1
|
Hira SA, Quintal J, Chen A. Sensitive Electrochemical Determination of Vanillin Using a Bimetallic Hydroxide and Reduced Graphene Oxide Nanocomposite. SENSORS (BASEL, SWITZERLAND) 2025; 25:1694. [PMID: 40292776 DOI: 10.3390/s25061694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Vanillin (VAN) is an organic compound which not only functions as a flavoring and fragrance enhancer in some foods but also has antioxidant, anti-inflammatory, anti-cancer, and anti-depressant effects. However, the excessive use of VAN can be associated with negative side effects on human health. As a result, it is crucial to find a reliable method for the rapid determination of VAN to enhance food safety. Herein, we developed a sensor using Ni and Co bimetallic hydroxide and reduced graphene oxide nanostructure (NiCo(OH)2.rGO). Our prepared material was characterized using various physico-chemical techniques. The electrocatalytic efficiency of the NiCo(OH)2.rGO-modified glassy carbon electrode was investigated using cyclic and square wave voltammetry. The developed sensor showed a limit of detection of 6.1 nM and a linear range of 5-140 nM. The synergistic effect of NiCo(OH)2 and rGO improved the active sites and enhanced its catalytic efficiency. The practical applicability of the prepared sensor was investigated for the determination of VAN in food samples such as biscuits and chocolates, showing promise in practical applications.
Collapse
Affiliation(s)
- Shamim Ahmed Hira
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jonathan Quintal
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
4
|
Marcelletti AJ, Slone C, Baker MN, Wilson CL. Chromhidrosis Linked to Personal Care Products. Cureus 2024; 16:e66997. [PMID: 39280409 PMCID: PMC11402335 DOI: 10.7759/cureus.66997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Eccrine chromhidrosis (CH) is a rare condition characterized by the excretion of colored sweat from eccrine glands. This case report contributes to the medical literature by highlighting two instances of eccrine CH linked to over-the-counter personal care products, an association not previously documented. These products contained FD&C Blue No. 1, D&C Red No. 33, and Ext. D&C Violet No. 2, which are known colorants in various consumer items. These cases underscore the potential for personal care products containing colored dyes to cause eccrine CH. The medical community and consumers must be vigilant about product ingredients to facilitate an accurate diagnosis and promote informed usage. Healthcare professionals should consider the role of colored personal care products in their differential diagnosis of CH to recognize and address potential risks effectively. These cases emphasize the need to actively include colored personal care products in medical considerations to ensure that healthcare practices and consumer awareness properly recognize and address potential risks associated with these products.
Collapse
Affiliation(s)
| | - Camryn Slone
- Dermatology, University of Kentucky College of Medicine, Lexington, USA
| | - Mindy N Baker
- Dermatology, University of Kentucky College of Medicine, Lexington, USA
| | | |
Collapse
|
5
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
6
|
Mohareb RM, Mukhtar S, Parveen H, Abdelaziz MA, Alwan ES. Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions. Anticancer Agents Med Chem 2024; 24:691-708. [PMID: 38321904 DOI: 10.2174/0118715206262307231122104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors. OBJECTIVE The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied. METHODS The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts. RESULTS Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained. CONCLUSION The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, A.R. Egypt
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Ensaf S Alwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
7
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
8
|
Bukharinova MA, Khamzina EI, Stozhko NY, Tarasov AV. Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite. Anal Chim Acta 2023; 1272:341481. [PMID: 37355328 DOI: 10.1016/j.aca.2023.341481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023]
Abstract
This article presents an original planar carbon fiber electrode (PCFE), in which shungite (SHU) is used as a modifier for the first time. Shungite is a unique natural nanostructured composite consisting of carbon in the form of aggregated graphene stacks, oxides of silicon, titanium, aluminum, iron, magnesium, potassium, etc. Macro- and micro-elements, biologically active components that are present in shungite provide it with attractive antioxidant properties, make it a biocompatible and environmentally friendly material that meets the principles of green chemistry. A unique supramolecular structure of shungite carbon presents a multilayer globular-cluster formation with mesopores in the internal volume. It determines specific physical, chemical, catalytic, and adsorption properties of shungite. Carbon fiber with an irregular 3D structure was used as an effective electrode platform for strong immobilization of shungite. The PCFE was fabricated using a simple and scalable hot lamination technology that produces very low cost flexible planar electrodes. The sensor (SHU/PCFE) was characterized by scanning electron microscopy; electrochemical impedance analysis; cyclic, differential-pulse and stripping voltammetry. The SHU/PCFE showed a 2.5-fold increase in the electroactive surface area, a 1.8-fold decrease in the electron transfer resistance compared with the bare PCFE. Under optimal experimental conditions and preconcentration at +0.2 V (vs. Ag/AgCl) 180 s, the developed sensor allowed the quantification of Allura Red in the ranges of 0.001-0.1 and 0.1-2 μmol L-1 with an extremely low detection limit of 0.36 nmol L-1. Moreover, this convenient and cost-effective sensor also has good repeatability, stability and anti-interference ability. The interfering effect of sweeteners and preservatives in the determination of Allura Red does not exceed 3.6%. The practical application of the SHU/PCFE was demonstrated using drink samples, lollipops and pharmaceuticals.
Collapse
Affiliation(s)
- Maria A Bukharinova
- Scientific and Innovation Center of Sensor Technologies, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| | - Ekaterina I Khamzina
- Scientific and Innovation Center of Sensor Technologies, Ural State University of Economics, 620144, Yekaterinburg, Russia; Department of Physics and Chemistry, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| | - Natalia Yu Stozhko
- Department of Physics and Chemistry, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| | - Aleksey V Tarasov
- Scientific and Innovation Center of Sensor Technologies, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| |
Collapse
|
9
|
Lu H, Ke Z, Feng L, Liu B. Voltammetric sensing of Cd(II) at ZIF-8/GO modified electrode: Optimization and field measurements. CHEMOSPHERE 2023; 329:138710. [PMID: 37068613 DOI: 10.1016/j.chemosphere.2023.138710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
In this work, a metal-organic framework/graphene oxide (MOF(ZIF-8)/GO) nanocomposite was utilized for the electroanalysis of trace level of Cd(II) after modification of a cheap graphite rod electrode (GRE). After closed circuit process on the modified electrode, the differential pulse anodic stripping voltammetry (DPASV) technique was used for measuring of Cd(II). In optimal conditions, the sensor showed a linear dependence of current with concentration range 0.1-30 ppb for Cd(II). Moreover, limit of detection 0.03 ppb were obtained. Besides good selectivity, the sensor also indicated good reproducibility (below 5%). Moreover, the sensor showed satisfactory sensing performance in river, dam and wastewater samples with recovery ranging from 97.2% to 102.4%. Additionally, possible interfering cations were examined, but no significant interference was found. For the detection of trace Cd(II) in real matrices, this sensor illustrated other good merits like high stability, rapidity and simplicity.
