1
|
Guo Y, Wang L, Huang JQ, Lu MW, Yang SH. Valorization of Pomegranate Peel: Mechanisms and Clinical Applications in Irritable Bowel Syndrome Management. Int J Mol Sci 2025; 26:3530. [PMID: 40332037 PMCID: PMC12026873 DOI: 10.3390/ijms26083530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Current disposal methods for pomegranate peel (PP) waste are inadequate, resulting in environmental pollution. Given PP's therapeutic potential in alleviating irritable bowel syndrome (IBS), elucidating its bioactive mechanisms is critical to guide its development into dietary supplements and promote sustainable recycling. In this study, bioinformatics and network analysis were employed to identify active compounds, key targets, and signaling pathways associated with PP's therapeutic effects. We identified 39 bioactive compounds (primarily polyphenols) and 106 key targets linked to IBS. Network analyses revealed that PP polyphenols mitigate oxidative stress and inflammation, modulate estrogen receptors to enhance gastrointestinal motility, and regulate ferroptosis. These findings underscore PP's potential as a therapeutic agent for IBS and provide a framework for repurposing food-processing byproducts.
Collapse
Affiliation(s)
- Yu Guo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China;
| | - Lu Wang
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain;
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China;
| | - Mu-Wen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510632, China
| | - Song-Hong Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| |
Collapse
|
2
|
Kuć-Szymanek A, Kubik-Machura D, Kościelecka K, Męcik-Kronenberg T, Radko L. Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection. Toxins (Basel) 2025; 17:24. [PMID: 39852977 PMCID: PMC11769516 DOI: 10.3390/toxins17010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed. The mechanisms underlying the neurotoxicity of the described mycotoxins were presented. They are mainly related to the increase in oxidative stress in neuronal cells, which leads to higher levels of pro-inflammatory cytokines as IL-1β, IL-6 and TNF-α, enzymatic activity as GST, GPx, CAT and SOD and neurotransmitter dysfunction (5-HT, serotonin, dopamine and GABA). At the end of the article, based on the literature data, we attempted to present ways to mitigate mycotoxin neurotoxicity using mainly natural substances of plant origin. The data in this review focus on the Fusarium mycotoxins most frequently found in food and will be useful as comparative information for future studies. It is important to conduct further studies to mitigate the neurotoxic effects of Fusarium mycotoxins in order to reduce the development of diseases of the nervous system.
Collapse
Affiliation(s)
- Aleksandra Kuć-Szymanek
- Faculty of Medical and Health Sciences, University in Siedlce, Stanisława Konarskiego St. 2, 08-110 Siedlce, Poland;
| | - Daria Kubik-Machura
- Provincial Specialist Hospital No. 5 St. Barbara in Sosnowiec, Trauma Center, Plac Medyków St. 1, 41-200 Sosnowiec, Poland;
| | | | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland;
- Collegium Medicum im. Dr. Władysław Biegański, Jan Długosz University, Wahington St. 4/8, 42-200 Czestochowa, Poland
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland
| |
Collapse
|
3
|
Wang S, Wu X, Yang J, Peng Y, Miao F, Li M, Zeng J. Sterigmatocystin declines mouse oocyte quality by inducing ferroptosis and asymmetric division defects. J Ovarian Res 2024; 17:175. [PMID: 39198920 PMCID: PMC11351269 DOI: 10.1186/s13048-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sterigmatocystin (STE) is a mycotoxin widely found in contaminated food and foodstuffs, and excessive long-term exposure to STE is associated with several health issues, including infertility. However, there is little information available regarding the effects of STE toxin on the female reproductive system, particularly concerning oocyte maturation. METHODS In the present study, we investigated the toxic effects of STE on mouse oocyte maturation. We also used Western blot, immunofluorescence, and image quantification analyses to assess the impact of STE exposure on the oocyte maturation progression, mitochondrial distribution, oxidative stress, DNA damages, oocyte ferroptosis and asymmetric division defects. RESULTS Our results revealed that STE exposure disrupted mouse oocyte maturation progression. When we examined the cellular changes following 100 µM STE treatment, we found that STE adversely affected polar body extrusion and induced asymmetric division defects in oocytes. RNA-sequencing data showed that STE exposure affects the expression of several pathway-correlated genes during oocyte meiosis in mice, suggesting its toxicity to oocytes. Based on the RNA-seq data, we showed that STE exposure induced oxidative stress and caused DNA damage in oocytes. Besides, ferroptosis and α-tubulin acetylation were also found in STE-exposed oocytes. Moreover, we determined that STE exposure resulted in reduced RAF1 protein expression in mouse oocytes, and inhibition of RAF1 activity also causes defects in asymmetric division of mouse oocytes. CONCLUSIONS Collectively, our research provides novel insights into the molecular mechanisms whereby STE contributes to abnormal meiosis.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Yuwan Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Fulu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
4
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
5
|
de Sá SVM, Faria MA, Fernandes JO, Cunha SC. Investigating the individual and mixture cytotoxicity of co-occurring aflatoxin B1, enniatin B, and sterigmatocystin on gastric, intestinal, hepatic, and renal cellular models. Food Chem Toxicol 2024; 188:114640. [PMID: 38583501 DOI: 10.1016/j.fct.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
6
|
de Sá SVM, Sousa Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 2024; 184:114239. [PMID: 38609220 DOI: 10.1016/j.foodres.2024.114239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carolina Sousa Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Song H, Xiong M, Yu C, Ren B, Zhong M, Zhou S, Gao Q, Ou C, Wang X, Lu J, Zeng M, Cai X, Peng Q. Huang-Qi-Jian-Zhong-Tang accelerates healing of indomethacin-induced gastric ulceration in rats via anti-inflammatory and antioxidant mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117264. [PMID: 37783407 DOI: 10.1016/j.jep.2023.117264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Qi-Jian-Zhong-Tang (HQJZT) is a canonical traditional Chinese medicine (TCM) formula that has been widely used in both the prevention and treatment of gastrointestinal diseases, including gastric ulcer, duodenal ulcer, and chronic atrophic gastritis, in China. AIM OF THE STUDY In the present study, we investigated the gastroprotective potential of HQJZT in a rat model of indomethacin (IND)-induced gastric ulcer and explained the biochemical, cellular, and molecular mechanisms involved. MATERIALS AND METHODS Observations were conducted at the macroscopic level to ascertain the ulcer index (UI) and the curative index (CI). Histopathological examinations were conducted, and a microscopic score (MS) was computed. The gastric juice volume, total acidity, pH value, and pepsin activity were quantified. Antioxidant and oxidative parameters were assessed, namely GSH, CAT, SOD, and MDA content. The RFLSI Pro instrument was employed to measure the blood flow within the gastric mucosa continuously. The mRNA levels of the inflammatory cytokines were assessed using droplet digital PCR (ddPCR). Molecular docking was employed to examine the interaction between representative active components of HQJZT and the binding sites associated with the NF-κB and STAT signaling pathways. The protein expression and localization of p-JAK, p-STAT, p-IκBβ, and p-NF-κB were evaluated through immunofluorescence analysis. RESULTS The administration of HQJZT treatment demonstrated a significant reduction in gastric lesions induced by IND, leading to a notable decrease in the UI. Additionally, HQJZT treatment significantly decreased gastric juice volume, acidity, and pepsin activity, accompanied by increased pH value. IND-treated stomachs exhibited severe hemorrhagic necrosis, submucosal edema, and epithelial cell destruction. However, the administration of HQJZT effectively counteracted these pathological changes. Furthermore, HQJZT administration significantly increased blood flow to the gastric mucosa. HQJZT enhanced antioxidant defenses and modulated oxidative stress by increasing SOD, CAT, and GSH activities while reducing MDA levels. Moreover, HQJZT reversed IND-induced increases in mRNA expression levels of inflammatory cytokines. Molecular docking analysis revealed that the representative active components of HQJZT could bind to the NF-κB and STAT signaling pathways. In addition, immunofluorescence microscopy revealed that HQJZT markedly attenuated the phosphorylation of IκΒβ, NF-κB, JAK, and STAT. CONCLUSIONS The therapeutic and protective effect of HQJZT on gastric ulcers is attributed to its ability to suppress gastric acid secretion, enhance antioxidative defenses and blood flow, mitigate proinflammatory cytokines, and inhibit the activation of NF-κB and STAT signaling pathways.
Collapse
Affiliation(s)
- Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Shunhua Zhou
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Qing Gao
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Chen Ou
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Xiaojuan Wang
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jing Lu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Xiong Cai
- School of International Education, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
8
|
Zhong W, Tao SY, Guo X, Cheng XF, Yuan Q, Li CX, Tian HY, Yang S, Sunchuri D, Guo ZL. Network pharmacology and molecular docking-based investigation on traditional Chinese medicine Astragalus membranaceus in oral ulcer treatment. Medicine (Baltimore) 2023; 102:e34744. [PMID: 37653793 PMCID: PMC10470703 DOI: 10.1097/md.0000000000034744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
To analyze the mechanism of Astragalus membranaceus (AM) in molecular level in the oral ulcer (OU) treatment with reference to network pharmacology. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used in screening the AM active components and AM action targets; GeneCards database was used to screen OU targets; the common target were screened by Venny online tool; Cytoscape software was applied to construct the target gene regulation map of AM active components; STRING database was used to construct the protein-protein interaction network and the key targets were screened as per degree value; gene ontology enrichment and KEGG pathway enrichment of interactive genes were calculated through David database. There were 17 active ingredients and 429 target spots in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. There are 606 target genes for OU in GeneCards database. There are 67 common targets, including 10 key targets: IL10, IL6, TNF, IL1B, CXCL8, CCL2, TLR4, IL4, ICAM1, and IFNG. It involves 30 gene ontology terms and 20 KEGG signal channels. The molecular docking results showed that quercetin and kaempferol had a good binding activity with IL6, IL1B, TNF, and CCL2. Network pharmacological analysis shows that AM can regulate multiple signal pathways through multiple targets to treat OU.
Collapse
Affiliation(s)
- Wan Zhong
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Si-Yu Tao
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiang Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiao-Fang Cheng
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR. China
| | - Qing Yuan
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Chu-Xing Li
- Department of Dentistry, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Hong-Yuan Tian
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Song Yang
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR. China
| | - Diwas Sunchuri
- School of International Education, Hainan Medical University, Haikou, PR China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
- Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR. China
| |
Collapse
|
9
|
Martí-Quijal FJ, Castagnini JM, Ruiz MJ, Barba FJ. Sea Bass Side Streams Extracts Obtained by Pulsed Electric Fields: Nutritional Characterization and Effect on SH-SY5Y Cells. Foods 2023; 12:2717. [PMID: 37509809 PMCID: PMC10378982 DOI: 10.3390/foods12142717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Fish side streams are an environmental and economic problem. In this work, pulsed electric fields (PEF) extraction was optimized and used as a new method for their valorization. Sea bass head, skin, viscera, and backbone were used. PEF technology (123-300 kJ/kg, 1-3 kV/cm) improved the extraction of proteins and antioxidant compounds from head and skin, but was not successful for viscera. SDS-PAGE showed that the protein molecular weight distribution was affected by the extraction process, revealing differences between the control and PEF extraction conditions. In addition, the extraction of macro-minerals and micro-minerals were also evaluated. The effect of PEF differed according to the matrix and the mineral studied. Heavy metals were also taken into account, studying the presence of As, Cd, Hg, and Pb in the extracts. PEF pre-treatment reduced the presence of As in skin, viscera, and backbone, ranging from 18.25 to 28.48% according to the matrix evaluated. The analysis of potential antioxidant bioactive peptides showed that the treatment of the sample directly influenced their variety. Additionally, the extracts obtained from the head were found to increase cell viability when tested on SH-SY5Y cells. In conclusion, PEF extraction can be a useful tool for the valorization of fish side streams.
Collapse
Affiliation(s)
- Francisco J Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
- Research Group in Alternative Methods for Determining TOXICS Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining TOXICS Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
10
|
Martí-Quijal FJ, Pallarés N, Dawidowicz K, Ruiz MJ, Barba FJ. Enhancing Nutrient Recovery and Bioactive Compound Extraction from Spirulina through Supercritical Fluid Extraction: Implications for SH-SY5Y Cell Viability. Foods 2023; 12:2509. [PMID: 37444247 DOI: 10.3390/foods12132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
This work explores the efficiency of supercritical fluid extraction (SFE) to recover minerals, pigments, and antioxidant compounds from the spirulina microalgae. Moreover, the fatty acids and phenolic profiles of the extracts obtained were also investigated, and the effect of the extracts on SH-SY5Y cell viability was tested. The extraction of phycocyanin was improved by SFE compared to conventional extraction, from 2.838 ± 0.081 mg/g dry matter (DM) (control) to 6.438 ± 0.411 mg/g DM (SFE). SFE treatment also improved chlorophyll a and carotenoid recoveries increasing from 5.612 ± 0.547 to 8.645 ± 0.857 mg/g DM and from 0.447 ± 0.096 to 0.651 ± 0.120 mg/g DM, respectively. Regarding minerals, the SFE improved Mg recovery with 77% more than the control extraction. Moreover, palmitoleic, stearic, γ-linolenic, eicosadienoic and eicosatrienoic acids recovery was improved by SFE. Phenolic profiles were identified via triple-TOF-LC-MS-MS. Considering heavy metals, a higher rate of Pb extraction was observed for the SFE extract, while no significant differences were observed for Hg between both extractions. Finally, SFE extract improved cell viability compared to the control extract. Thus, SFE constitutes an interesting tool to sustainably extract high-added-value compounds; however, potential contaminants such as Pb need to be controlled in the resulting extracts.
Collapse
Affiliation(s)
- Francisco J Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Noelia Pallarés
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Katarzyna Dawidowicz
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
11
|
Taroncher M, Rodríguez-Carrasco Y, Barba FJ, Ruiz MJ. Enhancement of the Antioxidant Effect of Natural Products on the Proliferation of Caco-2 Cells Produced by Fish Protein Hydrolysates and Collagen. Int J Mol Sci 2023; 24:ijms24076871. [PMID: 37047844 PMCID: PMC10095121 DOI: 10.3390/ijms24076871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A large amount of fish side streams are produced each year, promoting huge economic and environmental problems. In order to address this issue, a potential alternative is to isolate the high-added-value compounds with beneficial properties on human health. The objectives of this study were to determine the effect of hydrolyzed fish protein and collagen samples on cell proliferation, as well as to determine the specific influence of minerals and metals on this effect and whether dietary antioxidants can enhance cell proliferation. The results of hydrolyzed fish protein and collagen samples showed negative effects on Caco-2 cell proliferation at the highest concentrations tested. Moreover, the pre-treatment of these hydrolyzates with vitamin C and E, quercetin and resveratrol increased the proliferation of bioaccessible fractions of hydrolyzated fish protein and collagen samples compared to the bioaccessible fractions without pre-treatment. The highest mineral concentrations were found for P, Ca and Mg. The metals found in the pure hydrolyzates were As, Cd, Hg and Pb; however, they appeared at almost undetectable levels in bioavailable fractions. It can be concluded that the consumption of hydrolyzates of fish by-products is an interesting strategy for complying with EFSA recommendations regarding fish consumption while at the same time reducing fish waste.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Francisco J Barba
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| |
Collapse
|
12
|
Wang S, Jin X, Chen H, Han M, Bao J, Niu D, Wang Y, Li R, Wu Z, Li J. Quercetin alleviates Mycoplasma gallisepticum-induced inflammatory damage and oxidative stress through inhibition of TLR2/MyD88/NF-κB pathway in vivo and in vitro. Microb Pathog 2023; 176:106006. [PMID: 36746315 DOI: 10.1016/j.micpath.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) in chickens leads to enormous economic damage to the poultry industry yearly. The active components and mechanism of action of the traditional herbal remedy Ephedra houttuynia powder (EHP), which had been approved for clinical treatment against MG infection in China, remain unknown. In this study, the active components of EHP against MG were screened using a network pharmacological method, additionally, we studied the mechanism of action of the screened results (quercetin (QUE)). The findings demonstrated that QUE was an essential element of EHP against MG infection, effectively attenuating MG-induced oxidative stress and activation of the TLR2/MyD88/NF-κB pathway. Following QUE therapy, IL-1, IL-6, and TNF-α content and expression were downregulated, whereas IL-4 and IL-10 expression were upregulated, eventually suppressing the inflammatory response both in vitro and in vivo. Together, this study presents a strong rationale for using QUE as a therapeutic strategy to inhibit MG infection-induced inflammatory damage and oxidative stress.
Collapse
Affiliation(s)
- Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Mingdong Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Yikang Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Bayazid AB, Lim BO. Quercetin Is An Active Agent in Berries against Neurodegenerative Diseases Progression through Modulation of Nrf2/HO1. Nutrients 2022; 14:5132. [PMID: 36501161 PMCID: PMC9737775 DOI: 10.3390/nu14235132] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Berries are well-known fruits for their antioxidant effects due to their high content of flavonoids, and quercetin is one of the potent bioactive flavonoids. Although oxidative stress is an inevitable outcome in cells due to energy uptake and metabolism and other factors, excessive oxidative stress is considered a pivotal mediator for the cell death and leads to the progression of neurodegenerative diseases (NDDs). Furthermore, oxidative stress triggers inflammation that leads to neuronal cell loss. Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and so on are the main neurodegenerative diseases. Hence, AD and PD are the most affected NDDs and cause the most lethality without any effective cure. Since AD and PD are the most common NDDs, therefore, in this study, we will describe the effect of oxidative stress on AD and PD. Targeting oxidative stress could be a very effective way to prevent and cure NDDs. Thus, the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO1) are potent endogenous antioxidant modulatory pathways, which also show cytoprotective activities. Modulation of Nrf2/HO1 signaling pathways through a biological approach could be an effective way to treat with NDDs. Quercetin is a natural polyphenol, which protects neurodegeneration, remarkably by suppressing oxidative stress and inflammation. Thus, quercetin could be a very effective agent against NDDs. We will discuss the benefits and challenges of quercetin to treat against NDDs, focusing on molecular biology.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp. 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|
14
|
Zhao Y, Cao Y, Yang X, Guo M, Wang C, Zhang Z, Zhang Q, Huang X, Sun M, Xi C, Tangthianchaichana J, Bai J, Du S, Lu Y. Network pharmacology-based prediction and verification of the active ingredients and potential targets of Huagan Decoction for reflux esophagitis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115629. [PMID: 35988839 DOI: 10.1016/j.jep.2022.115629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huagan Decoction (HGD), a famous traditional Chinese medicine (TCM) formula, has been widely used in the treatment of reflux esophagitis (RE). However, its effective compounds, potential targets and molecular mechanism remain unclear. AIM OF THE STUDY To investigate effective compounds, potential targets and molecular mechanism of HGD against RE by using network pharmacology combined with in vitro validation, with the aims of observing the action of HGD and exploring new therapeutic strategies for RE treatment. MATERIALS AND METHODS Effective compounds and potential targets of HGD, as well as related genes of RE, were collected from public databases. Pharmacological clustering and Gene Ontology (GO) enrichment analysis were applied to find targets that involving in the anti-inflammatory module. The pathways were drawn using Cytoscape 3.8.0. Important ingredients, potential targets, and signaling pathways were determined through the construction of protein-protein interaction (PPI), GO and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, cell experiments were carried out. RESULTS A total of 54 active ingredients and 240 RE-related gene targets of HGD were identified. The active compound-target network was visualized and pharmacological clustering further sorted 53 proteins that involve in the regulation of inflammatory responses. GO analysis confirmed the classification was statistically significant. Analysis of compound-target network revealed that quercetin and geniposide may be key ingredients for the anti-inflammatory effect of HGD against RE. The potential targets regulated by HGD are IL-6, IL-1β, PTGS2, AKT1, TNF-α, MAPK1, IL-8, IL-10, CCL2 and MAPK3. In vitro experiment showed that quercetin and geniposide could inhibit the inflammatory response of HET-1A cells through p38MAPK/NF-κB signaling pathway, which was consistent with the prediction by the network pharmacology approach. CONCLUSIONS Geniposide and quercetin could be effective therapeutic ingredients for the HGD against RE. They play anti-inflammatory effects via down-regulating the pro-inflammatory cytokines and the conduction of p38MAPK/NF-κB signal. This research provides a comprehensive study on the active components, potential targets, and molecular mechanisms of HGD against RE. Moreover, the study supplies a feasible approach to reveal the mechanisms of TCM formula.
Collapse
Affiliation(s)
- Yueying Zhao
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yanfeng Cao
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xueying Yang
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Mingxue Guo
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Changhai Wang
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zekang Zhang
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qing Zhang
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xingyue Huang
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Meng Sun
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Cheng Xi
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | | | - Jie Bai
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Shouying Du
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yang Lu
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
15
|
Wei C, Li S, Zhu Y, Chen W, Li C, Xu R. Network pharmacology identify intersection genes of quercetin and Alzheimer’s disease as potential therapeutic targets. Front Aging Neurosci 2022; 14:902092. [PMID: 36081896 PMCID: PMC9447902 DOI: 10.3389/fnagi.2022.902092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Currently, there are no efficient therapies for Alzheimer’s disease (AD) among the elderly, although it is the most common etiology of dementia among the elderly. Quercetin, which has a variety of therapeutic properties, may pave the way for novel approaches to AD treatment. In the AD patients’ frontal cortex, current study aims to identify the potential mechanisms of quercetin’s pharmacological targets. Materials and methods The pharmacological targets of quercetin have been studied from DrugBank and SwissTarget. In order to distinguish AD-associated genes targeted by quercetin (Q-ADGs), we utilized an integrated intersection of gene expressions of the frontal cortex in combination with transcriptome analysis. To detect cortex-related Q-ADGs and immune-related Q-ADGs, a drug screening database and the immune infiltration analysis was utilized. The Q-ADGs were then linked with the AD severity scores (MMSE scores) to find severity-associated Q-ADGs. In addition, the miRNA-seq datasets were examined to identify severity-associated Q-ADG-miRNAs. Twelve genes, more frequently related to AD by previous studies among all the genes identified in the present study, were subjected to the verification of qRT-PCR in AD cell model. Results In the frontal lobe of AD, 207 Q-ADGs were discovered and found that axonogenesis, glial differentiation, and other biological processes had been enriched. There were 155 immune-related Q-ADGs (e.g., COX2, NOS2, HMGB1) and 65 cortex-related Q-ADGs (e.g., FOXO1, CXCL16, NOTCH3). Sixteen Q-ADGs (e.g., STAT3, RORA, BCL6) and 28 miRNAs (e.g., miR-142-5p, miR-17-5p) were found to be related to MMSE scores. In the qRT-PCR results, six out of twelve genes were significantly regulated by quercetin. DYRK1A, FOXO1, NOS2, NGF, NQO1, and RORA genes were novel target of quercetin in AD. DYRK1A, NOS2, and NQO1 genes targeted by quercetin have benefits in the treatment of AD. However, FOXO1, NGF, and RORA genes targeted by quercetin might have a negative impact on AD. Conclusion The role of quercetin in AD appears to be multifaceted, and it can affect patients’ frontal cortex in a variety of pathways, such as axonogenesis, immune infiltration, and glial cell differentiation. DYRK1A, NOS2, and NQO1 might be potential novel effective drug targets for quercetin in AD.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Renshi Xu,
| |
Collapse
|
16
|
Liu X, Song L. Quercetin protects human liver cells from o,p'-DDT-induced toxicity by suppressing Nrf2 and NADPH oxidase-regulated ROS production. Food Chem Toxicol 2022; 161:112849. [PMID: 35122929 DOI: 10.1016/j.fct.2022.112849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/23/2023]
Abstract
Epidemiologic studies have revealed that Dichlorodiphenyltrichloroethane (DDT) and its metabolites are associated with liver diseases. However, there has been little emphasis on the mechanism underlying liver toxicity of o,p'-DDT and relevant effective inhibitors investigation. This study indicated o,p'-DDT exposure significantly decreased cell viability and promoted lactate dehydrogenase (LDH) release based on the investigation of cytotoxicity by trypan blue exclusion counts, MTT, and lactate dehydrogenase (LDH) assays. Comet, micronuclei, and DNA-protein crosslinks (DPC) assays demonstrated o,p'-DDT exposure increased the comet parameters, micronuclei frequency, and DPC coefficient. Meanwhile, we found o,p'-DDT induced mitochondria-dependent apoptosis, which is characterized by the loss of of mitochondrial membrane potential (Δψm), decreased Bcl-2 expression, and increased protein levels of Bax, cytochrome c, activated-caspase-9, and activated-caspase-3. Furthermore, o,p'-DDT induced reactive oxygen species (ROS) overproduction, decreased the protein levels of nuclear factor erythroid-derived 2-like 2 (Nrf2) in the nuclear, and enhanced the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. However, quercetin treatment significantly antagonized o,p'-DDT-induced cytotoxicity, genotoxicity, and apoptosis as well as effects on ROS, Nrf2, and NADPH oxidase. Taken together, these findings suggested quercetin could alleviate o,p'-DDT-induced toxicity in HL-7702 cells via inhibiting ROS production, which is modulated by down-regulating nuclear Nrf2 levels and NADPH oxidase expression.
Collapse
Affiliation(s)
- Xiangyuan Liu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|