. maurorum extract. The results demonstrated that lead exposure resulted in elevated locomotor activities and sensorimotor deficits associated with a decrease in brain dopamine levels. Moreover, lead exposure significantly increased liver function markers. In addition, the lead-treated rats exhibited extensive liver and brain histological changes and apoptosis. The lead treatment also triggered oxidative stress, as demonstrated by the increase in malondialdehyde (MDA) concentrations with a remarkable reduction in the activities of antioxidant enzymes, reduced glutathione (GSH) levels, and transcriptional mRNA levels of antioxidant genes in the liver and brain. Nevertheless, co-treatment with the A. maurorum extract significantly ameliorated the lead-induced toxic effects. These findings indicate that the A. maurorum extract has the ability to protect hepatic and brain tissues against lead exposure in rats through the attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Taghred M. Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M. A. Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N. Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha R. Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Mariam H. Arisha
- Department of Psychology, Faculty of Arts, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Esraa M. Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
22
|
Xu L, Shen W, Liu Y, Zhang M, Yang Y, Yin D. Fenpropathrin increases gliquidone absorption via causing damage to the integrity of intestinal barrier. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113882. [PMID: 35841655 DOI: 10.1016/j.ecoenv.2022.113882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fenpropathrin is a commonly used pesticide, which was ingested by humans through diet and water. Gliquidone is a common hypoglycemic drug that diabetic patients need for long-term use. This study aimed to investigate the effects of long-term exposure to fenpropathrin on the intestinal barrier and intestinal absorption of the model drug gliquidone. The Ussing Chamber study had shown that fenpropathrin can increase the transport of gliquidone in an isolated intestinal model. In addition, the intestinal absorption of fluorescein was significantly increased in fenpropathrin-exposed rats administered by gavage. Further research suggested that fenpropathrin exposure caused a series of pathological effects: the structure of the intestine was damaged, the expression of tight junction proteins in the intestinal tissue was decreased, the intestinal MDA was increased, the SOD was decreased, and the expression of inflammatory factors was increased. In the Caco-2 cell model, it was found that fenpropathrin can increase the transport of gliquidone in the Caco-2 cell monolayer, reduce the expression of tight junction proteins and increase reactive oxygen species in Caco-2 cells. Fenpropathrin exposure also resulted in decreasing expression of PPAR-γ and UCP-2 in intestinal tissue and Caco-2 cell model, while causing increased expression of p-P38. The above results indicated that fenpropathrin exposure could induce oxidative stress and destroy the intestinal barrier by affecting the expression of p-P38/P38/PPAR-γ/UCP-2 protein, thereby increasing the intestinal absorption of gliquidone. This study provides new insights into the hazards of fenpropathrin residues in the environment.
Collapse
Affiliation(s)
- Li Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mingyan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department(AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department(AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| |
Collapse
|
23
|
Behrouz S, Saadat S, Memarzia A, Sarir H, Folkerts G, Boskabady MH. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front Immunol 2022; 13:855342. [PMID: 35493477 PMCID: PMC9039309 DOI: 10.3389/fimmu.2022.855342] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
Camel milk (CM) has been found to have several health benefits, including antiviral, antibacterial, anti-tumor, anti-fungal, antioxidant, hypoglycaemic and anti-cancer activities. In addition, CM can counter signs of aging and may be a useful naturopathic treatment for autoimmune diseases. The composition of CM varies with geographic origin, feeding conditions, seasonal and physiological changes, genetics and camel health status. In the present review, we collate the diverse scientific literature studying antioxidant, anti-inflammatory and immunomodulatory effects of CM and its bioactive compounds. The databases Scopus, PubMed, and Web of Science were searched until the end of September 2021 using the keywords: camel milk, antioxidant, anti-inflammatory, immunomodulatory. The anti-inflammatory mechanism of CM in various inflammatory disorders was consistently reported to be through modulating inflammatory cells and mediators. The common anti-inflammatory bioactive components of CM seem to be lactoferrin. The antioxidant effects of α-lactalbumin, β-caseins and vitamin C of CM work by reducing or inhibiting the production of reactive oxygen species (ROS), hydroxyl radicals, nitric oxide (NO), superoxide anions and peroxyl radicals, likely alleviating oxidative stress. Higher levels of protective proteins such as lysozyme, IgG and secretory IgA compared to cow's milk, and insulin-like protein activity of CM on ß cells appear to be responsible for the immunomodulatory properties of CM. The evidence indicates that CM and its bioactive components has the potential to be a therapeutic value for diseases that are caused by inflammation, oxidative stress and/or immune-dysregulation.