Collapse
Affiliation(s)
- Haitao Lu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zijie Ke
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
10
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Molybdenum Disulfide/Nickel-Metal Organic Framework Hybrid Nanosheets Based Disposable Electrochemical Sensor for Determination of 4-Aminophenol in Presence of Acetaminophen. BIOSENSORS 2023; 13:bios13050524. [PMID: 37232885 DOI: 10.3390/bios13050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
The toxicity of commonly used drugs, such as acetaminophen (ACAP) and its degradation-derived metabolite of 4-aminophenol (4-AP), underscores the need to achieve an effective approach in their simultaneous electrochemical determination. Hence, the present study attempts to introduce an ultra-sensitive disposable electrochemical 4-AP and ACAP sensor based on surface modification of a screen-printed graphite electrode (SPGE) with a combination of MoS2 nanosheets and a nickel-based metal organic framework (MoS2/Ni-MOF/SPGE sensor). A simple hydrothermal protocol was implemented to fabricate MoS2/Ni-MOF hybrid nanosheets, which was subsequently tested for properties using valid techniques including X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), and N2 adsorption-desorption isotherm. The 4-AP detection behavior on MoS2/Ni-MOF/SPGE sensor was followed by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). Our experimental findings on the generated sensor confirmed a broad linear dynamic range (LDR) for 4-AP from 0.1 to 600 μM with a high sensitivity of 0.0666 μA/μM and a low limit of detection (LOD) of 0.04 μM. In addition, an analysis of real specimens such as tap water sample as well as a commercial sample (acetaminophen tablets) illuminated the successful applicability of as-developed sensor in determining ACAP and 4-AP, with an impressive recovery rate.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Shahab Maghsoudi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
11
|
Garkani Nejad F, Beitollahi H, Sheikhshoaie I. A UiO-66-NH 2 MOF/PAMAM Dendrimer Nanocomposite for Electrochemical Detection of Tramadol in the Presence of Acetaminophen in Pharmaceutical Formulations. BIOSENSORS 2023; 13:bios13050514. [PMID: 37232874 DOI: 10.3390/bios13050514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
In this work, we prepared a novel electrochemical sensor for the detection of tramadol based on a UiO-66-NH2 metal-organic framework (UiO-66-NH2 MOF)/third-generation poly(amidoamine) dendrimer (G3-PAMAM dendrimer) nanocomposite drop-cast onto a glassy carbon electrode (GCE) surface. After the synthesis of the nanocomposite, the functionalization of the UiO-66-NH2 MOF by G3-PAMAM was confirmed by various techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The UiO-66-NH2 MOF/PAMAM-modified GCE exhibited commendable electrocatalytic performance toward the tramadol oxidation owing to the integration of the UiO-66-NH2 MOF with the PAMAM dendrimer. According to differential pulse voltammetry (DPV), it was possible to detect tramadol under optimized circumstances in a broad concentration range (0.5 μM-500.0 μM) and a narrow limit of detection (0.2 μM). In addition, the stability, repeatability, and reproducibility of the presented UiO-66-NH2 MOF/PAMAM/GCE sensor were also studied. The sensor also possessed an acceptable catalytic behavior for the tramadol determination in the co-existence of acetaminophen, with the separated oxidation potential of ΔE = 410 mV. Finally, the UiO-66-NH2 MOF/PAMAM-modified GCE exhibited satisfactory practical ability in pharmaceutical formulations (tramadol tablets and acetaminophen tablets).
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
12
|
Wang X, Karaman C, Zhang Y, Xia C. Graphene oxide/cellulose nanofibril composite: A high-performance catalyst for the fabrication of an electrochemical sensor for quantification of p-nitrophenol, a hazardous water pollutant. CHEMOSPHERE 2023; 331:138813. [PMID: 37127202 DOI: 10.1016/j.chemosphere.2023.138813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The detection and quantification of p-Nitrophenol (p-NP) in environmental samples are important for understanding the extent and impact of environmental pollution, protecting human health, ensuring regulatory compliance, and guiding remediation efforts. The main objective of this work was to investigate the electrochemical performance of a graphene oxide/cellulose nanofibril composite (GO/CNF) modified carbon paste electrode (GO/CNF/CPE) for the sensitive and reliable detection of p-nitrophenol in water samples. The transmission electron microscopy (TEM) technique was employed to enlighten the structure of nanocomposites. The electrochemical behavior of the fabricated electrochemical sensor was characterized via differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). Under optimized analytical conditions, the peak current of the analyte showed a wide linear relationship with its concentration in a range of 3.0 nM-210 μM with a low amount of the limit of detection (LOD) value of 0.8 nM determined by the DPV method. The proposed electrochemical sensor demonstrated excellent sensitivity, selectivity, and accuracy metrics in real sample analysis of p-nitrophenol.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Yaoli Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
13
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
14
|
Raza S, Hameed MU, Ghasali E, Hayat A, Orooji Y, Lin H, Karaman C, Karimi F, Erk N. Algae extract delamination of molybdenum disulfide and surface modification with glycidyl methacrylate and polyaniline for the elimination of metal ions from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115213. [PMID: 36610540 DOI: 10.1016/j.envres.2023.115213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A special type of two-dimensional (2D) material based conducting polymer was constructed by green synthesis and in-situ polymerization techniques. The 2D Molybdenum Disulfide (MoS2) were first synthesized with the combination of, ammonium tetrathiomolybdate dissolved in 20 mL algae extract under stirring. After stirring for about 2 h, and then finally sulfurization was initiated using sulfur powder in 20 mL of sulfuric solution and stirred for 8 h. The resulting black precipitates of MoS2 were collected by centrifugation at 5000 rpm. Moreover, the prepared MoS2 was functionalized with glycidyl methacrylate (GMA) and form the MoS2@PGMA. Further, the MoS2@PGMA is combined with polyaniline (PANI) to form conducting polymer grafted thin film nanosheets named MoS2@PGMA/PANI with a thickness in micrometer size through grafting method. The prepared materials were characterized by SEM, FTIR, XRD, XPS and EDX techniques. To check the performance of materials the adsorption study was performed. Moreover, the adsorption study toward Cu2+ and Cd2+ showed a tremendous results and the maximum adsorption was 307.7 mg/g and 214.7 mg/g respectively. In addition, the pseudo-first and second order models as well as the adsorption isotherm were investigated using the Langmuir and Freundlich model. The results were best fitted with the pseudo-second order and Langmuir models. The regeneration study was also conducted and MoS2@PGMA/PANI nanosheets can be easily recycled and restored after five successful recycling. The established methodology for preparing the 2D materials and conducting polymer based MoS2@PGMA/PANI nanosheets is expected to be applicable for other multiple applications.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muhammad Usman Hameed
