1
|
Li K, Cai H, Luo B, Duan S, Yang J, Zhang N, He Y, Wu A, Liu H. Recent Progress of Mycotoxin in Various Food Products-Human Exposure and Health Risk Assessment. Foods 2025; 14:865. [PMID: 40077568 PMCID: PMC11898784 DOI: 10.3390/foods14050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns of mycotoxins across major food categories, including cereals and related products, animal-derived foods, fruits, and medical food materials. Furthermore, we critically evaluated two methodological frameworks for assessing mycotoxin exposure risks: (1) dietary exposure models integrating contamination levels and consumption data and (2) human biomonitoring approaches quantifying mycotoxin biomarkers in biological samples. A key contribution lies in the stratified analysis of exposure disparities among population subgroups (adults, teenagers, children, and infants). Additionally, we summarize current research on the relationship between human mycotoxin biomonitoring and associated health impacts, with a particular emphasis on vulnerable groups such as pregnant women and infants. By elucidating the challenges inherent in existing studies, this synthesis provides a roadmap for advancing risk characterization and evidence-based food safety interventions.
Collapse
Affiliation(s)
- Kailin Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Baozhang Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Shenggang Duan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Jingjin Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Nan Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Yi He
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| |
Collapse
|
2
|
Li K, Luo B, Cai H, Qi R, Zhu Z, He Y, Wu A, Liu H. Deoxynivalenol and Alternaria Toxin Exposure and Health Effects Assessment of Pregnant Shanghai Women. Foods 2025; 14:776. [PMID: 40077479 PMCID: PMC11898465 DOI: 10.3390/foods14050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Deoxynivalenol (DON) and Alternaria toxins (ATs) are two common types of mycotoxins in food. Although they are physiologically toxic to animals and various cell lines, data related to the exposure risks and health effects in the human population were still limited, especially for ATs. In this study, we combined food consumption data and human biomonitoring data of 200 pregnant volunteers from different districts of Shanghai to assess the exposure to DON and ATs. In addition, correlations between food consumption and urinary DON and ATs levels, urine biomarkers, and blood indexes were analyzed by regression analysis. For DON, the exposure assessment of the probable daily intake (PDI) indicated that a portion (37.5%) of all participants exceeded the Tolerable Daily Intake (TDI) proposed for DON. For ATs, the PDI values estimated based on the urinary concentrations indicated that 2-100% of all participants exceeded the threshold of toxicological concern (TTC) values for ATs. In addition, we innovatively found some associations between exposure to ATs and abnormal uric acid and high-density lipoprotein cholesterol indexes by regression analysis. Despite the inevitable uncertainties, these results make an important contribution to the understanding of DON and ATs exposure risks and potential health hazards in the pregnant women population.
Collapse
Affiliation(s)
- Kailin Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Baozhang Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
| | - Renjie Qi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
| | - Zhenni Zhu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
| | - Yi He
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (B.L.); (H.C.); (R.Q.); (Z.Z.); (Y.H.)
| |
Collapse
|
3
|
Akkaya E, Akhan M, Cakmak Sancar B, Hampikyan H, Engin AS, Cetin O, Bingol EB, Colak H. Monitoring of Ochratoxin A Occurrence and Dietary Intake in Tarhana, a Fermented Cereal-Based Product. Foods 2025; 14:443. [PMID: 39942036 PMCID: PMC11817119 DOI: 10.3390/foods14030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to determine the mold and ochratoxin A (OTA) contamination of tarhana, a traditional product widely consumed in Turkish cuisine. For this purpose, a total of 350 tarhana samples (homemade and industrially produced) were randomly collected from retail stores, markets, and bazaars in different regions of Türkiye and analyzed by means of LC-MS/MS for the occurrence of OTA. According to the results, OTA was detected in 36 of 150 (24%) industrially produced tarhana samples, with a concentration range of 0.12-2.34 µg/kg, while 118 of 200 (59%) homemade tarhana samples contained OTA, with the range from 0.16 to 4.15 µg/kg. Only 8 of 350 (4%) homemade tarhana samples were found to be above the maximum permissible limit (3.0 µg/kg) for OTA. The mold contamination was found to be higher in homemade tarhana (3.756 log CFU/g) than in the industrially produced samples (2.742 log CFU/g). The estimated weekly intake values of OTA with tarhana consumption were well below the provisional tolerable weekly intake values for both industrially produced and homemade tarhana samples, even when consumed every day of the week, indicating that dietary intake of OTA through tarhana consumption does not pose a health risk. In conclusion, optimizing the fermentation and drying conditions applied during tarhana production and ensuring proper hygiene conditions can help to reduce the risk of OTA contamination. Moreover, monitoring and testing the OTA levels in tarhana on a regular basis can also ensure the food safety of this product.