Collapse
Affiliation(s)
- Sepide Behrouz
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Baig D, Sabikhi L, Khetra Y, Shelke PA. Technological challenges in production of camel milk cheese and ways to overcome them – A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Temiz Ö. In vivo neurotoxic effects of emamectin benzoate in male mice: evaluation with enzymatic and biomolecular multi-biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8921-8932. [PMID: 34498180 DOI: 10.1007/s11356-021-16373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The study of the toxic effects of emamectin benzoate (EMB) was conducted in male mice. Mice were randomly divided into 4 groups; control group, EMB25 group (1/30 LD50 = 25 mg/kg/day), EMB50 group (1/15 LD50 = 50 mg/kg/day), and EMB100 group (1/7.5 LD50 = 100 mg/kg/day). Control group received water (placebo), and EMB groups were administered by oral gavage for 14 days. The superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) enzyme activities, thiobarbituric acid reactive substance (TBARS) and protein carbonyl (PC) levels, and adenosine triphosphatase (ATPases) enzymes, which are ion transport enzymes (Na+/K+ ATPase, Ca+2 ATPase, Mg+2 ATPase), acetylcholinesterase (AChE, neurotoxicity biomarker), and myeloperoxidase (MPO) enzyme activities (inflammatory biomarker), were measured by spectrophotometric methods. 8-Hydroxy-2'-deoxyguanosine level (8-OHdG, DNA oxidation biomarker) was measured by enzyme-linked immunosorbent analysis (ELISA) technique. The results showed a decrease in SOD, CAT and GPx enzyme activities in the brain tissue and an increase in GST enzyme activity in the EMB groups compared to the control group. Meanwhile, the enzyme activities of the ion transport enzymes Na+/K+ ATPase, Ca+2 ATPase, and Mg+2 ATPase, and AChE enzyme activity showed significant inhibition. In addition, MPO enzyme activity, 8-OHdG, PC, and TBARS levels were increased. The results showed that dose-dependent EMB exposure induced different physiological processes with enzymatic and biomolecular multi-biomarkers in the brain tissue of male mice and caused neurotoxic effects.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| |
Collapse
|
26
|
Abdulkadir TS, Dawud FA, Isa AS, Ayo JO. Taurine and Camel Milk Modulate Neurobehavioral and Biochemical Changes in Aluminum Chloride-Induced Alzheimer's Disease in Rats. J Alzheimers Dis 2021; 84:291-302. [PMID: 34542066 DOI: 10.3233/jad-210130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease associated with deficiency in motor coordination, cognitive impairment, and excessive reactive oxygen species production in the brain. OBJECTIVE The study evaluated effects of taurine and camel milk (CM) on neurobehavior, amyloid-beta peptide 1-42 (Aβ) expression, acetylcholinesterase, and superoxide dismutase activities in aluminum chloride (AlCl3) model of Alzheimer's disease in rats. METHODS Thirty-five female Wistar rats were divided into seven groups (n = 5): Normal saline (0.2 mL/kg body weight); AlCl3 (100 mg/kg) (AD); CM (33 mL/kg); Taurine (50 mg/kg); AlCl3 (100 mg/kg) + CM (33 mL/kg); AlCl3 (100 mg/kg) + Taurine (50 mg/kg); and AlCl3 (100 mg/kg) + CM (33 mL/kg) + Taurine (50 mg/kg). The administration lasted for eight weeks via oral gavage. After the eighth week, neurobehavior assessments were performed. Rats were sacrificed, and brain and blood samples collected for analysis. RESULTS There was a significant (p < 0.0001) increase in the duration of motor endurance in AD + CM rats, compared to AD rats. Duration of forced swimming time was lowest (p < 0.0001) in AlCl3 + Taurine rats, compared to that of AD rats. Concentration of Aβ peptide decreased (p < 0.05) in AD rats, treated with CM and/or combination. In taurine-treated rats, superoxide dismutase activity was significantly (p < 0.05) higher than in AD rats. Treatment with taurine + CM increased (p < 0.05) acetylcholinesterase activity compared to controls. CONCLUSION Taurine and CM enhanced cognition and sensorimotor activity by decreasing Aβ peptide concentration and increasing superoxide dismutase and acetylcholinesterase activities in AD rats.