- Department of Chemistry University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
15
|
Buledi JA, Shaikh H, Solangi AR, Mallah A, Shah ZUH, Khan MM, Sanati AL, Karimi-Maleh H, Karaman C, Camarada MB, Niculina DE. Synthesis of NiO-Doped ZnO Nanoparticle-Decorated Reduced Graphene Oxide Nanohybrid for Highly Sensitive and Selective Electrochemical Sensing of Bisphenol A in Aqueous Samples. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Jamil A. Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Zia-ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam 70050, Pakistan
| | - Mir Mehran Khan
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Afsaneh L. Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Avenue, 611731 Chengdu, P.R. China
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya 07070, Turkey
- School of Engineering, Lebanese American University, 1526 Byblos, Lebanon
| | - María Belén Camarada
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dragoi Elena Niculina
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bld. D Mangeron no 73, 700050 Iasi, Romania
| |
Collapse
|
16
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A Z-scheme CdS/Ag 3PO 4 catalyst: Characterization, experimental design and mechanism consideration for methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122139. [PMID: 36446172 DOI: 10.1016/j.saa.2022.122139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the explosive use of Azo dyes in various industries such as textiles, discharging these industrial effluents into the environment critically polluted water supplies. Accordingly, constructing/developing novel binary catalysts to diminish the pollution extent of such effluents before discharging into environment is an excellent issue in environmental chemistry. Here, a binary CdS/ Ag3PO4 was constructed, and its boosted photocatalytic activity was proven against methylene blue (MB), as a model dye pollutant. The Wurtzite CdS and Ag3PO4 cubic crystal nanoparticles were synthesized and coupled mechanically. The binary sample's lowest photoluminescence (PL) results confirm a higher e/h separation. DRS results confirmed a decreased energy gap for the coupled system. The semiconductors' VB and CV potentials were calculated and used for constructing of Z-scheme mechanism. The photocatalytic activity was followed via an experimental design approach. The model F-value of 89.75 > F0.05,14,13 = 2.42 and LOF F-value of 6.57 < F0.05,10, 3 = 8.79 reveal that the model well processed data. The optimal run conditions were CMB: 5 ppm, Catalyst dose: 1 g/L, pH: 3.25, and irradiation time: 139 min, at which 85% of MB molecules were degraded. Based on the trend of ascorbic acid > isopropanol > formic acid ≈ nitrate obtained for the scavengers' importance in decreasing the photocatalyst activity, superoxide radicals had the highest effect in MB degradation and then •OH. The results showed the direct Z-scheme has the main effect on MB degradation by the binary sample.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
17
|
Dourandish Z, Beitollahi H, Sheikhshoaie I. Simultaneous Voltammetric Determination of Epinine and Venlafaxine Using Disposable Screen-Printed Graphite Electrode Modified by Bimetallic Ni-Co-Metal-Organic-Framework Nanosheets. Molecules 2023; 28:molecules28052128. [PMID: 36903373 PMCID: PMC10004146 DOI: 10.3390/molecules28052128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
We constructed two-dimensional NiCo-metal-organic-framework (NiCo-MOF) nanosheets based on a facile protocol and then characterized them using multiple approaches (X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and N2 adsorption/desorption isotherms techniques). As a sensitive electroactive material, the as-fabricated bimetallic NiCo-MOF nanosheets were employed to modify a screen-printed graphite electrode surface (NiCo-MOF/SPGE) for epinine electro-oxidation. According to the findings, there was a great improvement in the current responses of the epinine because of the appreciable electron transfer reaction and catalytic performance of the as-produced NiCo-MOF nanosheets. Differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry were utilized to analyze the electrochemical activity of the epinine on the NiCo-MOF/SPGE. A linear calibration plot was obtained in the broad concentration range (0.07-335.0 µM) with a high sensitivity (0.1173 µA/µM) and a commendable correlation coefficient (0.9997). The limit of detection (S/N = 3) was estimated at 0.02 µM for the epinine. According to findings from DPV, the electrochemical sensor of the NiCo-MOF/SPGE could co-detect epinine and venlafaxine. The repeatability, reproducibility and stability of the NiCo-metal-organic-framework-nanosheets-modified electrode were investigated, and the relative standard deviations obtained indicated that the NiCo-MOF/SPGE had superior repeatability, reproducibility and stability. The as-constructed sensor was successfully applicable in sensing the study analytes in real specimens.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
- Correspondence:
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
18
|
Deng Z, Wu Z, Alizadeh M, Zhang H, Chen Y, Karaman C. Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe 3O 4 incorporated cellulose nanofibers (CNF). ENVIRONMENTAL RESEARCH 2023; 219:114995. [PMID: 36529324 DOI: 10.1016/j.envres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 μM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun, 336000, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
19
|
Zaimbashi R, Tajik S, Beitollahi H, Torkzadeh-Mahani M. Fabrication of a Novel and Ultrasensitive Label-Free Electrochemical Aptasensor Based on Gold Nanostructure for Detection of Homocysteine. BIOSENSORS 2023; 13:bios13020244. [PMID: 36832010 PMCID: PMC9953955 DOI: 10.3390/bios13020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/12/2023]
Abstract
The current attempt was made to detect the amino acid homocysteine (HMC) using an electrochemical aptasensor. A high-specificity HMC aptamer was used to fabricate an Au nanostructured/carbon paste electrode (Au-NS/CPE). HMC at high blood concentration (hyperhomocysteinemia) can be associated with endothelial cell damage leading to blood vessel inflammation, thereby possibly resulting in atherogenesis leading to ischemic damage. Our proposed protocol was to selectively immobilize the aptamer on the gate electrode with a high affinity to the HMC. The absence of a clear alteration in the current due to common interferants (methionine (Met) and cysteine (Cys)) indicated the high specificity of the sensor. The aptasensor was successful in sensing HMC ranging between 0.1 and 30 μM, with a narrow limit of detection (LOD) as low as 0.03 μM.