Collapse
Affiliation(s)
- Esra Akkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, Istanbul 34500, Türkiye; (E.B.B.); (H.C.)
| | - Meryem Akhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, Istanbul 34510, Türkiye; (M.A.); (B.C.S.)
| | - Burcu Cakmak Sancar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Esenyurt University, Istanbul 34510, Türkiye; (M.A.); (B.C.S.)
| | - Hamparsun Hampikyan
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Beykent University, Istanbul 34500, Türkiye;
| | - Ayse Seray Engin
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Gelisim University, Istanbul 34310, Türkiye;
| | - Omer Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Rumeli University, Istanbul 34570, Türkiye;
| | - Enver Baris Bingol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, Istanbul 34500, Türkiye; (E.B.B.); (H.C.)
| | - Hilal Colak
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, Istanbul 34500, Türkiye; (E.B.B.); (H.C.)
| |
Collapse
|
4
|
Song X, Song Y, Gu J, Zhang M, Zhang L, Zheng X, Guo L, Liu X. Fumonisins in maize and its products from Dalian region, China, and risk assessment by deterministic and probabilistic approaches. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-7. [PMID: 39773311 DOI: 10.1080/19393210.2024.2446799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
A total of 76 samples of maize and its products were collected in 2022-2023 to estimate dietary exposure of fumonisins (FBs) in Dalian region, China. The identification of FBs was performed by ultrahigh performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS). The occurrences of FB1, FB2, FB3, FB1 + FB2 + FB3 were 89.5%, 77.6%, 61.8%, and 61.8%, respectively, with mean concentrations ranging from 140 to 1332 μg/kg. No individual and cumulative health risks were found due to FBs dietary exposure, when considering the mean level. However, a deterministic analysis showed 95th and 99th exposures of FB1 + FB2 + FB3 for children and adolescents were estimated to be 2.18 to 3.46 μg kg bw-1day-1, exceeding the Provisional Maximum Tolerable Daily Intake (PMTDI) of 2 μg kg bw-1day-1. Probabilistic analysis showed the 99th exposures for all age groups were 2.06 to 3.08 μg kg bw-1day-1, exceeding the PMTDI. Establishment of MLs and systematic monitoring are needed to lower FBs dietary exposure and health risk in the Dalian region.