Collapse
Affiliation(s)
- Teslim S Abdulkadir
- Department of Human Physiology, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima A Dawud
- Department of Human Physiology, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Ahmed Sherif Isa
- Department of Human Physiology, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph O Ayo
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
27
|
Arab HH, Eid AH, Gad AM, Yahia R, Mahmoud AM, Kabel AM. Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine-induced nephrotoxicity: Targeting Nrf2/HO-1 and AKT/eNOS/NO pathways. Food Sci Nutr 2021; 9:3177-3190. [PMID: 34136182 PMCID: PMC8194908 DOI: 10.1002/fsn3.2277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
Cyclosporine (CsA) is a widely used immunosuppressive agent that incurs marked nephrotoxicity in the clinical setting. Thus, there is a need for finding safe/effective agents that can attenuate CsA-induced kidney injury. Meanwhile, the underlying mechanisms for CsA-associated nephrotoxicity are inadequately investigated, in particular, the AKT/eNOS/NO pathway. Here, the present work aimed to explore the potential of camel milk, a natural product with distinguished antioxidant/anti-inflammatory actions, to ameliorate CsA-induced nephrotoxicity in rats. The molecular mechanisms related to renal oxidative aberrations and apoptosis were studied, including Nrf2/HO-1 and AKT/eNOS/NO pathways. The kidney tissues were inspected using histopathology, ELISA, Western blotting, and immunohistochemistry. The present findings demonstrated that camel milk (10 ml/kg) significantly lowered creatine, BUN, and NGAL nephrotoxicity markers and the aberrant histopathology, with similar efficacy to the reference quercetin. Moreover, camel milk suppressed the renal oxidative stress, as evidenced by significantly lowering NOX-1 and lipid peroxides and significantly augmenting the renal antioxidant moieties (GSH, GPx, and SOD), thereby, driving the restoration of Nrf2/HO-1 pathway. Meanwhile, camel milk counteracted the pro-apoptotic reactions by significantly lowering Bax protein expression, caspase-3 activity/cleavage, and PARP cleavage, alongside significantly increasing the expression of the proliferation signal PCNA. Regarding the anti-apoptotic AKT/eNOS/NO pathway, camel milk activated its signaling by significantly increasing the protein expression of PI3Kp110, p-AKT(Ser473)/total AKT, and p-eNOS (Ser1177)/total eNOS besides significantly boosting the renoprotective NO levels. In conclusion, these findings reveal that camel milk may be a promising candidate for the alleviation of CsA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and ToxicologyCollege of PharmacyTaif UniversityTaifSaudi Arabia
| | - Ahmed H. Eid
- Department of PharmacologyEgyptian Drug Authority (EDA), formerly NODCARGizaEgypt
| | - Amany M. Gad
- Department of PharmacologyEgyptian Drug Authority (EDA), formerly NODCARGizaEgypt
- Department of Pharmacology and ToxicologyFaculty of PharmacySinai UniversityEl IsmailiaEgypt
| | - Rania Yahia
- Department of PharmacologyEgyptian Drug Authority (EDA), formerly NODCARGizaEgypt
| | - Ayman M. Mahmoud
- Zoology Department, Faculty of ScienceBeni‐Suef UniversityBeni‐SuefEgypt
- Biotechnology DepartmentResearch Institute of Medicinal and Aromatic PlantsBeni‐Suef UniversityBeni‐SuefEgypt
| | - Ahmed M. Kabel
- Department of PharmacologyFaculty of MedicineTanta UniversityTantaEgypt
| |
Collapse
|
28
|
Arab HH, Ashour AM, Alqarni AM, Arafa ESA, Kabel AM. Camel Milk Mitigates Cyclosporine-Induced Renal Damage in Rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and Matrix Metalloproteinases. BIOLOGY 2021; 10:442. [PMID: 34067576 PMCID: PMC8156933 DOI: 10.3390/biology10050442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Renal damage is a devastating adverse effect for cyclosporine; a widely used immunosuppressant drug. The present work examined the potential of camel milk, a natural agent with marked anti-inflammatory/antioxidant properties, to attenuate cyclosporine-induced renal injury. The kidney tissue was examined with the aid of Western blotting, immunohistochemistry, biochemical assays, including colorimetric and ELISA kits. The present findings revealed that camel milk (10 mL/kg/day; for 3 weeks by gavage) significantly lowered serum creatinine, BUN, and KIM-1 renal dysfunction markers. Mechanistically, camel milk inhibited renal inflammation, as seen by significant decrease of the pro-inflammatory cytokines (MCP-1, TNF-α, IL-1β, and IL-18) and extracellular degradation signals (MMP-2 and MMP-9) and enhanced the generation of the anti-inflammatory IL-10. Moreover, it inhibited the upstream pro-inflammatory p38/ERK/JNK