1
|
Wang Z, Xu Q, Hou L, He Z, Christian M, Dai X. Food-derived polysaccharides and anti-obesity effects through enhancing adipose thermogenesis: structure-activity relationships, mechanisms, and regulation of gut microecology. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 40351151 DOI: 10.1080/10408398.2025.2500675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Polysaccharides represent a crucial and extensively utilized bioactive fraction in natural products, which are employed in the treatment of metabolic disorders due to their significant therapeutic potential. Recently, food-derived polysaccharides (FPs) have emerged as significant substances in obesity management, valued for their ability to activate thermogenic fat. This review discusses the correlation between the structural features of FPs and their efficacy in combating obesity. Moreover, the molecular mechanism by which FPs regulate thermogenic fat and how the intestinal microecology induces thermogenic fat activity is elucidated. The anti-obesity effects of FPs depend on their structure, including molecular weight, composition, linkages, conformation, and branching. Furthermore, FPs regulate fat thermogenesis via multiple mechanisms, including AMPK, p38, AKT, PGC-1α-FNDC5/irisin, and miRNA signaling pathways. Importantly, gut microbiota, together with its associated metabolites and gut-derived hormones, are pivotal in the regulatory control of brown fat by FPs. This work provides an in-depth examination of how adipose tissue thermogenesis contributes to the anti-obesity effects of FPs, shedding light on their potential in preventing obesity and informing the formulation of natural weight-loss remedies.
Collapse
Affiliation(s)
- Zhenyu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qiyu Xu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lijuan Hou
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Li J, Wan X, Li Y, Wang P, Chen J, Jin W, Liu J. Anti-obesity functions of fucoidan conducted by bioinformatics and validation findings targeting of autophagy. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2025; 9:100609. [DOI: 10.1016/j.carpta.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Chen P, Hao L, Li Q, Wang H, Chen H, Zhang M, Jia A, Jiang H, Dai H, Zhang R. Identification of targets and comparative study of administration methods for the lipid-lowering effects of fucoidan from Saccharina japonica. Int J Biol Macromol 2025; 290:139102. [PMID: 39716710 DOI: 10.1016/j.ijbiomac.2024.139102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The lipid-lowering activity of fucoidan has been widely reported, but the exploration of its mechanisms is relatively limited, and studies on its direct targets are even scarcer. Additionally, it is unclear whether different administration methods affect the lipid-lowering activity of fucoidan. In current study, we used fucoidan derived from Saccharina japonica (SJF) to investigate its targets. The results showed that not only did SJF directly inhibit the Niemann-Pick C1-like 1 (NPC1L1)-mediated cholesterol transport, but it also reduced the solubility of cholesterol in mixed micelles, thereby interfering with the cholesterol uptake. Furthermore, SJF not only directly inhibited the activity of pancreatic triglyceride lipase (PTL), but also interfered with the overall catalytic process facilitated by colipase, thereby reducing the absorption of triglycerides. Moreover, comparative studies on the lipid-lowering activity of SJF administered via different methods demonstrated that dietary supplementation with SJF provided better lipid-lowering effects compared with gavage administration. Our research not only elucidates the targets and mechanisms of SJF but also provides theoretical basis for the selection of administration methods for fucoidan in lipid-lowering therapy.
Collapse
Affiliation(s)
- Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Quancai Li
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, China
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiqin Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Haofu Dai
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Jeong JW, Park DJ, Kim SC, Kang HW, Lee B, Kim HW, Kim YM, Linh NV, Jung WK. Wound healing effect of fucoidan-loaded gelatin/oxidized carboxymethyl cellulose hydrogel. Int J Biol Macromol 2025; 286:138254. [PMID: 39631587 DOI: 10.1016/j.ijbiomac.2024.138254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Various wound dressings are under development to accelerate wound healing, and hydrogels in particular have the potential to create ideal conditions for wound healing. In this study, we investigated a novel hydrogel based on gelatin/oxidized carboxymethyl cellulose loaded with fucoidan derived from Ecklonia cava (ECF) for wound treatment. The mechanical stability and self-healing ability of the hydrogel were optimized, and its cytocompatibility was demonstrated against RAW 264.7 macrophages and human dermal fibroblasts (HDF). Furthermore, sustained drug release from the fabricated hydrogels depending on ECF concentration exhibited radical scavenging ability, induction of collagen production, promotion of cell migration, reduction of nitric oxide levels, and cytoprotective effects against oxidative stress in the ROS microenvironment, attributing these effects to the wound healing potential of bioactive ECF. In an in vivo experiments, GOC/F5 hydrogel was shown to significantly reduce wound area in a full-thickness ICR mouse model, and promoted re-epithelialization and collagen deposition to rapidly repair wounds. These results suggest that GOC/F5 hydrogels could be potentially used as an ideal dressing for wound healing.
Collapse
Affiliation(s)
- Ji-Won Jeong
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Dong-Joo Park
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine integrated Biomedical Technology center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Hyun J, Lee HG, Je JG, Choi YS, Song KM, Kim TK, Ryu B, Kang MC, Jeon YJ. L-Fucose-Rich Sulfated Glycans from Edible Brown Seaweed: A Promising Functional Food for Obesity and Energy Expenditure Improvement. Int J Mol Sci 2024; 25:9738. [PMID: 39273687 PMCID: PMC11395595 DOI: 10.3390/ijms25179738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The global obesity epidemic, exacerbated by the sedentary lifestyle fostered by the COVID-19 pandemic, presents a growing socioeconomic burden due to decreased physical activity and increased morbidity. Current obesity treatments show promise, but they often come with expensive medications, frequent injections, and potential side effects, with limited success in improving obesity through increased energy expenditure. This study explores the potential of a refined sulfated polysaccharide (SPSL), derived from the brown seaweed Scytosiphon lomentaria (SL), as a safe and effective anti-obesity treatment by promoting energy expenditure. Chemical characterization revealed that SPSL, rich in sulfate and L-fucose content, comprises nine distinct sulfated glycan structures. In vitro analysis demonstrated potent anti-lipogenic properties in adipocytes, mediated by the downregulation of key adipogenic modulators, including 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Inhibiting AMPK attenuated the anti-adipogenic effects of SPSL, confirming its involvement in the mechanism of action. Furthermore, in vivo studies using zebrafish models showed that SPSL increased energy expenditure and reduced lipid accumulation. These findings collectively highlight the therapeutic potential of SPSL as a functional food ingredient for mitigating obesity-related metabolic dysregulation by promoting energy expenditure. Further mechanistic and preclinical investigations are warranted to fully elucidate its mode of action and evaluate its efficacy in obesity management, potentially offering a novel, natural therapeutic avenue for this global health concern.
Collapse
Affiliation(s)
- Jimin Hyun
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kyung-Mo Song
- Department of Food Science & Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
6
|
Suryaningtyas IT, Lee DS, Je JY. Brown Algae Ecklonia cava Extract Modulates Adipogenesis and Browning in 3T3-L1 Preadipocytes through HO-1/Nrf2 Signaling. Mar Drugs 2024; 22:330. [PMID: 39195446 PMCID: PMC11355876 DOI: 10.3390/md22080330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores the anti-obesity effects of the ethyl acetate extract of Ecklonia cava (EC-ETAC) on 3T3-L1 preadipocytes, focusing on its impact on adipogenesis, lipolysis, and adipose browning via the HO-1/Nrf2 pathway. Western blot analysis revealed that EC-ETAC significantly inhibited adipogenic transcription factors (PPARγ, C/EBPα, SREBP-1) and lipogenesis-related proteins (FAS, LPL). Concurrently, EC-ETAC enhanced lipolytic markers (p-AMPK, p-HSL) and adipose browning-related proteins (UCP-1, PGC-1α), indicating its role in promoting lipolysis and adipose browning. The inhibition of HO-1 by zinc protoporphyrin (ZnPP) significantly reversed these effects, underscoring the critical role of HO-1 in mediating the anti-obesity properties of EC-ETAC. Additionally, fluorescence measurements and Oil Red O staining confirmed the reduction of lipid accumulation and oxidative stress upon EC-ETAC treatment. These findings suggest that EC-ETAC exerts its anti-obesity effects by modulating the HO-1/Nrf2 pathway, which is crucial for regulating adipogenesis, lipolysis, and adipose browning. This study highlights the potential of EC-ETAC as a natural therapeutic agent for obesity management and supports further research into its clinical applications. By targeting the HO-1/Nrf2 pathway, EC-ETAC could offer a novel approach to enhancing energy expenditure and reducing fat mass, thereby improving metabolic health.
Collapse
Affiliation(s)
- Indyaswan T. Suryaningtyas
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea (MABIK), Seochun 33662, Republic of Korea;
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Jayawardhana H, Lee HG, Liyanage N, Nagahawatta D, Ryu B, Jeon YJ. Structural characterization and anti-inflammatory potential of sulfated polysaccharides from Scytosiphon lomentaria; attenuate inflammatory signaling pathways. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
8
|
Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr 2023; 9:1047026. [PMID: 36712534 PMCID: PMC9879610 DOI: 10.3389/fnut.2022.1047026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background In recent years, marine-based functional foods and combination therapy are receiving greater recognition for their roles in healthy lifestyle applications and are being investigated as viable and effective strategies for disease treatment or prevention. Aim of the review This review article presents and discusses the relevant scientific publications that have studied the synergistic and additive effects of natural marine bioactive compounds and extract combinations with anti-obesity, anti-inflammatory, antioxidant, and chemopreventive activities in the last two decades. The paper presents the mechanism of action and health benefits of developed combinations and discusses the limitation of the studies. Furthermore, it recommends alternatives and directions for future studies. Finally, it highlights the factors for developing novel combinations of marine bioactive compounds. Key scientific concepts of review Combination of marine bioactive compounds or extracts affords synergistic or additive effects by multiple means, such as multi-target effects, enhancing the bioavailability, boosting the bioactivity, and neutralizing adverse effects of compounds in the mixture. For the development of marine-based combinations, there are key points for consideration and issues to address: knowledge of the mechanism of action of individual compounds and their combinations, optimum ratio and dosing of compounds, and experimental models must all be taken into account. Strategies to increase the number and diversity of marine combinations, and further development of marine-based functional foods, are available. However, only a small number of natural marine bioactive combinations have been assessed, and most research has been focused on fish oil and carotenoid synergy. Therefore, more research and resources should be spent on developing novel marine bioactive combinations as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Belgheis Ebrahimi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China,College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Jun Lu ✉
| |
Collapse
|
9
|
Lai Q, Yang CJ, zhang Q, Zhuang M, Ma YH, Lin CY, Zeng GZ, Yin JL. Alkaloid from Alstonia yunnanensis diels root against gastrointestinal cancer: Acetoxytabernosine inhibits apoptosis in hepatocellular carcinoma cells. Front Pharmacol 2023; 13:1085309. [PMID: 36712668 PMCID: PMC9873973 DOI: 10.3389/fphar.2022.1085309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Liver cancer belongs to Gastrointestinal (GI) malignancies which is a common clinical disease, a thorny public health problem, and one of the major diseases that endanger human health. Molecules from natural products (NPs) or their derivatives play an increasingly important role in various chronic diseases such as GI cancers. The chemical composition of the Alstonia yunnanensis Diels roots was studied using silica column chromatography, gel chromatography, recrystallization, and HPLC, and the compounds were structurally identified by modern spectral analysis using mass spectrometry (MS) and nuclear magnetic resonance (1H-, 13C-, HMQC-, HMBC-, and 1H-1HCOSY-NMR), ultraviolet and visible spectrum (UV), and electronic Circular Dichroism (ECD). Acetoxytabernosine (AC), an indole alkaloid with antitumor activity, was isolated from Alstonia yunnanensis Diels root. The current study aimed to investigate the influence of AC on the cell proliferation of BEL-7402 and SMMC7721 and to elucidate the underlying mechanism. The absolute configuration of AC was calculated by ECD (electronic circular dichroism). The effects of AC on the viability of different tumor cell lines were studied by the SRB method. The death mode of human hepatoma cells caused by AC was studied by TUNEL cell apoptosis detection and AnnexinV-FITC/PI double staining image. Mitochondrial membrane potential was detected by JC-1. The effects of AC on the expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) in SMMC7721 and BEL-7402 cells were detected by western blot. It was found that the absolute configuration of AC is 19(s), 20(s)-Acetoxytabernosine. AC could induce apoptosis of SMMC7721 and BEL-7402, and block the replication of DNA in the G1 phase. Under the treatment of AC, the total protein expression of apoptosis-related proteins (Caspase9, Caspase3, and Parp-1) significantly decreased in SMMC7721 and BEL-7402. The results suggested that AC induced apoptosis through a caspase-dependent intrinsic pathway in SMMC7721 and BEL-7402, and natural product-based drug development is an important direction in antitumor drug discovery and research.
Collapse
Affiliation(s)
- Qi Lai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Chun-Ju Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Qi zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Min Zhuang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
| | - Yan-Hua Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
| | - Cheng-Yuan Lin
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Guang-Zhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Jun-Lin Yin
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| |
Collapse
|
10
|
The Complex of Phycobiliproteins, Fucoxanthin, and Krill Oil Ameliorates Obesity through Modulation of Lipid Metabolism and Antioxidants in Obese Rats. Nutrients 2022; 14:nu14224815. [PMID: 36432501 PMCID: PMC9693846 DOI: 10.3390/nu14224815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phycobiliproteins, fucoxanthin, and krill oil are natural marine products with excellent activities. In the study, we prepared the complex of phycobiliproteins, fucoxanthin, and krill oil (PFK) and assessed the anti-obesity, lipid-lowering, and antioxidant activities in high-fat diet rats. The results showed that the rats significantly and safely reduced body weight gain and regulated serum biochemical parameters at 50 mg/kg phycobiliproteins, 10 mg/kg fucoxanthin, and 100 mg/kg krill oil. Furthermore, the molecular mechanism study suggested that the complex of PFK confined the enzyme activities of lipid synthesis and enhanced antioxidant activity to improve obesity indirectly. The conclusions demonstrated that the complex of PFK has potent anti-obesity and hypolipidemic effects which have potential use as a natural and healthy food and medicine for anti-obesity and lowering blood lipids in the future.
Collapse
|
11
|
Guo SS, Wang ZG. Glyceroglycolipids in marine algae: A review of their pharmacological activity. Front Pharmacol 2022; 13:1008797. [PMID: 36339569 PMCID: PMC9633857 DOI: 10.3389/fphar.2022.1008797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Glyceroglycolipids are major metabolites of marine algae and have a wide range of applications in medicine, cosmetics, and chemistry research fields. They are located on the cell surface membranes. Together with glycoproteins and glycosaminoglycans, known as the glycocalyx, they play critical roles in multiple cellular functions and signal transduction and have several biological properties such as anti-oxidant and anti-inflammatory properties, anti-viral activity, and anti-tumor immunity. This article focused on the sources and pharmacological effects of glyceroglycolipids, which are naturally present in various marine algae, including planktonic algae and benthic algae, with the aim to highlight the promising potential of glyceroglycolipids in clinical treatment.
Collapse
Affiliation(s)
- Sha-sha Guo
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-guo Wang
- Key Laboratory of Theory of TCM, Ministry of Education of China, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhen-guo Wang,
| |
Collapse
|
12
|
Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice. Food Chem Toxicol 2022; 170:113451. [PMID: 36198340 DOI: 10.1016/j.fct.2022.113451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Lead (Pb) and obesity are co-occurring risk factors for metabolic disorders. However, there is still a lack of study on the combined effects of both stressors on metabolism. C57BL/6J mice were exposed to 200 mg/L Pb or/and HFD for 24 weeks and were used to investigate the effects and underlying mechanisms of chronic Pb exposure on obese mice. The results showed that Pb significantly increased body weight, visceral obesity, fasting blood glucose levels, and insulin resistance, and aggravated liver damage, hepatic lipid accumulation and steatosis in HFD-fed mice. Further analysis showed that Pb significantly inhibited insulin signaling pathway PI3K/AKT and fatty acid β-oxidation, and accelerated fatty acid synthesis. Moreover, Pb exacerbated HFD-induced disruption of gut microbiota homeostasis, manifested by increased proportions of pathogenic genera such as Desulfovibrio, Alistipes and Helicobacter, and decreased proportions of beneficial microbes Akkermansia and Barnesiella, which were negatively associated with obesity. These results indicated that Pb exposure exacerbated the disruption of liver glucolipid metabolism in HFD mice possibly by disrupting gut microbiota.
Collapse
|
13
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
14
|
Cai WF, Yan MM, Wang Z, Jiang MP, Yan B, Shen CY. Optimization of the extract from flower of Citrus aurantium L. var. amara Engl. and its inhibition of lipid accumulation. J Food Biochem 2022; 46:e14332. [PMID: 35894798 DOI: 10.1111/jfbc.14332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Flower of Citrus aurantium L. var. amara Engl. (CAVA) has been confirmed to have promising anti-obesity effects. However, the regulation of alkaloid extracts from flower of CAVA (Al) on lipid metabolism remain unknown. In this study, Al was optimized by ultrasound-assisted extraction using response surface methodology. The optimal conditions were ultrasonic time 72 min, ethanol concentration 78% and liquid/solid ratio 30 ml/g with the maximum alkaloid yield 5.66%. LC-MS assay indicated that the alkaloid compounds were enriched in Al after optimization. Nine alkaloid compounds were identified in Al by LC-MS assay and stachydrine, caffeine and cathine appeared as the major alkaloid compounds. Bioactivity assay showed that Al treatment significantly increased superoxide dismutase (SOD) activity, and reduced malonaldehyde (MDA) and reactive oxygen species (ROS) levels. Al administration also reversed oleic acid-induced hepatic steatosis in Hep G2 cells by inhibiting the expression of lipogenesis-signaling genes including fatty acid synthase (FAS), peroxisome proliferator-activated receptor subtype γ (PPARγ), uncoupling protein 2 (UCP2), and retinol binding protein (RBP4). However, OA-induced reduction of lipolysis-related gene carnitine palmitoyl transferase 1A (CPT1A) in Hep G2 cells was not improved by Al supplementation. Moreover, the increased SOD activity and decreased MDA and ROS contents were also observed in Caenorhabditis elegans by Al addition. Al intervention exhibited the ability to inhibit lipid accumulation in C. elegans by suppressing expression of lipid metabolism-related genes. These results suggested that the alkaloid extracts from the flower of CAVA showed great potential to regulate lipid metabolism. PRACTICAL APPLICATIONS: The extraction of alkaloid extracts from the flower of CAVA was optimized with a maximum yield of 5.66%. The regulatory effects and mechanisms of Al on lipid metabolism of Hep G2 cells and Caenorhabditis elegans were also investigated. More clinical studies are required to evaluate the potential of using alkaloids from the flower of CAVA as therapeutic agents against lipid metabolic disorders.
Collapse
Affiliation(s)
- Wei-Feng Cai
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai, People's Republic of China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Mao-Mao Yan
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zheng Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Meng-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Bing Yan
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai, People's Republic of China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|