Collapse
Affiliation(s)
- Xiaoyun Song
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Yue Song
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Junjie Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, China
| | - Mei Zhang
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Lei Zhang
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Xiaonan Zheng
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Lin Guo
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Xiaoting Liu
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| |
Collapse
|
5
|
Lu Z, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Zhang H, Qi X, Weng Q, Ye S, Zhou B. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins (Basel) 2024; 17:9. [PMID: 39852962 PMCID: PMC11769038 DOI: 10.3390/toxins17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
This study aims to examine the hazards of zearalenone (ZEN) to humans and assess the risk of dietary exposure to ZEN, particularly in relation to precocious puberty in children from the Zhejiang Province. The test results from five types of food from the Zhejiang Province show that corn oil has the highest detection rate of 87.82%. The levels of ZEN do not exceed the existing safety standards in any sample investigated in this study. According to the data from the Food Consumption Survey of Zhejiang Province residents, rice is the primary source of ZEN exposure, accounting for 55.85% of total exposure among all age groups. Based on the 50th exposure percentile, it would take 6.25 years of rice consumption to reach 1 year of safe ZEN exposure. Overall, the majority of the residents in the Zhejiang Province have a low risk of exposure to ZEN. In an extreme case (based on the 95th exposure percentile), the total ZEN exposure from the studied foods with respect to children aged ≤6 years and 7-12 years is 0.38 μg/kg b.w. and 0.26 μg/kg b.w., respectively-both exceeding the safety limit of 0.25 μg/kg b.w. set by the European Food Safety Authority, indicating a potential risk of exposure. Precocious puberty assessments show that ZEN exposure levels in children in the Zhejiang Province are significantly lower than those associated with precocious puberty; thus, precocious puberty is unlikely to occur in this area. Given ZEN's estrogenic effect, it is necessary to monitor the level of ZEN in different food items, revise the relevant standards as needed, and focus on exposure to ZEN in younger age groups.
Collapse
Affiliation(s)
- Zijie Lu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Dong Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaodong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jikai Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Hexiang Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Qin Weng
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Shufeng Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - Biao Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| |
Collapse
|
6
|
de Oliveira Rocha L, Hiromi Taniwaki M, Ennis M, Lindner Schreiner L, El Haffar F. Reducing fumonisin contamination in Brazilian maize: The impact of Codex standards and regulatory frameworks. Food Res Int 2024; 197:115280. [PMID: 39577933 DOI: 10.1016/j.foodres.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
Fumonisins are mycotoxins produced primarily by the Fusarium fujikuroi species complex in maize, and contamination poses significant health risks and economic implications. This review explores Brazil's comprehensive approach to reducing fumonisin contamination in maize, particularly the strategies adopted by the Brazilian Surveillance Agency (ANVISA), thanks to its participation in and the work of the Codex Committee on Contaminants in Foods (CCCF). Through collaborative efforts with several stakeholders, Brazil has successfully reduced fumonisin levels over the past thirty years, improving food safety for its population and exports. The recorded data indicate that the mean levels of fumonisins were 2692.1 µg/kg during the years 1991-2010, while the mean levels decreased to 685.4 µg/kg from 2011 to 2022. Based on this, significant progress has been achieved; nevertheless, challenges persist, particularly concerning enforcement and compliance disparities across the country. In this respect, active engagement from academia, industry, and regulatory bodies is crucial for raising awareness about health and economic risks linked to mycotoxin contamination. Strengthening monitoring efforts and sustainable collaborations are also recommended to further increase fumonisin control and food safety.
Collapse
Affiliation(s)
- Liliana de Oliveira Rocha
- Laboratory of Microorganisms and Mycotoxins, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | | | - Michael Ennis
- Secretariat of the Codex Alimentarius Commission, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Farid El Haffar
- Secretariat of the Codex Alimentarius Commission, Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
7
|
Demonte LD, Cendoya E, Nichea MJ, Romero Donato CJ, Ramirez ML, Repetti MR. Occurrence of modified mycotoxins in Latin America: an up-to-date review. Mycotoxin Res 2024; 40:467-481. [PMID: 39096468 DOI: 10.1007/s12550-024-00548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
The Latin America region has a considerable extent of varied climate conditions: from tropical, subtropical, and warm temperate to temperate. Among the surface territory, different agricultural products are produced, making them an important food source for human consumption. Fungal species commonly colonize those important agricultural products and often contaminate them with mycotoxins that have a major impact on health, welfare, and productivity. Nowadays, special attention is paid to modified mycotoxins, which are those that cannot be detected by conventional analytical methods. However, little data about their natural occurrence in food and feed is available, especially in Latin American countries, where, among all the countries in this region, only a few of them are working on this subject. Thus, the present review summarizes the published information available in order to determine the possible human exposure risk to these toxins.
Collapse
Affiliation(s)
- Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eugenia Cendoya
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - María J Nichea
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cindy J Romero Donato
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María L Ramirez
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| |
Collapse
|
8
|
Ali S, Battaglini Franco B, Theodoro Rezende V, Gabriel Dionisio Freire L, Lima de Paiva E, Clara Fogacio Haikal M, Leme Guerra E, Eliana Rosim R, Gustavo Tonin F, Savioli Ferraz I, Antonio Del Ciampo L, Augusto Fernandes de Oliveira C. Exposure assessment of children to dietary mycotoxins: A pilot study conducted in Ribeirão Preto, São Paulo, Brazil. Food Res Int 2024; 180:114087. [PMID: 38395556 DOI: 10.1016/j.foodres.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Exposure to mycotoxins through food is a major health concern, especially for youngsters. This study performed a preliminary investigation on children's exposure to dietary mycotoxins in Ribeirão Preto, Brazil. Sampling procedures were conducted between August and December 2022, to collect foods (N = 213) available for consumption in the households of children (N = 67), including preschoolers (aged 3-6 years, n = 21), schoolers (aged 7-10 years, n = 15), and adolescents (aged 11-17 years, n = 31) cared in the Vila Lobato Community Social Medical Center of Ribeirão Preto. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was used to determine concentrations of the mycotoxins in foods. Mycotoxins measured in all foods comprised aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), T-2 toxin, deoxynivalenol (DON) and ochratoxin A (OTA). Higher incidence and levels were found for FBs, ZEN, and DON in several commonly consumed foods. Furthermore, 32.86 % foods had two to four quantifiable mycotoxins in various combinations. The mean estimated daily intake (EDI) values were lower than the tolerable daily intake (TDI) for AFs, FBs, and ZEN, but higher than the TDI (1.0 µg/kg bw/day) for DON, hence indicating a health risk for all children age groups. Preschoolers and adolescents were exposed to DON through wheat products (EDIs: 2.696 ± 7.372 and 1.484 ± 2.395 µg/kg body weight (bw)/day, respectively), while schoolers were exposed through wheat products (EDI: 1.595 ± 1.748 µg/kg bw/day) and rice (EDI: 1.391 ± 1.876 µg/kg bw/day). The results indicate that wheat-based foods and rice may be risky to children, implying the need for stringent measures to avoid DON contamination in these products.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| | - Bruna Battaglini Franco
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP) -Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Esther Lima de Paiva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Maria Clara Fogacio Haikal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Eloiza Leme Guerra
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Ivan Savioli Ferraz
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Luiz Antonio Del Ciampo
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
9
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
10
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
11
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
12
|
Demirhan B, Demirhan BE. Analysis of Multi-Mycotoxins in Commonly Consumed Spices Using the LC-MS/MS Method for Assessing Food Safety Risks. Microorganisms 2023; 11:1786. [PMID: 37512958 PMCID: PMC10386130 DOI: 10.3390/microorganisms11071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by certain fungal species. In this study, the aim was to investigate mycotoxins, which pose a serious health problem. For this purpose, a total of 140 spice samples (black pepper, red pepper, cumin, and turmeric) purchased from Ankara, Turkey, were analyzed for specific mycotoxins (aflatoxin B1-AFB1, aflatoxin B2-AFB2, aflatoxin G1-AFG1, aflatoxin G2-AFG2, ochratoxin A-OTA, zearalenone-ZEN) using an LC-MS/MS multi-mycotoxin method. The Staphylococcus spp. and Micrococcus spp. counts in the spice samples were also analyzed using the conventional culture method. The contamination levels of AFB1 ranged from not detected (ND) to 39.12 μg/kg; AFB2 ranged from ND to 2.10 μg/kg; AFG1 ranged from ND to 0.92 μg/kg; AFG2 ranged from ND to 3.67 μg/kg; OTA ranged from ND to 39.79 μg/kg; ZEN ranged from ND to 11.16 μg/kg. The maximum residue limit for AFB1 (5 μg/kg) determined according to the Turkish Food Codex (TFC) was exceeded in five samples of red pepper, two samples of black pepper, and one sample of turmeric. Furthermore, it was determined that three samples of red pepper and one sample of black pepper exceeded the maximum limits for total aflatoxin (10 μg/kg) and OTA (15 μg/kg) specified in the TFC.
Collapse
Affiliation(s)
- Burak Demirhan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| | - Buket Er Demirhan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| |
Collapse
|
13
|
Hrynko I, Kaczyński P, Wołejko E, Łozowicka B. Impact of technological processes on tebuconazole reduction in selected cereal species and the primary cereal product, and dietary exposure assessment. Food Chem 2023; 422:136249. [PMID: 37137237 DOI: 10.1016/j.foodchem.2023.136249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Contamination of cereals with tebuconazole (TEB) can affect the dietary risk assessment. This study investigates, for the first time, how mechanical, thermal, physical-chemical, and biochemical processes affect the TEB level in wheat, rye, and barley. The biochemical process of malting was the most effective for tebuconazole reduction (by 86%) in cereals. Thermal processes were also effective, i.e., boiling (70%) and baking (55%). These processes considerably decreased the concentration of tebuconazole, and Procesing Factors (PFs) were from 0.10 to 0.18 (malting), 0.56 to 0.89 (boiling), and 0.44 to 0.45 (baking), respectively. The concentration of TEB was not reduced after the application of mechanical processing. The risk was estimated in dietary exposure assessment on the basis of the highest reported levels of tebuconazole residues bread. At a high level of rye bread consumption, the potential exposure to tebuconazole reached only 3.5% and 2.7% in children and adults, respectively.
Collapse
Affiliation(s)
- Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195 Bialystok, Poland.
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195 Bialystok, Poland
| | - Elżbieta Wołejko
- Bialystok University of Technology, Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45, 15-351 Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Chelmonskiego 22, 15-195 Bialystok, Poland
| |
Collapse
|
14
|
Zhou H, Xu A, Liu M, Yan Z, Qin L, Liu H, Wu A, Liu N. Mycotoxins in Wheat Flours Marketed in Shanghai, China: Occurrence and Dietary Risk Assessment. Toxins (Basel) 2022; 14:748. [PMID: 36355998 PMCID: PMC9698038 DOI: 10.3390/toxins14110748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The risk of exposure to mycotoxins through the consumption of wheat flours has long been a concern. A total of 299 wheat flours marketed in Shanghai Province of China were surveyed and analyzed for the co-occurrence of 13 mycotoxins through an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The detection rates of mycotoxins in wheat flours ranged from 0.7~74.9% and their average contamination levels in wheat flours (0.2~57.6 µg kg-1) were almost lower than the existing regulations in cereals. However, their co-contamination rate was as high as 98.1%, especially Fusarium and Alternaria mycotoxins. Comparative analysis of different types of wheat flours showed that the average contamination levels in refined wheat flours with low-gluten were lower. Based on these contamination data and the existing consumption data of Shanghai residents, point evaluation and the Monte Carlo assessment model were used to preliminarily evaluate the potential dietary exposure risk. The probable daily intakes of almost all mycotoxins, except for alternariol, were under the health-based guidance values for 90% of different consumer groups. Health risks of dietary exposure to alternariol should be a concern and further studied in conjunction with an internal exposure assessment.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Anqi Xu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Meichen Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Luxin Qin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China
| |
Collapse
|
15
|
Franco LT, Oliveira CAF. Assessment of occupational and dietary exposures of feed handling workers to mycotoxins in rural areas from São Paulo, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155763. [PMID: 35561905 DOI: 10.1016/j.scitotenv.2022.155763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
In the current study, the occupational and dietary exposures of feed handling workers (N = 28) to aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA), deoxynivalenol (DON), zearalenone (ZEN), toxins T-2 and HT-2 were assessed for the first time in animal-producing farms and feed factories from São Paulo, Brazil. Mycotoxins in food (n = 244) and airborne dust (n = 27), as well as biomarkers in urine (n = 97) samples were determined by liquid chromatography coupled with tandem mass spectrometry. FBs were detected in all airborne dust samples, with concentrations ranging from 7.85 to 16,839 ng/m3. The mean probable daily intake (PDI) based on food data were 0.005, 0.769, 0.673 and 0.012 μg/kg of body weight (bw)/day for AFs, FBs, DON and ZEN, respectively. Mean PDI values obtained through urinary biomarkers were 0.29, 0.10, 0.50, 9.72 and 0.10 μg/kg body weight/day for AFB1, DON, OTA, FB1 and ZEN, respectively. The analyses based on urinary biomarkers revealed a potential health concern for OTA and FBs, although no potential health concern was observed with PDI calculated through food data. Results of this trial stress the need for preventive measures to avoid health risks of workers in Brazilian animal-producing farms and feed industries.
Collapse
Affiliation(s)
- Larissa T Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
16
|
Maher A, Nowak A. Chemical Contamination in Bread from Food Processing and Its Environmental Origin. Molecules 2022; 27:5406. [PMID: 36080171 PMCID: PMC9457569 DOI: 10.3390/molecules27175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Acrylamide (AA), furan and furan derivatives, polycyclic aromatic amines (PAHs), monochloropropanediols (MCPDs), glycidol, and their esters are carcinogens that are being formed in starchy and high-protein foodstuffs, including bread, through baking, roasting, steaming, and frying due to the Maillard reaction. The Maillard reaction mechanism has also been described as the source of food processing contaminants. The above-mentioned carcinogens, especially AA and furan compounds, are crucial substances responsible for the aroma of bread. The other groups of bread contaminants are mycotoxins (MTs), toxic metals (TMs), and pesticides. All these contaminants can be differentiated depending on many factors such as source, the concentration of toxicant in the different wheat types, formation mechanism, metabolism in the human body, and hazardous exposure effects to humans. The following paper characterizes the most often occurring contaminants in the bread from each group. The human exposure to bread contaminants and their safe ranges, along with the International Agency for Research on Cancer (IARC) classification (if available), also have been analyzed.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
17
|
Artichoke Leaf Extract-Mediated Neuroprotection against Effects of Aflatoxin in Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4421828. [PMID: 35909495 PMCID: PMC9325642 DOI: 10.1155/2022/4421828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Attenuation of adverse effects of aflatoxin (AFB1) in brains of B1 rats by extracts of leaves of artichoke was studied. The active ingredients in extracts of leaves of artichoke, Cynara scolymus L., were determined by HPLC analysis. In the 42-day experiment, rats were exposed to either sterile water, 4% DMSO, 100 mg artichoke leaf extract/kg body mass, 72 μg aflatoxin B1/kg body mass, or AFB1 plus artichoke leaf extract. Neurotoxicity of AFB1 was determined by an increase in profile of lipids, augmentation of plasmatic glucose and concentrations of insulin, oxidative stress, increased activities of cholinergic enzymes, and a decrease in activities of several antioxidant enzymes and pathological changes in brain tissue. Extracts of artichoke leaf significantly reduced adverse effects caused by AFB1, rescuing most of the parameters to values similar to unexposed controls, which demonstrated that adverse, neurotoxic effects caused by aflatoxin B1 could be significantly reduced by simultaneous dietary supplementation with artichoke leaf extract, which itself is not toxic.