MAPK pathway by lowering the phosphorylation of the 3 subfamilies of MAPKs (p38 MAPK, JNK1/2, and ERK1/2). Furthermore, camel milk curbed the NF-κB pathway activation by downregulating the protein expression of activated NF-κBp65, p-NF-κBp65, and p-IκBα proteins. Additionally, camel milk inhibited renal oxidative stress by lowering the MPO activity and augmenting the reduced/oxidized glutathione ratio and total antioxidant capacity. These findings propose that camel milk may be a promising agent that inhibits cyclosporine-triggered renal inflammation via curtailing the p38/ERK/JNK MAPK and NF-κB pathways, matrix metalloproteinases, and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Abdulmalik M. Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
29
|
Anastassiadou M, Choi J, Coja T, Dujardin B, Hart A, Hernandez‐Jerrez AF, Jarrah S, Lostia A, Machera K, Mangas I, Mienne A, Schepens M, Widenfalk A, Mohimont L. Cumulative dietary risk assessment of chronic acetylcholinesterase inhibition by residues of pesticides. EFSA J 2021; 19:e06392. [PMID: 33613737 PMCID: PMC7873834 DOI: 10.2903/j.efsa.2021.6392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A retrospective cumulative risk assessment of dietary exposure to pesticide residues was conducted for chronic inhibition of acetylcholinesterase. The pesticides considered in this assessment were identified and characterised in a previous scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the nervous system. The exposure assessments used monitoring data collected by Member States under their official pesticide monitoring programmes in 2016, 2017 and 2018, and individual food consumption data from 10 populations of consumers from different countries and from different age groups. Exposure estimates were obtained by means of a two-dimensional probabilistic model, which was implemented in SAS ® software. The characterisation of cumulative risk was supported by an uncertainty analysis based on expert knowledge elicitation. For each of the 10 populations, it is concluded with varying degrees of certainty that cumulative exposure to pesticides contributing to the chronic inhibition of acetylcholinesterase does not exceed the threshold for regulatory consideration established by risk managers.
Collapse
|
30
|
Ravula AR, Yenugu S. Effect of oral administration of a mixture of pyrethroids at doses relevant to human exposure on the general and male reproductive physiology in the rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111714. [PMID: 33396045 DOI: 10.1016/j.ecoenv.2020.111714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Studies on the effects of unintentional intake of pyrethroid pesticides that are akin to actual human exposure settings are very rare. Such an exposure is primarily by consuming the food products as routine diet that contain residual levels of pyrethroids. In this study, rats were orally administered for 15 months with a mixture of pyrethroids at a dose that is one-fifth (high dose; HD) or one-twenty fifth (low dose; LD) of the residual levels commonly present in the average amount of rice and vegetables consumed by Indian population. Lipid profile, kidney and liver function were assessed. Lipid peroxidation, nitric oxide, antioxidant enzyme activities and histopathological changes were analyzed in the liver, lung, kidney, pancreas, testes, caput, cauda and prostate. The effect on the male reproductive system as a function of sperm count, enzyme activity of 3β-HSD and 17β-HSD and the expression profile of genes involved in spermatogenesis, steroidogenesis, genetic reprogramming and apoptosis of male gametes were evaluated. Significant increase in the relative organ weight, perturbations in the activities of antioxidant enzymes, lipid profile and liver function were observed in both LD and HD groups. Damage to the anatomical architecture was evident in all the tissues due to pyrethroid toxicity. Exposure to LD and HD of pyrethroid mixture resulted in decreased sperm count, activities of 3β-HSD and 17β-HSD, impaired capacitation and acrosome reaction and perturbations in the expression of genes that govern male gamete production. Results of our study indicate that exposure to pyrethroids for longer durations even at doses that are far below the residual levels present in the food consumed will result in severe damage to general physiological processes as well as reproductive function.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
31
|