Collapse
Affiliation(s)
- Reza Zaimbashi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Masoud Torkzadeh-Mahani
- Biotechnology Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| |
Collapse
|
20
|
Liu Z, Wang R, Xue Q, Chang C, Liu Y, He L. Highly efficient detection of Cd(Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Mu J, Xu W, Huang Z, Jia Q. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
22
|
Ibraheem Shelash Al-Hawary S, Omar Bali A, Askar S, Lafta HA, Jawad Kadhim Z, Kholdorov B, Riadi Y, Solanki R, ismaeel kadhem Q, Fakri Mustafa Y. Recent advances in nanomaterials-based electrochemical and optical sensing approaches for detection of food dyes in food samples: A comprehensive overview. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
23
|
Tajik S, Sharifi F, Aflatoonian B, Di Bartolomeo A. A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:523. [PMID: 36770482 PMCID: PMC9920814 DOI: 10.3390/nano13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
An ultrasensitive and selective voltammetric sensor with an ultratrace-level detection limit is introduced for ketoconazole (KTC) determination in real samples using a modified carbon paste electrode with a sheaf-like Ce-BTC MOF nanostructure and ionic liquid. The as-synthesized nanostructure was characterized by several techniques, including energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and chronoamperometry. The limit of detection (LOD) of the developed sensor for KTC is 0.04 μM, and the response was found to be in the dynamic concentration range of 0.1-110.0 μM in a phosphate buffer solution. The proposed electrode exhibits acceptable electrocatalytic activity for KTC oxidation with a high sensitivity of 0.1342 μA·μM-1. The ability of the fabricated sensor to monitor KTC in real aqueous samples is demonstrated using standard addition data.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Antonio Di Bartolomeo
- Department of Physics “E.R. Caianaiello”, University of Salerno, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
24
|
Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe 2O 4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. APPLIED NANOSCIENCE 2023; 13:1-10. [PMID: 36710715 PMCID: PMC9870783 DOI: 10.1007/s13204-023-02773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanoribbon-CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid binder. The electrochemical behavior of Azi on the graphene nanoribbon-CoFe2O4@NiO/HMIM PF6/CPE is investigated by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10-6 cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical tool for Azi determination in urine and Azi capsule.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People’s Republic of China
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Yasamin Hamidian
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, 16315-1618 Iran
| |
Collapse
|
25
|
Biju LM, K VG, Senthil Kumar P, Kavitha R, Rajagopal R, Rangasamy G. Application of Salvinia sps. in remediation of reactive mixed azo dyes and Cr (VI) - Its pathway elucidation. ENVIRONMENTAL RESEARCH 2023; 216:114635. [PMID: 36309215 DOI: 10.1016/j.envres.2022.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The emerging industrialization has resulted in the rapid growth of textile industries across the globe. The presence of xenobiotic pollutants in textile wastewater threatens the ecosystem. Applying different microbes (bacteria, fungi & algae) has paved the way for phytoremediation - the eco-friendly, cost-effective method. The present study focuses on the phytoremediation of reactive dyes - Reactive red, Reactive Brown & Reactive Black and Cr (VI) in synthetic textile wastewater using Salvinia sps. The mixed azo dyes of each 100 mg/L showed decolourization of 75 ± 0.5% and 82 ± 0.5% of removal of 20 mg/L of Cr (VI) after eight days of incubation in a phytoreactor setup. Chlorophyll analysis revealed the gradual decrease in the photosynthetic pigments during the remediation. The degraded metabolites were analyzed using FT-IR and showed the presence of aromatic amines on day zero, which were converted to aliphatic amines on day four. The GC-MS analysis revealed the disruption of -NN- bond, rupture of -CN- bond, scission of -N-N-bond, and loss of -SO3H from the Reactive Black dye leading to the formation of an intermediate p-Hydroxy phenylhydrazinyl. The rupture of Reactive red dye resulted in the formation of p-Hydrazinyl toluene sulphonic acid, Naphthyl amine -3,6-disulphonic acid and 8-Hydroxy Naphthyl amine -3,6-disulphonic acid. Decarboxylation, desulphonation, deoxygenation and deamination of Reactive Brown dye showed the presence of different metabolites and metabolic pathways were proposed for the reactive azo dyes which were phytoremediated.
Collapse
Affiliation(s)
- Leena Merlin Biju
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India; Department of Microbiology, Kumararani Meena Muthiah College of Arts & Science, India
| | - Veena Gayathri K
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India; Department of Chemistry, Madras Christian College, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
26
|
Sun W, Hong Y, Li T, Chu H, Liu J, Feng L, Baghayeri M. Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants. CHEMOSPHERE 2023; 310:136759. [PMID: 36228729 DOI: 10.1016/j.chemosphere.2022.136759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In this work, graphene oxide (GO) sheets were prepared via a facile electrochemical exfoliation of graphite in acidic medium and subsequent oxidation with potassium permanganate. The GO sheets were employed for preparation of reduced GO adorned with nanosized silver (rGO/Ag NPs) using green reduction of GO and Ag(I) via olive fruit extract as a reducing and immobilizing agent. The crystal phase, morphology, and nanostructure of the prepared catalyst were characterized by XRD, SEM, EDX, UV-Vis and Raman spectroscopy techniques. The as-prepared rGO/Ag NPs showed superior catalytic performance towards the complete reduction (up to 99%) of 4-nitrophenol (4-NPH) to 4-aminophenol (4-APH) and rhodamine B (RhB) to Leuco RhB within 180 s using NaBH4 at ambient condition. The rate constant (k) values were found to be 0.021 and 0.022 s-1 for 4-NPH and RhB reduction, respectively. In addition, the regenerated catalyst could be reused after seven cycles without losing any apparent catalytic efficiency. Accounting for the excellent catalytic capability, chemical stability and environment-friendly synthesis protocol, the rGO/Ag NPs has great potential working as a heterogeneous catalyst in the transforming harmful organic contaminants into less harmful or harmless compounds.
