1
|
Kim JW, Tung HC, Yang B, Pant R, Guan X, Feng Y, Xie W. Heme-thiolate monooxygenase cytochrome P450 1B1, an old dog with many new tricks. Pharmacol Rev 2025; 77:100045. [PMID: 40054133 DOI: 10.1016/j.pharmr.2025.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 05/12/2025] Open
Abstract
Cytochrome P450 CYP1B1 is a heme-thiolate monooxygenase traditionally recognized for its xenobiotic functions and extrahepatic expressions. Recent studies have suggested that CYP1B1 is also expressed in hepatic stellate cells, immune cells, endothelial cells, and fibroblasts within the tumor microenvironment, as well as tumor cells themselves. CYP1B1 is responsible for the metabolism of a wide range of substrates, including xenobiotics such as drugs, environmental chemicals, and endobiotics such as steroids, retinol, and fatty acids. Consequently, CYP1B1 and its associated exogenous and endogenous metabolites have been critically implicated in the pathogenesis of many diseases. Understanding the mode of action of CYP1B1 in different pathophysiological conditions and developing pharmacological inhibitors that allow for systemic or cell type-specific modulation of CYP1B1 may pave the way for novel therapeutic opportunities. This review highlights the significant role of CYP1B1 in maintaining physiological homeostasis and provides a comprehensive discussion of recent advancements in our understanding of CYP1B1's involvement in the pathogenesis of diseases such as fibrosis, cancer, glaucoma, and metabolic disorders. Finally, the review emphasizes the therapeutic potential of targeting CYP1B1 for drug development, particularly in the treatment and prevention of cancers and liver fibrosis. SIGNIFICANCE STATEMENT: CYP1B1 plays a critical role in various physiological processes. Dysregulation or genetic mutations of the gene encoding this enzyme can lead to health complications and may increase the risk of diseases such as cancer and liver fibrosis. In this review, we summarize recent preclinical and clinical evidence that underscores the potential of CYP1B1 as a therapeutic target.
Collapse
Affiliation(s)
- Jong-Won Kim
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung-Chun Tung
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bin Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajat Pant
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Gomathinayagam S, Srinivasan R, Gomathi A, Jayaraj R, Vasconcelos V, Sudhakaran R, Easwaran N, Meivelu Moovendhan, Kodiveri Muthukaliannan G. Oral Administration of Carotenoid-Rich Dunaliella salina Powder Inhibits Colon Carcinogenesis via Modulation of Wnt/β-catenin Signaling Cascades in a Rat Model. Appl Biochem Biotechnol 2025; 197:159-178. [PMID: 39106028 DOI: 10.1007/s12010-024-05024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
The present study aims to investigate the oral therapeutic and molecular role of carotenoid-rich Dunaliella salina powder (DSP) against 1,2-dimethylhydrazine (DMH)-triggered colon carcinogenesis. In this study, thirty six male Wistar rats were categorized into six distinct groups (G1-G6): G1 group with no intervention, G2 group received only DSP (1000 mg/kg), G3 group received only DMH carcinogen (20 mg/kg), and G4-G6 group received both DMH and DSP at various phases (pre-initiation, post-initiation and entire phases) for 32 weeks. Body weight, tumor incidence, tumor volume, histopathological examination, antioxidants, and detoxification enzymes activities were analyzed in the experimental rats. In addition, the protein expression profile of components involved in the Wnt/β-catenin signaling pathway was determined by western blot analysis. Matrix metalloproteinases (MMP-7 and MMP-9), proliferation marker (PCNA), and pro-apoptotic (Bcl-2 and Bax) proteins were analyzed using immunohistochemistry. Colorimetric assay was used to determine the levels of anti-inflammatory (iNOS and COX-2) and apoptotic proteins (Caspase-3 and Caspase-9). Results showed that concomitant administration of DSP with DMH significantly reduced tumor progression and prevented colon carcinogenesis in rats. However, treatment with DSP before or after DMH exposure did not significantly prevent colon carcinogenesis. DMH and DSP treatment group showed increased activities of antioxidant enzymes with significant reduction in the oxidative stress. Additionally, the detoxification enzymes and colonic histopathology of those rats were restored to that of control rats. The administration of DSP to rats exposed to DMH exhibited antitumor effects via inhibition of the Wnt/β-catenin signaling pathway with induced apoptosis through the Bcl-2/Bax/caspases signaling cascades. Moreover, the same group also showed significant anti-inflammatory activity via regulating iNOS and COX-2 biomarkers. Our findings revealed molecular chemopreventive activity of carotenoid-rich DSP through regulating Wnt/beta-catenin and intrinsic apoptotic pathways. Thus, DSP is propound to function as a potent antioxidant, anti-proliferative, and anti-inflammatory therapeutic agent against colon carcinogenesis.
Collapse
Affiliation(s)
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Ajitha Gomathi
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences, Jindal Global Institution of Eminence Deemed to Be University, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007, Porto, Portugal
| | - Raja Sudhakaran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Nalini Easwaran
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India
| | | |
Collapse
|
3
|
Zapico A, Salazar N, Arboleya S, González del Rey C, Diaz E, Alonso A, Gueimonde M, de los Reyes-Gavilán CG, Gonzalez C, González S. Potential of Fiber and Probiotics to Fight Against the Effects of PhIP + DSS-Induced Carcinogenic Process of the Large Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25161-25172. [PMID: 39470985 PMCID: PMC11565705 DOI: 10.1021/acs.jafc.4c07366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
We determined the in vivo counteracting effect of fiber and probiotic supplementation on colonic mucosal damage and alterations in gut microbiota caused by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) and sodium dextran sulfate (DSS). Male Fischer-344 rats were randomly divided into 4 groups: control (standard diet), PhIP + DSS group (standard diet + PhIP + DSS), fiber (fiber diet + PhIP + DSS), and probiotic (probiotic diet + PhIP + DSS). The intake of PhIP + DSS for 3 weeks induced colonic mucosal erosion, crypt loss, and inflammation, and the distal colon was more severely damaged. Fiber alleviated colonic mucosal damage by reducing crypt loss and inflammation, while the probiotic increased colon length. The intake of PhIP + DSS increased the fecal relative abundance of Clostridia UCG014 along the intervention, in contrast to the lower abundances of these taxa found after PhIP + DSS administration in the rats supplemented with probiotics or fiber. Fiber supplementation mitigated the histological damage caused by PhIP + DSS shifting the gut microbiota toward a reduction of pro-inflammatory taxa.
Collapse
Affiliation(s)
- Aida Zapico
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Nuria Salazar
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Silvia Arboleya
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Carmen González del Rey
- Anatomical
Pathology Service, Central University Hospital of Asturias (HUCA), Oviedo 33011, Spain
| | - Elena Diaz
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Ana Alonso
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Miguel Gueimonde
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Clara G. de los Reyes-Gavilán
- Department
of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Celestino Gonzalez
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Sonia González
- Department
of Functional Biology, University of Oviedo, Oviedo 33006, Spain
- Diet,
Microbiota and Health Group, Instituto de
Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
4
|
Wang Y, Zhang Y, Yang Z, Zhang L, Chen X, Yang G, Zhan J, Li S, He F, Fan G. Mesoporous silica-based nanocarriers with dual response to pH and ROS for enhanced anti-inflammation therapy of 5-demethylnobiletin against psoriasis-like lesions. Int J Pharm 2023; 645:123373. [PMID: 37673281 DOI: 10.1016/j.ijpharm.2023.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Psoriasis is an inflammatory skin disease accompanied with chronic papulosquamous lesions and multiple comorbidities that considerably affect patients' quality of life. In order to develop an enhanced therapeutic strategy for psoriasis, 5-demethylnobiletin (5-DN), a kind of polymethoxyflavones (PMFs) with high anti-inflammatory activity, was delivered in vitro and in vivo by the nanocarrier of mesoporous silica nanoparticles (MSNs) both in the human keratinocytes HaCaT cell line and the mouse model with psoriasis-like lesions. The drug-loaded nanocarrier system (MSNs@5-DN) significantly improved the biocompatibility and bioavailability of 5-DN. Investigations at cell biological, histopathological, and molecular levels revealed the pharmacological mechanism of the drug delivery system, including the inhibition of inflammatory responses by downregulating the proinflammatory cytokine levels of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6). The upregulation of anti‑inflammatory cytokine of transforming growth factor-β1 (TGF-β1) and microRNA-17-5p, a critical regulator of the PTEN/AKT pathway, was also observed. The psoriasis-like lesions were markedly ameliorated in the mouse models treated with MSNs@5-DN. The designed drug-loading system shows an enhanced therapeutic outcome for psoriasis-like lesion compared with free 5-DN. This study revealed the synergistic effect of functionalized MSNs loaded with PMFs on the clinical treatment of human psoriasis.
Collapse
Affiliation(s)
- Yimin Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Yanan Zhang
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, PR China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Lei Zhang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Xiangping Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Guliang Yang
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Jianfeng Zhan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng He
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang 438000, PR China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
5
|
Lin WS, Cheng WC, Ho PY, Ho CT, Pan MH. Regulation of Xenobiotic-Metabolizing Enzymes by 5-Demethylnobiletin and Nobiletin to Mitigate Benzo[a]pyrene-Induced DNA Damage In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14604-14614. [PMID: 37610775 DOI: 10.1021/acs.jafc.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
6
|
Fontana G, Bruno M, Sottile F, Badalamenti N. The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from Citrus Genus. Antioxidants (Basel) 2022; 12:antiox12010023. [PMID: 36670885 PMCID: PMC9855034 DOI: 10.3390/antiox12010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydroxyl and methoxy groups in their structural unities. Some of these compounds are the aglycone part in a glycoside structure in which the glycosidic linkage can involve the -OH at various positions. These compounds are particular to Citrus genus plants, especially in fruits, and they are present mainly in the peel. A considerable number of PMFs and HPMFs have shown promising biological activities and they are considered to be important nutraceuticals, responsible for some of the known beneficial effects on health associated with a regular consumption of Citrus fruits. Among their several actions on human health, it is notable that the relevant contribution in controlling the intracellular redox imbalance is associated with the inflammation processes. In this work, we aim to describe the status concerning the chemical identification and the anti-inflammatory activity of both PMFs and HPMFs. In particular, all of the chemical entities unambiguously identified by isolation and complete NMR analysis, and for which a biochemical evaluation on the pure compound was performed, are included in this paper.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Francesco Sottile
- Dipartimento di Architettura, Università Degli Studi di Palermo, Centro di Conservazione della Biodiversità di Interesse Agrario, Viale delle Scienze Ed. 14, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
7
|
Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154285. [PMID: 35809375 DOI: 10.1016/j.phymed.2022.154285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 5-Demethylnobiletin (5DN) is a polymethoxyflavone (PMF) primarily found in citrus fruits. It has various health-promoting properties and hence has attracted significant attention from scholars worldwide. PURPOSE This review is the first to systematically summarize the recent research progress of 5DN, including its pharmacological activity, mechanism of action, pharmacokinetics, and toxicological effects. In addition, the pharmacological mechanism of action of 5DN has been discussed from a molecular biological perspective, and data from in vivo and in vitro animal studies have been compiled to provide a more thorough understanding of 5DN as a potential lead drug. METHODS Data were extracted from SciFinder, PubMed, ScienceDirect and China National Knowledge Infrastructure (CNKI) from database inception to January 2022. RESULTS 5DN has broad pharmacological activities. It exerts anti-inflammatory effects, promotes apoptosis and autophagy, and induces melanogenesis mainly by regulating the JAK2/STAT3, caspase-dependent apoptosis, ROS-AKT/mTOR, MAPK and PKA-CREB signaling pathways. 5DN can be used for treating diseases such as cancer, inflammation-related diseases, rheumatoid arthritis, and neurodegenerative diseases. To date, there have been only a few toxicological studies on 5DN, and both in vitro and in vivo on 5DN have not revealed significant toxic side effects. Pharmacokinetic studies have revealed that the metabolites of 5DN are mainly 5,3'-didemethylnobiletin (M1); 5,4'-didemethylnobiletin (M2) and 5,3',4'-tridemethylnobiletin (M3), in either, glucuronide-conjugated or monomeric form. The pharmacokinetic products of 5DN, especially M1, possess better activity than 5DN for the treatment of cancer. CONCLUSION The anticancer effects of 5DN and its metabolites warrant further investigation as potential drug candidates, especially through in vivo studies. In addition, the therapeutic effects of 5DN in neurodegenerative diseases should be examined in more experimental models, and the absorption and metabolism of 5DN should be further investigated in vivo.
Collapse
Affiliation(s)
- Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Zheng Z, Park JK, Kwon OW, Ahn SH, Kwon YJ, Jiang L, Zhu S, Park BH. The Risk of Gastrointestinal Cancer on Daily Intake of Low-Dose BaP in C57BL/6 for 60 Days. J Korean Med Sci 2022; 37:e235. [PMID: 35916047 PMCID: PMC9344036 DOI: 10.3346/jkms.2022.37.e235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Benzo(a)pyrene (BaP) is a carcinogenic compound in contaminated foodstuffs. The effect of oral intake of the environmental carcinogen BaP under low doses and frequent exposure on a digestive system has not been thoroughly verified. METHODS In this regard, this study was conducted to prove the toxicity effects of BaP on the stomach and colon tissue after exposure to C57BL/6 mouse (3 and 6 µg/kg) following daily oral administration for 60 days. This study investigated acute gastric mucosal injury, severe gastric edema, cell infiltration, and mononuclear cells, multifocal cells, and tumoral inflammatory cells. RESULTS The results of ELISA showed that the expression of serum interleukin (IL)-6 and tumor necrosis factor-α in the BaP exposure group were significantly increased, and a high level of DNA adduct distribution in their stomach and colon. Moreover, this study has confirmed the expression of early carcinogenesis markers: nuclear factor (NF)-κB, p53, IL-6, superoxide dismutase 1 (SOD1), mucin (MUC1 and MUC2), and β-catenin in the stomach and colon, and showed that there was a significant increase in IL-6, NF-κB, SOD1, β-catenin, and MUC1 (P < 0.05). At the same time, there was a significant decrease in MUC2 and p53 (P < 0.05). Thus, even in low doses, oral intake of BaP can induce DNA damage, increasing the potential risk of gastrointestinal cancer. CONCLUSION This study will provide a scientific basis for researching environmental contaminated food and intestinal health following daily oral administration of BaP.
Collapse
Affiliation(s)
- Zhi Zheng
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Jung Kuk Park
- Department of Environmental Technology, Food Technology, and Molecular Technology, Ghent University Global Campus, Incheon, Korea
| | | | - Sung Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Young Joo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Linjuan Jiang
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Shaohui Zhu
- The First Affiliated Hospital of Xinxiang Medical College, Henan, China
| | - Byoung Hee Park
- Raphagen Co., Ltd. Seoul, Korea
- HealingBio Co., Ltd. Cheongju, Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
9
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
10
|
Critical clinical gaps in cancer precision nanomedicine development. J Control Release 2022; 345:811-818. [PMID: 35378214 DOI: 10.1016/j.jconrel.2022.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
Active targeting strategy is adopted in nanomedicine for cancer treatment. Personalizing the nanomedicine in accordance with patients' omics, under the precision medicine platform, is met with challenges in targeting ligand and matrix material selection at nanoformulation stage. The past 5-year literatures show that the nanoparticulate targeting ligand and matrix material are not selected based upon the cancer omics profiles of patients. The expression of cancer cellular target receptors and metabolizing enzymes is primarily influenced by age, gender, race/ethnic group and geographical origin of patients. The personalized perspective of a nanomedicine cannot be realised with premature digestion of matrix and targeting ligand by specific metabolizing enzymes that are overexpressed by the patients, and unmatched targeting ligand to the majority of cell surface receptors overexpressed in cancer. Omics analysis of individual metabolizing enzyme and cancer cell surface receptor expressed in cancer facilitates targeting ligand and matrix material selection in nanomedicine development.
Collapse
|