Abu Zeid EH, El Sharkawy NI, Moustafa GG, Anwer AM, Al Nady AG. The palliative effect of camel milk on hepatic CYP1A1 gene expression and DNA damage induced by fenpropathrin oral intoxication in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111296. [PMID: 32949931 DOI: 10.1016/j.ecoenv.2020.111296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the alleviating role of camel milk (CM) in the mitigation of fenpropathrin (FNP) type II pyrethroid induced oxidative stress, alterations of hepatic (CYP1A1) mRNA expression pattern, and DNA damage using the alkaline comet assay (SCGE) in male rats. Sixty male Sprague-Dawley rats were separated into six groups (n = 10): 1st control (C), 2nd corn oil (CO), 3rd (CM): gavaged CM 2ml/rat, 4th (FNP): gavaged FNP 7.09 mg/kg body weight (BW), 5th (FNP pro/co-treated): gavaged CM firstly for 15 days, then CM + FNP by the same mentioned doses and route, 6th (FNP + CM co-treated): gavaged FNP firstly followed by CM by the same mentioned doses and route. Rats were orally gavaged three times per week, day after day for 60 days. FNP exposure significantly reduced serum glutathione (GSH) levels, but significantly increased serum levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PCO), and 8hydroxy2deoxyguanosine (8OH2dG). Additionally, FNP exposure significantly up-regulated the mRNA expression levels of hepatic CYP1A1 and increased the SCGE indices in whole blood, liver, and spleen tissues of exposed male rats. Administration of CM significantly regulated the FNP induced oxidative stress, reduced hepatic CYP1A1 mRNA expression levels and values of comet assay indices particularly in the (CM + FNP pro/co-treated) group compared to the (FNP + CM co-treated) group. In conclusion, our results indicate, for the first time, that FNP retains an in vivo genotoxic potential at a dose of (1/10 LD50) and up-regulated hepatic CYP1A1 mRNA expression in male rats. Additionally, CM supplements may improve the genotoxic outcomes, oxidative stress, and altered CYP1A1 mRNA expression induced by FNP particularly in the pro/concurrent-treatment compared to the concurrent treatment alone.
Collapse
Affiliation(s)
- Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Abeer M Anwer
- Head Researcher of Immunity in Animal Reproduction Research Institute. Egypt
| | - Ahmed G Al Nady
- Veterinarian at the Central Administration of Veterinary Quarantine and Examinations, Egypt
| |
Collapse
|
32
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Moselhy AAA, Beheiry RR, Said EN. Curcumin mitigates neurotoxic and neurobehavioral changes of gentamicin and sodium salicylate in rats by adjusting oxidative stress and apoptosis. Life Sci 2020; 265:118824. [PMID: 33278387 DOI: 10.1016/j.lfs.2020.118824] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Currently, antibiotics and salicylates are the most highly consumed medications worldwide. The side effects of these pharmaceuticals on the nervous system have been little investigated. Thus, this study aimed to examine the influence of the gentamicin (GM) and sodium salicylates (SS) on neurobehavioral functions, including locomotors function, memory, and sensorimotor functions together with gamma-aminobutyric acid (GABA) neurotransmitter levels. Also, oxidative stress, lipid peroxidation, and apoptotic indicators of brain tissue were assessed. Additionally, the histopathological architecture of brain tissues was investigated. This study also evaluated the curcumin (CUR) efficacy to counteract the GM or SS induced neurotoxic impacts in rats. For this purpose, seven groups were administered physiological saline (1 ml/rat; orally), olive oil (1 ml/rat; orally), CUR (50 mg/kg bwt; orally), GM (120 mg/kg bwt; intraperitoneally), SS (300 mg /kg bwt; intraperitoneally), CUR + GM, or CUR + SS for consecutive 15 days. The results revealed that GM and SS exposure evoked impaired memory, sensorimotor deficit functions, and depressive-like behavior together with the depletion of GABA. GM and SS exposure elevated malondialdehyde and Caspase-3 levels, but total antioxidant capacity and Bcl-2 levels were reduced. Besides, GM and SS exposure induced distinct pathological perturbations in cerebral cortices and hippocampus tissues. CUR significantly reversed the GM and SS harmful impacts. In conclusion, these findings verified that CUR could be a biologically efficient protective intervention against GM and SS induced neurotoxic impacts and neurobehavioral aberrations.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
33
|