Collapse
Affiliation(s)
- Wen Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mehidi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| |
Collapse
|
27
|
Ghanbari R, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N. Ti 3C 2Tx MXene@MOF decorated polyvinylidene fluoride membrane for the remediation of heavy metals ions and desalination. CHEMOSPHERE 2023; 311:137191. [PMID: 36368543 DOI: 10.1016/j.chemosphere.2022.137191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the evolution of two-dimensional materials like transition metal carbides (MXene) prepares a novel path to surpass the "trade-off" between the membrane permeation and rejection rates. Based on water swelling and oxidation vulnerability, MXene membranes showed vivid defects such as inadequate stability, detrimental adsorption, and haphazardly stacked nanosheets. Here, we prepared Ti3C2Tx MXene@metal-organic frameworks nanosheets from aminated metal-organic framework-101 (NH2-MIL-101(Al)) via the in-situ growth method and incorporated them into the thin-film polymer to acquire desirable MXene nanosheets with tailor-made structures. The earned modified thin-film nanocomposite membrane showed high salt rejection for Na2SO4 (98.6 ± 0.5%), MgSO4 (96.9 ± 0.7%), MgCl2 (84.5 ± 0.8%), and NaCl (82.5 ± 0.8%), and also showed an improved permeation rate by three times (17.1 ± 0.2 L m-2. h-1. bar-1). Concurrently, the rejection rate of five different types of heavy metal ions (Ni2+, Cd2+, Mn2+, Cu2+, and Zn2+) was tested and denoted more than a 95.2 ± 0.5% rejection rate for all of them, notably high for Mn2+ (97.6 ± 0.4%). After modification, the flux recovery rate was as high as 95.3 ± 0.4%, denoting more than 30% improvement; besides, anti-compactness features enhanced by nearly 34 ± 0.7%. The long-term water permeation kept 91.5 ± 0.9% of its initial rate indicating almost 40 ± 0.8% enhancement. In addition, the rejection performance of Na2SO4 for the optimized membrane was more than 97% even after two weeks.
Collapse
Affiliation(s)
- Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
28
|
Bezerra de Araujo CM, Wernke G, Ghislandi MG, Diório A, Vieira MF, Bergamasco R, Alves da Motta Sobrinho M, Rodrigues AE. Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: Selective adsorption in batch and fixed-bed experiments. ENVIRONMENTAL RESEARCH 2023; 216:114425. [PMID: 36181896 DOI: 10.1016/j.envres.2022.114425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R2 > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms. Driving force models and Fick's diffusion equation were applied to the modeling of kinetic data, and a satisfactory fit was obtained. Selective adsorption carried out in batch indicated that competitive adsorption occurs when both components are mixed in water solution - the adsorptive capacities dropped ∼10 mg g-1 for each component, remaining 41 mg g-1 for safranin-O and 31 mg g-1 for chloroquine. Fixed-bed breakthrough curves obtained in an adsorption column showed adsorption capacities over 63 mg g-1 and 100 mg g-1 for chloroquine and safranin-O, respectively, also exhibiting outstanding regenerative potentials. Overall, the biocomposite produced using graphene oxide proved to be a viable and eco-friendly alternative to continuously remove both contaminants from water.
Collapse
Affiliation(s)
- Caroline Maria Bezerra de Araujo
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil.
| | - Gessica Wernke
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcos Gomes Ghislandi
- Engineering Campus (UACSA) - Federal Rural University of Pernambuco (UFRPE), R. Cento e sessenta e Três, 300, 54518-430, Cabo de Santo Agostinho, PE, Brazil
| | - Alexandre Diório
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcelo Fernandes Vieira
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil
| | - Alírio Egídio Rodrigues
- LSRE-LCM, Department of Chemical Engineering - Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
29
|
Sadeghi M, Shabani-Nooshabadi M, Ansarinejad H. A nanoporous gold film sensor modified with polypyrrole/CuO nanocomposite for electrochemical determination of piroxicam and tramadole. ENVIRONMENTAL RESEARCH 2023; 216:114633. [PMID: 36343714 DOI: 10.1016/j.envres.2022.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this paper, an electrochemical sensor was developed to determine piroxicam (PX) and tramadole (Tr) based on their enhanced electrochemical responses at the surface of the polypyrrole/CuO nanocomposite-modified nanoporous gold film (NPGF) electrode. The experimental results showed that PX provide an oxidation peak at 0.65 V in pH = 8.0. The DPV results were linearly affiliated on PX concentration within the two closed windows (C1PX = 0.05-30.0 μM, correlation coefficient of 0.9905, and C2PX = 50.0-300.0 μM, correlation coefficient of 0.9927). From voltammetric curves, the detection limit (LOD = 3Sb/m) for PX at a surface of PPY-CuO-NPGF electrode was appeared to be 0.01 μM. Furthermore, the ability of PPY-CuO-NPGF electrode for simultaneous measurement of PX and Tr was investigated. The suggested sensor shows a long-time stability, good repeatability, and rapid response in the mixture media of PX and Tr.
Collapse
Affiliation(s)
- Mehrnoosh Sadeghi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I.R, Iran.
| | - Hanieh Ansarinejad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran
| |
Collapse
|
30
|
Design of new sensing layer based on ZnO/NiO/Fe3O4/MWCNTs nanocomposite for simultaneous electrochemical determination of Naproxen and Sumatriptan. J Pharm Biomed Anal 2023; 223:115091. [DOI: 10.1016/j.jpba.2022.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
31
|
Balram D, Lian KY, Sebastian N. Electrocatalytic Platform Based on Silver-Doped Sugar Apple-like Cupric Oxide Embedded Functionalized Carbon Nanotubes for Nanomolar Detection of Acetaminophen (APAP). SENSORS (BASEL, SWITZERLAND) 2022; 23:379. [PMID: 36616981 PMCID: PMC9823579 DOI: 10.3390/s23010379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Economical and nanomolar-level determination of the analgesic drug, acetaminophen (APAP), is reported in this work. A novel ternary nanocomposite based on silver-doped sugar apple-like cupric oxide (CuO)-decorated amine-functionalized multi-walled carbon nanotubes (fCNTs) was sonochemically prepared. CuO nanoparticles were synthesized based on the ascorbic acid-mediated low-temperature method, and sidewall functionalization of CNTs was carried out. Important characterizations of the synthesized materials were analyzed using SEM, TEM, HAADF-STEM, elemental mapping, EDX, lattice fringes, SAED pattern, XRD, EIS, UV-Vis, micro-Raman spectroscopy, and FTIR. It was noted the sonochemically prepared nanocomposite diligently fabricated on screen-printed carbon electrode showcased outstanding electrocatalytic performance towards APAP determination. The APAP sensor exhibited ultra-low limit of detection of 4 nM, wide linear concentration ranges of 0.02-3.77 and 3.77-90.02 μM, and high sensitivity of 30.45 μA μM-1 cm-2. Moreover, further evaluation of the sensor's performance based on electrochemical experiments showcased outstanding selectivity, stability, reproducibility, and repeatability. Further, excellent practical feasibility of the proposed APAP sensor was affirmed with excellent recovery larger than 96.86% and a maximum RSD of 3.67%.