Collapse
|
18
|
3-keto-DON, but Not 3- epi-DON, Retains the in Planta Toxicological Potential after the Enzymatic Biotransformation of Deoxynivalenol. Int J Mol Sci 2022; 23:ijms23137230. [PMID: 35806249 PMCID: PMC9266554 DOI: 10.3390/ijms23137230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Deoxynivalenol (DON) is a secondary fungal metabolite that is associated with many adverse toxicological effects in agriculture as well as human/animal nutrition. Bioremediation efforts in recent years have led to the discovery of numerous bacterial isolates that can transform DON to less toxic derivatives. Both 3-keto-DON and 3-epi-DON were recently shown to exhibit reduced toxicity, compared to DON, when tested using different cell lines and mammalian models. In the current study, the toxicological assessment of 3-keto-DON and 3-epi-DON using in planta models surprisingly revealed that 3-keto-DON, but not 3-epi-DON, retained its toxicity to a large extent in both duckweeds (Lemna minor L.) and common wheat (Triticum aestivum L.) model systems. RNA-Seq analysis revealed that the exposure of L. minor to 3-keto-DON and DON resulted in substantial transcriptomic changes and similar gene expression profiles, whereas 3-epi-DON did not. These novel findings are pivotal for understanding the environmental burden of the above metabolites as well as informing the development of future transgenic plant applications. Collectively, they emphasize the fundamental need to assess both plant and animal models when evaluating metabolites/host interactions.
Collapse
|
19
|
Taborda B, Santos AM, Costa MT, Mendes MM, Lopes de Andrade V, Mateus L. Contribution of cereals and cows' milk consumption to the exposure to mycotoxins: a study with Portuguese children. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:588-598. [PMID: 35020578 DOI: 10.1080/19440049.2021.2010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ubiquitous occurrence of mycotoxins in the environment results in unavoidable and repeated human exposure to mixtures of mycotoxins, the main exposure being through the consumption of contaminated foods, such as cereals and milk. Considering the frequency of contamination of these foods with mycotoxins, this study aimed to evaluate the risk of exposure to aflatoxins, ochratoxin A, deoxynivalenol and zearalenone in a Portuguese population under 17 years old through the consumption of these foods. To assess mycotoxin exposure, food contamination data was provided by the Official National Plan to Control Food and the food consumption information from the National Food, Nutrition, and Physical Activity Survey of the Portuguese General Population (2015-2016); risk assessment calculations were performed through the Monte Carlo probabilistic method. In view of the results obtained for aflatoxins, ochratoxin A, deoxynivalenol and zearalenone, and considering the legislation in force, the levels observed were below the maximum levels. However, there was a risk in deoxynivalenol exposure for children from 0 to 9 years old (average and high consumers), and for high consumers from 10 to 17 years old. Given the potential adverse effects of these mycotoxins, their co-existence in the same foods and being a priority issue defined by the European Food Safety Authority, tight control should be carried out, in addition to re-evaluation of the maximum levels of these mycotoxins.
Collapse
Affiliation(s)
- Bárbara Taborda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Food Risks and Laboratories, Portuguese Food and Economic Safety Authority (ASAE), Lisboa, Portugal
| | - Ap Marreilha Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda T Costa
- Department of Food Risks and Laboratories, Portuguese Food and Economic Safety Authority (ASAE), Lisboa, Portugal
| | - Maria Manuel Mendes
- Department of Food Risks and Laboratories, Portuguese Food and Economic Safety Authority (ASAE), Lisboa, Portugal
| | - Vanda Lopes de Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Luisa Mateus
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
20
|
LIMA CMG, COSTA HRD, PAGNOSSA JP, ROLLEMBERG NDC, SILVA JFD, DALLA NORA FM, BATIHA GES, VERRUCK S. Influence of grains postharvest conditions on mycotoxins occurrence in milk and dairy products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|