Abd-Elhakim YM, Mohamed WAM, El Bohi KM, Ali HA, Mahmoud FA, Saber TM. Prevention of melamine-induced hepatorenal impairment by an ethanolic extract of Moringa oleifera: Changes in KIM-1, TIMP-1, oxidative stress, apoptosis, and inflammation-related genes. Gene 2020; 764:145083. [PMID: 32860902 DOI: 10.1016/j.gene.2020.145083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Melamine (ML) is a common food adulterant and contaminant. Moringa oleifera is a well-known medicinal plant with many beneficial biological properties. This study investigated the possible prophylactic and therapeutic activity of an ethanolic extract of M. oleifera (MEE) against ML-induced hepatorenal damage. METHOD Fifty male Sprague Dawley rats were orally administered distilled water, MEE (800 mg/kg bw), ML (700 mg/kg bw), MEE/ML (prophylactically) or MEE+ML (therapeutically). Hepatic aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphate (ALP) in serum were measured. Serum total bilirubin, direct bilirubin, indirect bilirubin, protein, albumin, and globulin contents were also assayed, and urea and creatinine levels were determined. Moreover, antioxidant enzyme activity of glutathione peroxidase (GPx) and catalase (CAT) in serum levels were quantified. Complementary histological and histochemical evaluation of renal and hepatic tissues was conducted, and expression of oxidative stress (GPx and CAT) and apoptosis-related genes, p53 and Bcl-2, in hepatic tissue were assessed. In parallel, transcriptional expression of inflammation and renal injury-related genes, including kidney injury molecule 1 (KIM-1), metallopeptidase inhibitor 1 (TIMP1), and tumor necrosis factor alpha (TNF-α) in the kidney tissue were determined. RESULTS ML caused significant increases in serum levels of ALT, AST, ALP, total bilirubin, direct bilirubin, indirect bilirubin, urea, and creatinine. Further, ML treated rats showed significant reductions in serum levels of protein, albumin, globulin, GPx, and CAT. Distinct histopathological damage and disturbances in glycogen and DNA content in hepatic and renal tissues of ML treated rats were observed. KIM-1, TIMP-1, and TNF-α gene expression was significantly upregulated in kidney tissue. Also, GPx, CAT, and Bcl-2 genes were significantly downregulated, and p53 was significantly upregulated in liver tissue after ML treatment. MEE significantly counteracted the ML-induced hepatorenal damage primarily for co-exposed rats. CONCLUSION MEE could be an effective therapeutic supplement for treatment of ML-induced hepato-renal damage, probably via modulating oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Wafaa A M Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fagr A Mahmoud
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Abd-Elhakim YM, Ghoneim MH, Ebraheim LLM, Imam TS. Taurine and hesperidin rescues carbon tetrachloride-triggered testicular and kidney damage in rats via modulating oxidative stress and inflammation. Life Sci 2020; 254:117782. [PMID: 32407847 DOI: 10.1016/j.lfs.2020.117782] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/26/2022]
Abstract
AIMS This study assessed the prophylactic or therapeutic effects of taurine (TR) and/or hesperidin (HES) on carbon tetrachloride (CCl4) induced acute kidney and testicular injury in rats. MAIN METHODS Rats were randomly divided into nine experimental groups including control; corn oil; CCl4; HES/CCl4; TR/CCl4; HES + TR/CCl4; CCl4/HES; CCl4/TR; and CCl4/HES + TR groups. CCl4 was intraperitoneally injected with a single dose of 2 ml /kg b.w. HES and TR were orally gavaged twice weekly 100 mg/kg b.w. for four weeks. Kidney function, inflammatory response, sexual hormones, and oxidative stress indicators were assessed. Histomorphological and immune-histochemical studies of the inflammatory marker nuclear factor kappa (NF-κB) in renal and testicular tissues were performed. KEY FINDINGS The results showed that the TR and/or HES treatment significantly suppressed CCl4 induced rise of urea, uric acid, potassium, and follicle-stimulating hormone levels. However, significant restoration of sodium, testosterone, and luteinizing hormone was apparent in CCl4 exposed rats received HES and/or TR. Also, the HES and/or TR treatment significantly rescues CCl4 induced oxidative stress and inflammation. Moreover, the HES and/or TR dosing significantly repaired the CCl4 evoked altered renal and testicular architecture and suppressed NF-κB immunoexpression. Notably, alleviating CCl4 induced renal and testicular damage was more effective in the prophylactic groups than the therapeutic groups. Also, most of the estimated parameters of the HES + TR group did not significantly vary from those of single TR or HES. SIGNIFICANCE In conclusion, HES or TR could efficiently guard against CCl4 nephro-and reprotoxic effects, but both bioactive combinations afford only a limited synergistic outcome.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Mervat H Ghoneim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Abd El-Rahman GI, Behairy A, Elseddawy NM, Batiha GES, Hozzein WN, Khodeer DM, M. Abd-Elhakim Y. Saussurea lappa Ethanolic Extract Attenuates Triamcinolone Acetonide-Induced Pulmonary and Splenic Tissue Damage in Rats via Modulation of Oxidative Stress, Inflammation, and Apoptosis. Antioxidants (Basel) 2020; 9:antiox9050396. [PMID: 32397156 PMCID: PMC7278611 DOI: 10.3390/antiox9050396] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background: In this era, worldwide interest has been directed towards using natural antioxidants to guard against drug side effects. Saussurea lappa is a famous medicinal plant with many biologically active compounds. Triamcinolone acetonide (TA) is an extensively used glucocorticoid. Hence, this study explored, for the first time, the possible beneficial effects of S. lappa ethanolic extract on TA-induced oxidative damage in the lung and spleen of rats. Methods: Five experimental groups were used: control group, S. lappa-treated group (600 mg/kg/day, orally), TA-treated group (40 mg/kg/twice/week I/P), S. lappa + TA co-treated group, and S. lappa/TA prophylactic group. Results: TA exposure significantly induced leukocytosis and neutrophilia. In addition, TA significantly reduced the levels of C-reactive protein, interleukin-12, tumor necrosis factor α, and immunoglobulins. Lung Caspase-3 overexpression and splenic CD8+ downregulation were also noted in the TA group. TA treatment significantly increased malondialdehyde concentration but reduced superoxide dismutase and glutathione peroxidase activities. S. lappa counteracted the TA oxidative and apoptotic effects. The best results were recorded in the prophylactic group. Conclusions:S. lappa has a remarkable protective effect via its anti-inflammatory, anti-apoptotic, and antioxidant capacity. Thus, it could be a candidate as a natural antioxidant to face glucocorticoid’s harmful side effects.
Collapse
Affiliation(s)
- Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nora M. Elseddawy
- Department of Pathology, Faculty of Veterinary medicine, Zagazig University, Zagazig 44519 Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| |
Collapse
|
36
|
Abd-Elhakim YM, Ghoneim MH, Khairy MH, Eissa SA. Single or combined protective and therapeutic impact of taurine and hesperidin on carbon tetrachloride-induced acute hepatic injury in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13180-13193. [PMID: 32016862 DOI: 10.1007/s11356-020-07895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Currently, hepatic injury due to environmental pollutants extremely threatens human health and elicits great concern. Hence, there is a high global interest to find natural novel formulation products with potent hepatoprotective activity to combat liver disease. Hence, we evaluated the protective or therapeutic effect of hesperidin (HSP) and taurine (TAU), individually and in combination, on carbon tetrachloride (CCl4)-induced acute hepatic injury in rats. The pre- or posttreatment by HSP and/or TAU significantly depressed CCl4-induced elevation of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, gamma-glutamyl transferase, total bilirubin, direct bilirubin, indirect bilirubin, malondialdehyde, globulins (α1, α2, β, and γ), albumin/globulin ratio, triglycerides, total cholesterol, high-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, nitric oxide, and myeloperoxidase levels. Also, the pre- or posttreatment by HSP and/or TAU significantly minimized CCl4-induced reduction of superoxide dismutase, catalase, reduced glutathione, and albumin concentrations. Furthermore, the protective or therapeutic administration of HSP and/or TAU markedly restored the CCl4-induced altered hepatic architecture, depleted glycogen, and DNA contents. Notably, alleviating CCl4-induced hepatotoxicity was more prominent in the protective groups than the therapeutic groups. More importantly, most of biochemical and histopathological parameters of HSP+TAU did not significantly differ from those of separate TAU or HSP neither before nor after CCl4 exposure. Conclusively, HSP or TAU could be candidate protective agents against CCl4 hepatotoxic impacts but the combination of both bioactive offers only a limited synergistic effect. Graphical abstract.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Mervat H Ghoneim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H Khairy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Smr A Eissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Hashem MA, Shoeeb SB, Abd-Elhakim YM, Mohamed WA. The antitumor activity of Arthrospira platensis and/or cisplatin in a murine model of Ehrlich ascites carcinoma with hematinic and hepato-renal protective action. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|