Collapse
Affiliation(s)
- Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| | - Neethu Sebastian
- Institute of Organic and Polymeric Materials, Department of Molecular Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan
| |
Collapse
|
32
|
Karami-Kolmoti P, Beitollahi H, Modiri S. Voltammetric detection of catechol in real samples using MnO2 nanorods-graphene oxide nanocomposite modified electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Yu X, Jiang B, Wang L. A signal-on electrochemical DNA biosensor based on exonuclease III-assisted recycling amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5041-5046. [PMID: 36448304 DOI: 10.1039/d2ay01592g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA electrochemical detection technology has attracted tremendous interest in recent years. However, a facile and sensitive method for the detection of the disease indicators or genes is still waiting. Herein, we constructed a signal-on electrochemical platform for detecting the manganese superoxide dismutase (MnSOD) gene by incorporating a redox electrochemical signal probe (methylene blue) and exonuclease III-assisted target recycling signal amplification strategy. The sensor was prepared by self-assembly of a capture DNA probe of thiol-modified on GCE with gold electrodeposition. In the presence of target DNA, the exonuclease III can cleave the duplexes formed by the target DNA and the redox-labeled hairpin probes, release the target DNA and produce a residual sequence. The target DNA can continue to hybridize with the hairpin probe for the next cycle of amplification. The residual sequence hybridized with the surface-immobilized capture probes on AuNPs-modified GCE to generate a significantly amplified redox current. In particular, the redox current value of the resultant sensor showed a linear relationship with MnSOD gene concentration in the range of 1-104 pM with the detection limit as low as 0.3 pM. Furthermore, the sensor has excellent specificity and can distinguish single-base mismatch from perfectly matched target DNA. The sensor is fast in operation, and simple in design for detecting different DNA sequences or DNA identification by selecting the appropriate probe sequence, thus shedding light on a good promising application when encountering disease outbreaks or for the early clinical diagnosis of gene-related diseases.
Collapse
Affiliation(s)
- Xiongtao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Bowen Jiang
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
34
|
Buledi JA, Solangi AR, Mallah A, Shah ZUH, Sherazi ST, Shah MR, Hyder A, Ali S. Electrochemical monitoring of isoproturon herbicide using NiO/V2O5/rGO/GCE. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Electrospun ruthenium oxide nanofibers/poly(sulfosalicylic acid) nanocomposite as an highly sensitive electrochemical platform for determination of sunset yellow in food samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Li Z, Li K, Du P, Mehmandoust M, Karimi F, Erk N. Carbon-based photocatalysts for hydrogen production: A review. CHEMOSPHERE 2022; 308:135998. [PMID: 35973496 DOI: 10.1016/j.chemosphere.2022.135998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Future energy crises and environmental deterioration may only be avoided by converting solar energy into sustainable, safe, cost-effective, and environmentally friendly technologies such as water splitting. Many researchers and governments throughout the globe have stressed the imperative need for affordable, environmental benign, resistive to corrosion, and earth-abundant nanostructured photocatalysts. This has led scientists to look for a green and cost-effective way to generate energy. As a result, the significance of photo catalyst engineering and reactor design difficulties connected to the performance of the photocatalytic reactions, as well as the examination and analysis of photocatalyst behaviors for adaptable and cost effective H2 production, is emphasized and summarized. The carbon-based materials have an appealing band structure, strong chemical stability, is plentiful on Earth, and is relatively easy to produce, making them suitable for hydrogen production. As example, graphene oxide (GO) with the oxygenated functional groups and graphene and its counterparts, including Graphene quantum dots (GQDs), GO, reduce graphene oxide (rGO), have been demonstrated to be ideal nanocomposite materials due to their superior properties and distribution in matrix and CNTs with excellent electronic transmission efficiency, low cost, stability, and environmental friendly are a great alternative of electron mediators for photocatalytic devices to boost light absorptivity for efficient hydrogen generation but some of them have limited photocatalytic activity due to their low sunlight usage efficiency, therefore the numerous methods, such as doping ions, constructing heterostructure, and functionalizing carbon-based materials, have recently been proven to promote the photocatalytic activity of them. The pore structure of carbon material functions as an acceptor of photogenerated electrons, improved the photocatalyst's specific surface area. Generally low-dimensional carbon materials demonstrated immense promise as highly efficient, low-cost, and environmentally friendly catalysts for hydrogen generation as an energy source. This article reviews the recent research progress on carbon-based materials for hydrogen evolution for the first time. It commences with a quick overview of the present state of affairs and fundamental concepts of hydrogen production in carbon-based nanomaterials for use in this field. We anticipate that this study will inspire readers to expand the use of carbon-based materials in H2 generation in a more environmentally friendly way.
Collapse
Affiliation(s)
- Zhigang Li
- Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China; Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Kexin Li
- Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Pinru Du
- Shaanxi Transportation Holding Group Co.,Ltd., Xi'an, Shaanxi, 710048, China
| | - Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
37
|
Karimi-Maleh H, Orooji Y, Yola ML, Sahu S. Nanomaterial-based technologies in electro-sensing of azo toxic dyes in food products: Challenges and perspectives. Food Chem Toxicol 2022; 170:113503. [PMID: 36309229 DOI: 10.1016/j.fct.2022.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Mehmet Lutfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Saura Sahu
- Center for Food Safety and Applied Nutrition, 6502 South Archer Road, IL 60501, College Park, MD, USA.
| |
Collapse
|
38
|
Asgari S, Mohammadi Ziarani G, Badiei A, Ajalloueian F, Vasseghian Y. Electrospun composite nanofibers as novel high-performance and visible-light photocatalysts for removal of environmental pollutants: A review. ENVIRONMENTAL RESEARCH 2022; 215:114296. [PMID: 36116501 DOI: 10.1016/j.envres.2022.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution caused by industries and human manipulations is coming a serious global challenge. On the other hand, the world is facing an energy crisis caused by population growth. Designing solar-driven photocatalysts which are inspired by the photosynthesis of plant leaves is a fantastic solution to use solar energy as green, available, and unlimited energy containing ∼50% visible light for the removal of environmental pollutants. The polymeric and non-polymeric-based electrospun composite nanofibers (NFs) are as innovative photocatalytic candidates which increase photocatalytic activity and transition from UV light to visible light and overcome the aggregation, photocorrosion, toxicity, and hard recycling and separation of the nanosized powder form of photocatalysts. The composite NFs are fabricated easily by either embedding the photocatalytic agents into the NFs during electrospinning or via their decorating on the surface of NFs post-electrospinning. Polyacrylonitrile-based, tungsten trioxide-based, zinc oxide-based, and titanium dioxide-based composite NFs were revealed as the most reported composite NFs. All the lately investigated electrospun composite NFs indicated long-term stability, high photocatalytic efficiency (∼> 80%) within a short time of light radiation (10-430 min), and high stability after several cycles of use. They were applied in various applications including degradation of dyes/antibiotics, water splitting, wastewater treatment, antibacterial usage, etc. The photogenerated species especially holes, O2∙-, and .OH were mostly responsible for the photocatalytic mechanism and pathway. The electrospun composite NFs have the potential to use in large-scale productions in condition that their thickness and recycling conditions are optimized, and their toxicity and detaching are resolved.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Ajalloueian
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs, Lyngby, Denmark
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
39
|
Saad MA, Sakr MAS, Saroka VA, Abdelsalam H. Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study. CHEMOSPHERE 2022; 308:136581. [PMID: 36162514 DOI: 10.1016/j.chemosphere.2022.136581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Pure water is a key element for a sustainable and healthy environment of human inhabitation. Since major sources of water contamination are industrially generated heavy metal cations there is great demand for efficient methods of their treatment. Here, using density functional theory, we investigate the covalent organic framework's electronic and optical properties and their interaction with the most dangerous heavy metal pollutants, namely Hg+2, Pb+2, and Cd+2. We consider biphenyl boroxine covalent organic frameworks before and after chemical modification with CN, COOH, NH2, and NO2 groups. In addition to the molecular geometries, such parameters as the dipole moment, chemical potential, electronegativity, chemical hardness, and binding energy are calculated. It is found that CN, COOH, and NO2 functional groups are favorable for intermolecular bonding with harmful transition metals. The functionalization with the mentioned groups reduces the band gap of the pristine covalent organic frameworks and increases their reactivity. As a result, strong complexes with Cd+2, Hg+2, and Pb+2 can form, which, as follows from our calculations, can be detected by the red shift in their optical absorption spectra.
Collapse
Affiliation(s)
- Mohamed A Saad
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Mahmoud A S Sakr
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Vasil A Saroka
- TBpack Ltd., 27 Old Gloucester Street, London, WC1N 3AX, United Kingdom; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, 220030, Minsk, Belarus
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China; Theoretical Physics Department, National Research Centre, El-Buhouth Str., 12622, Dokki, Giza, Egypt
| |
Collapse
|
40
|
Ultrafast construction of 3D ultrathin NiCo-LDH@Cu heteronanosheet array by plasma magnetron sputtering for non-enzymatic glucose sensing in beverage and human serum. Food Chem 2022; 393:133399. [PMID: 35679705 DOI: 10.1016/j.foodchem.2022.133399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022]
Abstract
In this work, a 3D ultra-thin NiCo-LDH nanosheet array coated Cu nanoparticles on carbon cloth (NiCo-LDH@Cu NSA/CC) was ultrafast synthesized by plasma magnetron sputtering for the first time. This method has low toxicity and is easy to operate. As a durable and efficient 3D heteronanoarray electrocatalyst for glucose detection, NiCo-LDH@Cu NSA/CC has higher stable conductivity and faster electron transport rate than NiCo-LDH NSA/CC and Cu nanoparticles, which work through synergistic effect to form a high-performance sensing platform. The NiCo-LDH@Cu NSA/CC heteronanosheet structure has good electrocatalytic performance for glucose oxidation, with the sensitivity of the two linear ranges (0.001-1 mmol L-1 and 1-6 mmol L-1) being 9710 μA L mmol-1 cm-2 and 4870 μA L mmol-1 cm-2, respectively, and the detection limit (LOD) is 157 nmol L-1 (S/N = 3). The sensor has been successfully applied to detect glucose in beverages and serum.
Collapse
|
41
|
Moradi O, Panahandeh S. Fabrication of different adsorbents based on zirconium oxide, graphene oxide, and dextrin for removal of green malachite dye from aqueous solutions. ENVIRONMENTAL RESEARCH 2022; 214:114042. [PMID: 36037922 DOI: 10.1016/j.envres.2022.114042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, graphene oxide and amine graphene were studied by binding to dextrin and zirconium oxide nanoparticles as adsorbent nanocomposites to the removal of dye. Identification and characterization of the synthesized materials were examined using FTIR, XRD, SEM, and BET analyses. Adsorption tests between adsorbents and green malachite (MG) dye solution for the synthesized nanocomposites were performed by considering parameters such as contact time, solution pH, and adsorbent dosage. The data indicated that dye removal increased with increasing the amount of adsorbent dosage. Increased dye removal by increasing the adsorbent dosage can be attributed to the increase of availability of the number of active sites. The active adsorption sites are saturated during the adsorption process, by the molecules of the adsorbate and filled over time. The results showed that the synthesized bio-composite had malachite green removal ability from aqueous media.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Shahabeddin Panahandeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
42
|
Moradi O, Daneshmand Sharabaf I. Separation of organic contaminant (dye) using the modified porous metal-organic framework (MIL). ENVIRONMENTAL RESEARCH 2022; 214:114006. [PMID: 35973465 DOI: 10.1016/j.envres.2022.114006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, the porous metal-organic framework (MIL-88B: Materials Institute Lavoisier) was synthesized and identified by FT-IR (Fourier transform infrared), SEM (Scanning Electron Microscopy), EDS (Energy Dispersive X-Ray Spectroscopy), and XRD (X-ray powder diffraction) analyses. Then MIL-88B was modified using 3-aminopropyl trimethoxy silane and presented as NH2-MIL-88B. The synthesized materials were used to separate direct red dye 23 (DR23) as an organic contaminant from water. The effect of various important factors such as the amount of adsorbent, initial concentration of contaminants, and pH was investigated. The results showed that the modified adsorbent (NH2-MIL-88B) had a higher adsorption capacity than the row adsorbent (MIL-88B). The amount of dye adsorption is high at lower pH values. The percentage of DR23 dye removal was complete under optimal conditions. Increasing the amount of adsorbent (0.001-0.003 g) and decreasing the pH (2.1-8.1) increases the percentage of dye removal and increasing the concentration of contaminant (50-125 mg/L) reduces the dye removal in the process. Isotherm data showed that the adsorption process followed the Langmuir model. Also, pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models were used to investigate the adsorption kinetics. Dye adsorption followed pseudo-second-order kinetics with correlation coefficient (0.99 <). The results showed that the modified adsorbent could be used as a suitable adsorbent with a high adsorption capacity for dye removal from water.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Iman Daneshmand Sharabaf
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
43
|
Peng C, Ji H, Wang Z. An Electrochemical Biosensor Based on Gold Nanoparticles/Carbon Nanotubes Hybrid for Determination of recombinant human erythropoietin in human blood plasma. INT J ELECTROCHEM SC 2022; 17:221127. [DOI: 10.20964/2022.11.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Gnanasekaran L, Priya AK, Vasseghian Y, Ansar S, Soto-Moscoso M. Existence of Ti 3+ and dislocation on nanoporous CdO-TiO 2 heterostructure applicable for degrading chlorophenol pollutant. ENVIRONMENTAL RESEARCH 2022; 214:113889. [PMID: 35843276 DOI: 10.1016/j.envres.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
This study addresses the significance of wastewater recuperation by a simple and facile treatment process known as photocatalyst technology using visible light. Titanium di-oxide (TiO2) is the most promising photocatalyst ever since longing decades, has good activity under UV light, owing to its small band gap. Hence, TiO2 has been modified with metal oxides for the positive response against visible light. Since this is an efficient process, the novelty has been made on nanometal oxide CdO (cadmium oxide) combined with TiO2 to acquire the best efficiency of degrading organic chlorophenol contaminant. Initially, the composites were synthesized by sol-gel and thermal decomposition methods and investigated for their various outstanding properties. The characterized outcomes have exhibited heterostructures with reduced crystallite size from the X-ray diffraction studies. Then, the determination of nanoporous feature was recognized through HR-TEM analysis which was also detected with some dislocations. The EDX spectrum was identified the perfect elemental composition. The nitrogen adsorption-desorption equilibrium was attained that offers many pores measured with high surface area. The XPS result convinced that Ti3+ was accessible along with TIO2/CdO composite. Further the absorption towards higher wavelength was obtained from UV-vis spectra. Finally, for the photocatalytic application of chlorophenol, the composite shows higher percentage of degrading efficiencies than the pristine TiO2. The photocatalytic mechanism was discussed in detail.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | | |
Collapse
|
45
|
Ajermoun N, Aghris S, Ettadili F, Alaoui OT, Laghrib F, Farahi A, Lahrich S, Bakasse M, Saqrane S, El Mhammedi MA. Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. ENVIRONMENTAL RESEARCH 2022; 214:113794. [PMID: 35809636 DOI: 10.1016/j.envres.2022.113794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The objective of this work is to study the toxicological effect of the imidacloprid (IMD) on common bean plants (Phaseolus vulgaris L) when used at high doses and its quantification by electrochemical method. Common bean plants were exposed to increasing concentrations of IMD and the different plant tissues were subjected to various analyses. The IMD detection in different tissues of the bean plant was performed after extraction on the metallic silver electrode using square wave voltammetry. The analytical and calibration parameters (Slope, correlation coefficient, linear range, detection limit and relative standard deviation) were calculated for the different plant tissues. The effect of different doses (5.0 × 10-3 to 5.0 × 10-2 mol L-1) of IMD was evaluated on germination, seedling (vigour, growth) and photosynthetic pigments in the bean plant. The results indicate that germination rate and seed vigour index reduced significantly (p ≤ 0.05) only in the applied concentrations above the recommended dose. A similar effect of IMD was observed on seedling development in term of roots length, plant length, number of leaves and number of nods. Concerning pigments content, chlorophyll a, b and total chlorophyll maximally decreased by 95.26%, 80.44% and 82.15% respectively at high applied dose. The bioaccumulation and translocation behaviour of IMD in bean plant was investigated, revealing that the IMD can be bioaccumulated in roots and can easily be translocated into stems and leaves.
Collapse
Affiliation(s)
- N Ajermoun
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - F Ettadili
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - O Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
46
|
A low-cost microbial fuel cell based sensor for in-situ monitoring of dissolved oxygen for over half a year. Biosens Bioelectron 2022; 220:114888. [DOI: 10.1016/j.bios.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
47
|
Beitollahi H, Garkani Nejad F, Dourandish Z, Tajik S. A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. ENVIRONMENTAL RESEARCH 2022; 214:113725. [PMID: 35732202 DOI: 10.1016/j.envres.2022.113725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Azo dyes are the most used type of dye in the textile industry. Some of these dyes have the potential to be extremely toxic to both human health and the environment. The purpose of this study was to develope an electrochemical sensor for detection of amaranth. The electrochemical sensor based on the modification of a screen-printed electrode via polypyrrole nanotubes (PPy NTs/SPE) for detection of amaranth was developed. The preparation of PPy NTs was performed through the pyrrole monomer oxidation with iron (III) chloride in exposure to methyl orange as structure-guiding agent. Findings exhibited an excellent electrocatalytic activity of as-fabricated sensor for amaranth detection. Our sensor under the optimized circumstances also had a broad linear dynamic range (between 0.03 μM and 290.0 μM) and a narrow limit of detection (0.01 μM) towards the amaranth detection. Moreover, the proposed sensor could practically and successfully determine the amaranth content present in the real food specimens, with acceptable recovery rates.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
48
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
49
|
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Li X, Zheng Y, Wu W, Jin M, Zhou Q, Fu L, Zare N, Karimi F, Moghadam M. