1
|
Tindle AN, Krueger LM, Swafford B, Mani E, Danielson C, Labadie J, Trepanier LA. Genotoxic Herbicide Exposures in Golden Retrievers With and Without Multicentric Lymphoma. Vet Comp Oncol 2025; 23:246-256. [PMID: 40114542 DOI: 10.1111/vco.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Canine multicentric lymphoma (CML) is one of the most common malignancies in dogs. Although breed risk is important, environmental factors such as herbicides have also been implicated. The objective of this study was to determine whether genotoxic exposures to the herbicides 2,4-D and glyphosate are associated with CML, using dogs from the Golden Retriever Lifetime Study cohort. We measured urinary concentrations of glyphosate and 2,4-D in golden retrievers with CML and matched unaffected controls at two time points: at the time of diagnosis and 1 year prior to diagnosis. To assess the genotoxic potential of herbicide exposures, we used reverse dosimetry from urinary concentrations to estimate plasma concentrations. We then assessed the genotoxicity of these herbicide concentrations towards healthy canine peripheral blood mononuclear cells (PBMC's) in vitro using the CometChip assay, with and without canine liver microsomes. All dogs had detectable urinary exposures to 2,4-D (7.3-42.9 ng/mg creat) and glyphosate (0.4-80.7 ng/mg creat), with no differences between cases and controls at either time point. Both 2,4-D and glyphosate were genotoxic to canine PBMCs at concentrations of 0.10 μM and higher, with no consistent effects of canine liver microsomes on herbicide genotoxicity. No dogs reached estimated genotoxic plasma concentrations for glyphosate, but 4 of 30 golden retrievers with CML (13.3%) and 2 of 30 control dogs (6.7%) reached estimated genotoxic 2,4-D exposures (p = 0.67).
Collapse
Affiliation(s)
- Ashleigh N Tindle
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren M Krueger
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brenna Swafford
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, USA
| | - Erin Mani
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Camille Danielson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia Labadie
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, USA
| | - Lauren A Trepanier
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Cardoso Maciel Costa Silva R, Fagundes TR, Coradi C, Ricardo Barreto Pires B, Berne MP, Smaniotto LL, Frederico de Almeida R, Rech D, Panis C. OCCUPATIONAL EXPOSURE TO PESTICIDES AFFECTS SYSTEMIC CYTOKINE PROFILE AND CORRELATES WITH POOR CLINICAL PROGNOSIS IN YOUNG WOMEN WITH BREAST CANCER. Immunopharmacol Immunotoxicol 2024:1-13. [PMID: 39587784 DOI: 10.1080/08923973.2024.2430665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Aging is one of the main risk factors for breast cancer. However, the impact of environmental risk factors, such as pesticide exposure, on the clinical outcomes of patients with breast cancer, depending on disease onset, remains unclear. This study analyzed clinicopathological data from 188 women with breast cancer, who were either occupationally or domestically exposed to pesticides, or not exposed, according to their age at disease onset (early onset ≤ 50 years and late onset > 50 years). Additionally, interleukin 4 (IL-4), interleukin 17A (IL-17A), and interleukin 12 (IL-12) levels were measured in plasma samples, and clinicopathological data were assessed. In the late-onset group, a greater frequency of low-grade tumors was detected in the exposed patients compared to the unexposed group (23.14% vs. 45.45%, p = 0.0181). A higher frequency of high-risk stratification for recurrence and death was found in early-onset patients when comparing exposed and unexposed groups (10.0% vs. 30.0%, p = 0.0488). Regarding the molecular subtypes of breast cancer, patients in the late-onset group showed a higher frequency of triple-negative tumors than unexposed women with the same disease onset (20.0% vs. 40.63%, p < 0.0001). IL-12 levels were significantly lower in exposed patients in the early-onset group compared to unexposed patients in the same group. Early-onset patients showed a principal component that positively correlated with pesticide exposure, IL-1β, IL-17A, and IL-4, while late-onset patients showed negative correlations between pesticide exposure and IL-12, IL-4, and IL-17A. These findings suggest that pesticide exposure induces an inflammaging-like state in younger women, contributing to an increased risk of developing more severe disease.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Tatiane Renata Fagundes
- Universidade Estadual do Norte do Paraná, Brazil
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | - Carolina Coradi
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | - Bruno Ricardo Barreto Pires
- Department of Biophysics and Biometrics, Rio de Janeiro State University, Av Professor Manoel de Abreu 444, 20950-170 Rio de Janeiro-RJ, Brazil
| | - Maria Paula Berne
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | - Lucca L Smaniotto
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | | - Daniel Rech
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
- Hospital de Câncer de Francisco Beltrão (CEONC), Paraná, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| |
Collapse
|
3
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Hyland C, Meierotto L, Som Castellano RL, Curl CL. Mixed-Methods Assessment of Farmworkers' Perceptions of Workplace Compliance with Worker Protection Standards and Implications for Risk Perceptions and Protective Behaviors. J Agromedicine 2024; 29:355-371. [PMID: 38284770 DOI: 10.1080/1059924x.2024.2307483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The Environmental Protection Agency (EPA)'s Worker Protection Standards is the primary set of legislation aimed at protecting farmworkers from occupational pesticide exposure in the United States. Previous studies suggest that worker adoption of Pesticide Protective Behaviors (PPBs) promoted by WPS is associated with lower urinary pesticide concentrations. However, adoption of PPBs is often outside of the control of individual farmworkers and dependent on workplace factors such as employer provisioning of Personal Protective Equipment (PPE) and access to trainings/resources. METHODS We conducted a mixed-method study including urinary pesticide biomonitoring, surveys, and interviews with 62 Latinx farmworkers in southwestern Idaho from April to July 2022. We integrated findings across the various data sources to identify emergent themes relating to farmworkers' perceptions of workplace compliance with WPS and potential implications for their pesticide risk perceptions, protective behaviors, and urinary pesticide concentrations. RESULTS Participants reported some indications of poor workplace compliance with WPS regulations, notably inconsistent access to clean handwashing stations and notification of pesticide applications. Some farmworkers, particularly pesticide applicators, viewed herbicides to be categorically safer than other classes of pesticides such as insecticides; these perceptions appeared to influence protective behaviors, such as the relatively low use of PPE while applying herbicides. These findings are underscored by the higher concentrations of biomarkers of herbicides, but not insecticides, among pesticide applicators compared with non-applicators (e.g. median 2,4-D concentrations = 1.40 µg/L among applicators and 0.69 µg/L among non-applicators). Participants further reported concerns regarding the inadequacy of pesticide safety training, pesticide drift, and the lack of communication regarding pesticide applications on and near fields where they are working. DISCUSSION Participants' perceptions that herbicides are categorically safer than other pesticide classes is in direct conflict with WPS training, raising concerns about discrepancies between WPS instruction and other on-the-job training, as well as the inadequate provisioning of PPE during the application of certain pesticides. Our findings also suggest that current WPS regulations may not sufficiently address farmworkers' concerns, particularly in regard to pesticide drift.
Collapse
Affiliation(s)
- Carly Hyland
- School of Public and Population Health, Boise State University, 1910 University Drive, Boise, ID, USA
- School of Public Health, Division of Environmental Health Sciences, University of California Berkeley, Berkeley, CA, USA
- University of California Agriculture and Natural Resources, University of California Berkeley, Berkeley, CA, USA
| | - Lisa Meierotto
- School of Public Service, Boise State University, 1910 University Drive, Boise, ID, USA
| | - Rebecca L Som Castellano
- Department of Sociology, Boise State University, 1910 University Drive, Boise, ID, USA
- Department of Human-Environment Systems, School of the Environment, Boise State University, Boise, ID, USA
| | - Cynthia L Curl
- School of Public and Population Health, Boise State University, 1910 University Drive, Boise, ID, USA
| |
Collapse
|
5
|
Otaru S, Jones LE, Carpenter DO. Associations between urine glyphosate levels and metabolic health risks: insights from a large cross-sectional population-based study. Environ Health 2024; 23:58. [PMID: 38926689 PMCID: PMC11210132 DOI: 10.1186/s12940-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The prevalence of metabolic syndrome (MetS) in American adults increased from 37.6% in the 2011-12 period to 41.8% in 2017-2018. Environmental exposure, particularly to common compounds such as glyphosate, has drawn increasing attention as a potential risk factor. METHODS We employed three cycles of data (2013-2018) from the National Health and Nutrition Examination Survey (NHANES) in a cross-sectional study to examine potential associations between urine glyphosate measurements and MetS incidence. We first created a MetS score using exploratory factor analysis (EFA) of the International Diabetes Federation (IDF) criteria for MetS, with data drawn from the 2013-2018 NHANES cycles, and validated this score independently on an additional associated metric, the albumin-to-creatinine (ACR) ratio. The score was validated via a machine learning approach in predicting the ACR score via binary classification and then used in multivariable regression to test the association between quartile-categorized glyphosate exposure and the MetS score. RESULTS In adjusted multivariable regressions, regressions between quartile-categorized glyphosate exposure and MetS score showed a significant inverted U-shaped or saturating dose‒response profile, often with the largest effect for exposures in quartile 3. Exploration of potential effect modification by sex, race, and age category revealed significant differences by race and age, with older people (aged > 65 years) and non-Hispanic African American participants showing larger effect sizes for all exposure quartiles. CONCLUSIONS We found that urinary glyphosate concentration is significantly associated with a statistical score designed to predict MetS status and that dose-response coefficient is nonlinear, with advanced age and non-Hispanic African American, Mexican American and other Hispanic participants exhibiting greater effect sizes.
Collapse
Affiliation(s)
- Sarah Otaru
- Department of Environmental Health Sciences, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, USA
- Institute for Health and the Environment (IHE), 5 University Place, Rensselaer, NY, USA
| | - Laura E Jones
- Institute for Health and the Environment (IHE), 5 University Place, Rensselaer, NY, USA.
- Center for Biostatistics, Bassett Research Institute, 1 Atwell Rd., Cooperstown, NY, USA.
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, USA.
| | - David O Carpenter
- Department of Environmental Health Sciences, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, USA
- Institute for Health and the Environment (IHE), 5 University Place, Rensselaer, NY, USA
| |
Collapse
|
6
|
Panis C, Candiotto LZ, Gaboardi SC, Teixeira G, Alves FM, da Silva J, Scandolara TB, Rech D, Gurzenda S, Ponmattam J, Ohm J, Castro MC, Lemos B. Exposure to Pesticides and Breast Cancer in an Agricultural Region in Brazil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10470-10481. [PMID: 38844831 PMCID: PMC11191594 DOI: 10.1021/acs.est.3c08695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
Rural workers are disproportionally exposed to pesticides and might be at an increased risk of developing chronic diseases. Here, we investigated the impact of pesticide exposure on breast cancer (BC) risk and disease profile in rural female workers. This is a case-control study that prospectively included 758 individuals. The study was conducted in the Southwest region of Paraná state in Brazil, a region characterized by family-based agriculture and intensive use of pesticides. We found that this region has a 41% higher BC diagnosis rate and 14% higher BC mortality rate than the mean rates in Brazil, as well as a pesticide trade volume about 6 times higher than the national average. We showed substantial exposure in this population and found that even women who did not work in the fields but performed equipment decontamination and clothes washing of male partners who worked in the fields had urine samples positive for glyphosate, atrazine, and/or 2,4-D. The crude association showed a significantly higher risk of BC among women exposed to pesticides (OR: 1.58, 95% CI 1.18-2.13). Adjusted analyses showed a lower and nonstatistically significant association (OR: 1.30, 95% CI 41 0.87-1.95). Stratification on disease profile showed a significantly higher risk of lymph node metastasis (adjusted OR: 2.19, 95% CI 1.31-3.72) in women exposed to pesticides. Our findings suggest that female populations exposed to pesticides are at a higher risk of developing BC with a more aggressive profile and draw attention to the need to monitor rural populations potentially exposed to pesticides in the field or at home.
Collapse
Affiliation(s)
- Carolina Panis
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
- Department
of Environmental Health, Harvard TH Chan
School of Public Health, Boston, Massachusetts 02115, United States
- R
Ken Coit
College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States
| | | | - Shaiane Carla Gaboardi
- Catarinense
Federal Institute, Campus Ibirama, Ibirama, Santa Catarina 89140-000, Brazil
| | - Géssica
Tuani Teixeira
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
| | - Fernanda Mara Alves
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
| | - Janaína
Carla da Silva
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
- Department
of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal H3C 3J7, Canada
| | - Thalita Basso Scandolara
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
- Instituto
Nacional de Câncer, INCA, Rio de Janeiro 20231-050, Brazil
| | - Daniel Rech
- Laboratory
of Tumor Biology, State University of Western
Paraná, UNIOESTE, Francisco Beltrão, Paraná 85605-010, Brazil
| | - Susie Gurzenda
- Department
of Global Health and Population, Harvard
TH Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Jamie Ponmattam
- Department
of Global Health and Population, Harvard
TH Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Joyce Ohm
- Department
of Cancer Genetics and Genomics, Roswell
Park Cancer Institute, Buffalo, New York 14263, United States
| | - Marcia C. Castro
- Department
of Global Health and Population, Harvard
TH Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Bernardo Lemos
- Department
of Environmental Health, Harvard TH Chan
School of Public Health, Boston, Massachusetts 02115, United States
- R
Ken Coit
College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Henriquez JE, Badwaik VD, Bianchi E, Chen W, Corvaro M, LaRocca J, Lunsman TD, Zu C, Johnson KJ. From Pipeline to Plant Protection Products: Using New Approach Methodologies (NAMs) in Agrochemical Safety Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10710-10724. [PMID: 38688008 DOI: 10.1021/acs.jafc.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human population will be approximately 9.7 billion by 2050, and food security has been identified as one of the key issues facing the global population. Agrochemicals are an important tool available to farmers that enable high crop yields and continued access to healthy foods, but the average new agrochemical active ingredient takes more than ten years, 350 million dollars, and 20,000 animals to develop and register. The time, monetary, and animal costs incentivize the use of New Approach Methodologies (NAMs) in early-stage screening to prioritize chemical candidates. This review outlines NAMs that are currently available or can be adapted for use in early-stage screening agrochemical programs. It covers new in vitro screens that are on the horizon in key areas of regulatory concern. Overall, early-stage screening with NAMs enables the prioritization of development for agrochemicals without human and environmental health concerns through a more directed, agile, and iterative development program before animal-based regulatory testing is even considered.
Collapse
Affiliation(s)
| | - Vivek D Badwaik
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Wei Chen
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Chengli Zu
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Kamin J Johnson
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| |
Collapse
|
8
|
da Rosa Salles T, Zancanaro LV, da Silva Bruckmann F, Garcia WJ, de Oliveira AH, Baumann L, Rhoden DSB, Muller EI, Martinez DST, Mortari SR, Rhoden CRB. Magnetic graphene derivates for efficient herbicide removal from aqueous solution through adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25437-25453. [PMID: 38472573 DOI: 10.1007/s11356-024-32845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide and is among the most widely distributed pollutant in the environment and wastewater. Herein is presented a complete comparison of adsorption performance between two different magnetic carbon nanomaterials: graphene oxide (GO) and its reduced form (rGO). Magnetic functionalization was performed employing a coprecipitation method, using only one source of Fe2+, requiring low energy, and potentially allowing the control of the amount of incorporated magnetite. For the first time in literature, a green reduction approach for GO with and without Fe3O4, maintaining the magnetic behavior after the reaction, and an adsorption performance comparison between both carbon nanomaterials are demonstrated. The nanoadsorbents were characterized by FTIR, XRD, Raman, VSM, XPS, and SEM analyses, which demonstrates the successful synthesis of graphene derivate, with different amounts of incorporate magnetite, resulting in distinct magnetization values. The reduction was confirmed by XPS and FTIR techniques. The type of adsorbent reveals that the amount of magnetite on nanomaterial surfaces has significant influence on adsorption capacity and removal efficiency. The procedure demonstrated that the best performance, for magnetic nanocomposites, was obtained by GO∙Fe3O4 1:1 and rGO∙Fe3O4 1:1, presenting values of removal percentage of 70.49 and 91.19%, respectively. The highest adsorption capacity was reached at pH 2.0 for GO∙Fe3O4 1:1 (69.98 mg g-1) and rGO∙Fe3O4 1:1 (89.27 mg g-1), through different interactions: π-π, cation-π, and hydrogen bonds. The adsorption phenomenon exhibited a high dependence on pH, initial concentration of adsorbate, and coexisting ions. Sips and PSO models demonstrate the best adjustment for experimental data, suggesting a heterogeneous surface and different energy sites, respectively. The thermodynamic parameters showed that the process was spontaneous and exothermic. Finally, the nanoadsorbents demonstrated a high efficiency in 2,4-D adsorption even after five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Theodoro da Rosa Salles
- Laboratory of Nanostructured Magnetic Materials, LaMMaN, Franciscan University (UFN), Santa Maria, RS, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Leonardo Vidal Zancanaro
- Laboratory of Nanostructured Magnetic Materials, LaMMaN, Franciscan University (UFN), Santa Maria, RS, Brazil
| | | | - Wagner Jesus Garcia
- Department of Industrial Design, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Luiza Baumann
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Edson Irineu Muller
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Diego Stefani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Sergio Roberto Mortari
- Postgraduate Program in Nanoscience, Franciscan University (UFN), Santa Maria, RS, Brazil
| | - Cristiano Rodrigo Bohn Rhoden
- Laboratory of Nanostructured Magnetic Materials, LaMMaN, Franciscan University (UFN), Santa Maria, RS, Brazil.
- Postgraduate Program in Nanoscience, Franciscan University (UFN), Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Bishop E, Miazzi F, Bozhilova S, East N, Evans R, Smart D, Gaca M, Breheny D, Thorne D. An in vitro toxicological assessment of two electronic cigarettes: E-liquid to aerosolisation. Curr Res Toxicol 2024; 6:100150. [PMID: 38298371 PMCID: PMC10827682 DOI: 10.1016/j.crtox.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Interest in the toxicological assessment of iterations of e-cigarette devices, e-liquid formulations and flavour use is increasing. Here, we describe a multiple test matrix and in vitro approach to assess the biological impact of differing e-cigarette activation mechanism (button vs. puff-activated) and heating technology (cotton vs. ceramic wick). The e-liquids selected for each device contained the same nicotine concentration and flavourings. We tested both e-liquid and aqueous extract of e-liquid aerosol using a high throughput cytotoxicity and genotoxicity screen. We also conducted whole aerosol assessment both in a reconstituted human airway lung tissue (MucilAir) with associated endpoint assessment (cytotoxicity, TEER, cilia beat frequency and active area) and an Ames whole aerosol assay with up to 900 consecutive undiluted puffs. Following this testing it is shown that the biological impact of these devices is similar, taking into consideration the limitations and capturing efficiencies of the different testing matrices. We have contextualised these responses against previous published reference cigarette data to establish the comparative reduction in response consistent with reduced risk potential of the e-cigarette products tested in this study as compared to conventional cigarettes.
Collapse
Affiliation(s)
- E. Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F. Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S. Bozhilova
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N. East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - R. Evans
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Smart
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M. Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
10
|
Kim J, Leon ME, Schinasi LH, Baldi I, Lebailly P, Freeman LEB, Nordby KC, Ferro G, Monnereau A, Brouwer M, Kjaerheim K, Hofmann JN, Straif K, Kromhout H, Schüz J, Togawa K. Exposure to pesticides and risk of Hodgkin lymphoma in an international consortium of agricultural cohorts (AGRICOH). Cancer Causes Control 2023; 34:995-1003. [PMID: 37418114 PMCID: PMC10533587 DOI: 10.1007/s10552-023-01748-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Some pesticides may increase the risk of certain lymphoid malignancies, but few studies have examined Hodgkin lymphoma (HL). In this exploratory study, we examined associations between agricultural use of 22 individual active ingredients and 13 chemical groups and HL incidence. METHODS We used data from three agricultural cohorts participating in the AGRICOH consortium: the French Agriculture and Cancer Cohort (2005-2009), Cancer in the Norwegian Agricultural Population (1993-2011), and the US Agricultural Health Study (1993-2011). Lifetime pesticide use was estimated from crop-exposure matrices or self-report. Cohort-specific covariate-adjusted overall and age-specific (< 40 or ≥ 40 years) hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox regression and combined using random effects meta-analysis. RESULTS Among 316 270 farmers (75% male) accumulating 3 574 815 person-years at risk, 91 incident cases of HL occurred. We did not observe statistically significant associations for any of the active ingredients or chemical groups studied. The highest risks of HL overall were observed for the pyrethroids deltamethrin (meta-HR = 1.86, 95% CI 0.76-4.52) and esfenvalerate (1.86, 0.78-4.43), and inverse associations of similar magnitude were observed for parathion and glyphosate. Risk of HL at ≥ 40 years of age was highest for ever-use of dicamba (2.04, 0.93-4.50) and lowest for glyphosate (0.46, 0.20-1.07). CONCLUSION We report the largest prospective investigation of these associations. Nonetheless, low statistical power, a mixture of histological subtypes and a lack of information on tumour EBV status complicate the interpretability of the results. Most HL cases occurred at older ages, thus we could not explore associations with adolescent or young adult HL. Furthermore, estimates may be attenuated due to non-differential exposure misclassification. Future work should aim to extend follow-up and refine both exposure and outcome classification.
Collapse
Affiliation(s)
- Joanne Kim
- Environment and Lifestyle Epidemiology Branch, International Agency for Research On Cancer, IARC/WHO), Lyon, France
| | - Maria E. Leon
- Environment and Lifestyle Epidemiology Branch, International Agency for Research On Cancer, IARC/WHO), Lyon, France
| | - Leah H. Schinasi
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA USA
| | - Isabelle Baldi
- Service Santé Travail Environnement, CHU de Bordeaux, Bordeaux, France
| | - Pierre Lebailly
- ANTICIPE, INSERM U1086, Université de Caen Normandie, and Centre de Lutte Contre Le Cancer François Baclesse, Caen, France
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Bethesda, MD USA
| | | | - Gilles Ferro
- Environment and Lifestyle Epidemiology Branch, International Agency for Research On Cancer, IARC/WHO), Lyon, France
| | - Alain Monnereau
- Hematological Malignancies Registry of Gironde, Bergonie Institute, Comprehensive Cancer Centre, Bordeaux, France
- EPICENE, INSERM U1219, Université de Bordeaux, Bordeaux, France
| | - Maartje Brouwer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), Bethesda, MD USA
| | - Kurt Straif
- Non-communicable Diseases and Environment Programme, IS Global, Barcelona, Spain
- Global Observatory On Pollution and Health, Boston College, Chestnut Hill, MA USA
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research On Cancer, IARC/WHO), Lyon, France
| | - Kayo Togawa
- Environment and Lifestyle Epidemiology Branch, International Agency for Research On Cancer, IARC/WHO), Lyon, France
| |
Collapse
|
11
|
Nechalioti PM, Karampatzakis T, Mesnage R, Antoniou MN, Ibragim M, Tsatsakis A, Docea AO, Nepka C, Kouretas D. Evaluation of perinatal exposure of glyphosate and its mixture with 2,4-D and dicamba οn liver redox status in Wistar rats. ENVIRONMENTAL RESEARCH 2023; 228:115906. [PMID: 37062480 DOI: 10.1016/j.envres.2023.115906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats. Animals were administered with glyphosate at the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day) and no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day). A mixture of glyphosate with 2,4-D (0.3 mg/kg bw/day) and dicamba (0.02 mg/kg bw/day) with each at their EU ADI was evaluated. Redox status was determined by measuring levels of reduced glutathione, decomposition rate of Η2Ο2, glutathione reductase, glutathione peroxidase, total antioxidant capacity, thiobarbituric reactive substances, and protein carbonyls. Gene expression analysis of Nr1d1, Nr1d2, Clec2g, Ier3, and Gadd45g associated with oxidative damage to DNA, was also performed. Analysis of liver samples showed that exposure to the mixture of the three herbicides induced a marked increase in the concentration of glutathione and malondialdehyde indicative of a disturbance in redox balance. Nevertheless, the effect of increased lipid peroxidation was not discernible following a 3-month recuperation period where animals were withdrawn from pesticide exposure post-weaning. Interestingly, toxic effects caused by prenatal exposure to the glyphosate NOAEL were present after the same 3-month recovery period. No statistically significant changes in the expression of genes linked with genotoxicity were observed. Our findings reinforce the importance of assessing the combined effects of chemical pollutants at doses that are asserted by regulatory agencies to be safe individually.
Collapse
Affiliation(s)
- Paraskevi-Maria Nechalioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Thomas Karampatzakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Robin Mesnage
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Michael N Antoniou
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Mariam Ibragim
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41110, Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
12
|
Odetti LM, Chacón CF, Siroski PA, Simoniello MF, Poletta GL. Effects of glyphosate, 2,4-D, chlorantraniliprole, and imidacloprid formulations, separately and in mixtures in Caiman latirostris hatchlings. Toxicol Appl Pharmacol 2023; 469:116544. [PMID: 37150452 DOI: 10.1016/j.taap.2023.116544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The present study demonstrated the potential of glyphosate (GLY), 2,4-dichlorophenoxyacetic acid (2,4-D), imidacloprid (IMI) and chlorantraniliprole (CAP) separately and in mixtures to induce oxidative stress and DNA damage in Caiman latirostris hatchlings. Under controlled condition, an embryonic exposure to these pesticides was done at concentrations recommended for soybean crops. Treatments were: negative control, GLY, 2,4-D, IMI, CAP, mixture 1 (M1): GLY + 2,4-D, M2: IM I + CAP and M3: GLY + 2,4-D + IMI + CAP. At hatching, blood samples were taken for the evaluation of genotoxicity, oxidative damage to lipids and DNA, the enzymatic activity of Catalase (CAT) and Superoxide dismutase (SOD), and the expression level of their corresponding genes (catalase: cat and superoxide dismutase: sod). It has been shown that IMI, M2 and M3 induced a significant inhibition of CAT activity while no effect was observed on SOD. In turn, lipid peroxidation was significantly higher in individuals exposed to IMI, and to all the mixtures. Besides, genotoxicity and oxidative DNA damage were observed in all exposed groups. The results of mRNA expression showed no difference at transcription levels. In the same way, no alterations in growth parameters were recorded at hatching. Regarding to the mixtures, we observed a potentiating action of IMI on M3 in lipid peroxidation as well as independent action on oxidative DNA damage and genotoxicity parameters. Our results highlight the importance of investigating the effect of pesticides and their mixtures considering the potential consequences to caimans living in natural environments.
Collapse
Affiliation(s)
- Lucia M Odetti
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina.
| | - Camila F Chacón
- Lab. de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL/CONICET/UNL), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe). Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - Pablo A Siroski
- Lab. de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL/CONICET/UNL), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe). Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - Ma Fernanda Simoniello
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - Gisela L Poletta
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe). Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| |
Collapse
|
13
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
14
|
Ferguson S, Mesnage R, Antoniou MN. Cytotoxicity Mechanisms of Eight Major Herbicide Active Ingredients in Comparison to Their Commercial Formulations. TOXICS 2022; 10:toxics10110711. [PMID: 36422919 PMCID: PMC9699558 DOI: 10.3390/toxics10110711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 05/28/2023]
Abstract
Commercial pesticide formulations contain co-formulants, which are generally considered as having no toxic effects in mammals. This study aims to compare the toxicity of 8 major herbicide active ingredients-namely glyphosate, dicamba, 2,4-D, fluroxypyr, quizalofop-p-ethyl, pendimethalin, propyzamide and metazachlor-with a typical commercial formulation of each active ingredient. Cytotoxicity and oxidative stress capability was assessed in human hepatoma HepG2 cells. Using an MTT assay, formulations of glyphosate (Roundup Probio), fluroxypyr (Hurler), quizalofop-p-ethyl (Targa Super) and dicamba (Hunter) were more toxic than the active ingredient alone. Metazachlor and its formulation Sultan had similar cytotoxicity profiles. Cytotoxicity profiles were comparable in immortalised human fibroblasts. Toxilight necrosis assays showed the formulation of metazachlor (Sultan50C) resulted in significant membrane disruption compared to the active ingredient. Generation of reactive oxygen species was detected for glyphosate, fluroxypyr, pendimethalin, quizalofop-p-ethyl, the formulation of 2,4-D (Anti-Liserons), and dicamba and its formulation Hunter. Further testing of quizalofop-p-ethyl and its formulation Targa Super in the ToxTracker assay system revealed that both products induced oxidative stress and an unfolded protein response. In conclusion, these results show that most herbicide formulations tested in this study are more toxic than their active ingredients in human tissue culture cell model systems. The results add to a growing body of evidence, which implies that commercial herbicide formulations and not just their active ingredients should be evaluated in regulatory risk assessment of pesticides.
Collapse
Affiliation(s)
- Scarlett Ferguson
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
| | - Robin Mesnage
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662 Überlingen, Germany
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
15
|
Mesnage R, Ferguson S, Brandsma I, Moelijker N, Zhang G, Mazzacuva F, Caldwell A, Halket J, Antoniou MN. The surfactant co-formulant POEA in the glyphosate-based herbicide RangerPro but not glyphosate alone causes necrosis in Caco-2 and HepG2 human cell lines and ER stress in the ToxTracker assay. Food Chem Toxicol 2022; 168:113380. [PMID: 36028061 DOI: 10.1016/j.fct.2022.113380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
The toxicity of co-formulants present in glyphosate-based herbicides (GBHs) has been widely discussed leading to the European Union banning the polyoxyethylene tallow amine (POEA). We identified the most commonly used POEA, known as POE-15 tallow amine (POE-15), in the widely used US GBH RangerPro. Cytotoxicity assays using human intestinal epithelial Caco-2 and hepatocyte HepG2 cell lines showed that RangerPro and POE-15 are far more cytotoxic than glyphosate alone. RangerPro and POE-15 but not glyphosate caused cell necrosis in both cell lines, and that glyphosate and RangerPro but not POE-15 caused oxidative stress in HepG2 cells. We further tested these pesticide ingredients in the ToxTracker assay, a system used to evaluate a compound's carcinogenic potential, to assess their capability for inducing DNA damage, oxidative stress and an unfolded protein response (endoplasmic reticulum, ER stress). RangerPro and POE-15 but not glyphosate gave rise to ER stress. We conclude that the toxicity resulting from RangerPro exposure is thus multifactorial involving ER stress caused by POE-15 along with oxidative stress caused by glyphosate. Our observations reinforce the need to test both co-formulants and active ingredients of commercial pesticides to inform the enactment of more appropriate regulation and thus better public and environmental protection.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Scarlett Ferguson
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | | | | | - Gaonan Zhang
- Toxys, De Limes 7, 2342 DH, Oegstgeest, the Netherlands
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Anna Caldwell
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - John Halket
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
16
|
Allemang A, Lester C, Roth T, Pfuhler S, Peuschel H, Kosemund K, Mahony C, Bergeland T, O'Keeffe L. Assessing the genotoxicity and carcinogenicity of 2-chloroethanol through structure activity relationships and in vitro testing approaches. Food Chem Toxicol 2022; 168:113290. [PMID: 35863484 DOI: 10.1016/j.fct.2022.113290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The detection of 2-chloroethanol in foods generally follows an assumption that the pesticide ethylene oxide has been used at some stage in the supply chain. In this situation the Pesticide Residues in Food Regulation (EC) 396/2005 requires 2-chloroethanol to be assessed as if equivalent to ethylene oxide, which has been classified as a genotoxic carcinogen. This review investigated whether this is an appropriate risk assessment approach for 2-chloroethanol. This involved an assessment of existing genotoxicity and carcinogenicity data, application of Structure Activity Based Read Across for carcinogenicity assessment, biological reactivity in the ToxTracker assay and micronuclei formation in HepaRG cells. Although we identified there is an absence of a standard oral bioassay for 2-chloroethanol, carcinogenicity weight-of-evidence assessment along with data on relevant structural analogues do not show evidence for carcinogenicity for 2-chloroethanol. The absence of genotoxicity was demonstrated for 2-chloroethanol and suitable analogues. In contrast, ethylene oxide showed reactivity towards markers indicative of direct DNA damage which is consistent with what is known about its mode-of-action. These data facilitate the understanding of 2-chloroethanol and given that it is not a genotoxic carcinogen suggest it must be assessed relative to non-cancer endpoints and a health protective Reference Dose should be established on that basis.
Collapse
Affiliation(s)
| | - Cathy Lester
- The Procter & Gamble Company, Cincinnati, OH, USA
| | - Thomas Roth
- SCC Scientific Consulting Company GmbH, Am Grenzgraben 11, 55545, Bad Kreuznach, Germany
| | | | - Henrike Peuschel
- SCC Scientific Consulting Company GmbH, Am Grenzgraben 11, 55545, Bad Kreuznach, Germany
| | - Kirstin Kosemund
- Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65824, Schwalbach am Taunus, Germany
| | | | | | - Lara O'Keeffe
- The Procter & Gamble Company, Reading, Berkshire, UK.
| |
Collapse
|
17
|
Hernández-Barreto D, Hernández-Cocoletzi H, Moreno-Piraján JC. Biogenic Hydroxyapatite Obtained from Bone Wastes Using CO 2-Assisted Pyrolysis and Its Interaction with Glyphosate: A Computational and Experimental Study. ACS OMEGA 2022; 7:23265-23275. [PMID: 35847317 PMCID: PMC9280975 DOI: 10.1021/acsomega.2c01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, biogenic hydroxyapatite (BHap) obtained from cattle bone waste is proposed as an adsorbent of this dangerous pollutant. Density functional theory (DFT) and calorimetric studies were developed to study the interaction between BHap and glyphosate (GLY). A strong interaction was found in the experiments through the measurement of immersion enthalpy, confirmed by the exothermic chemisorption obtained with DFT calculations. These results suggest that hydroxyapatite is a promising adsorbent material for GLY adsorption in aqueous solutions. In addition, it was determined that the GLY-hydroxyapatite interaction is greater than the water-hydroxyapatite interaction, which favors the GLY adsorption into this material.
Collapse
Affiliation(s)
- Diego
F. Hernández-Barreto
- Departamento
de Química—Facultad de Ciencias, Universidad de Los Andes, Cra. 1a No. 18A—10, Bogotá D.C. 11711, Colombia
| | - Heriberto Hernández-Cocoletzi
- Facultad
de Ingeniería Química, Benemérita
Universidad Autónoma de Puebla, Avenue San Claudio y 18 sur S/N Edificio FIQ7 CU
San Manuel, Puebla C.P. 72570, Mexico
| | - Juan Carlos Moreno-Piraján
- Departamento
de Química—Facultad de Ciencias, Universidad de Los Andes, Cra. 1a No. 18A—10, Bogotá D.C. 11711, Colombia
| |
Collapse
|
18
|
Genotoxicity assessment of potentially mutagenic nucleoside analogues using ToxTracker®. Toxicol Lett 2022; 362:50-58. [DOI: 10.1016/j.toxlet.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
|
19
|
Mesnage R, Ibragim M, Mandrioli D, Falcioni L, Tibaldi E, Belpoggi F, Brandsma I, Bourne E, Savage E, Mein CA, Antoniou MN. Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats. Toxicol Sci 2022; 186:83-101. [PMID: 34850229 PMCID: PMC8883356 DOI: 10.1093/toxsci/kfab143] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Mariam Ibragim
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute (RI), Bentivoglio, Bologna 40010, Italy
| | | | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Emanuel Savage
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London E1 2AT, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| |
Collapse
|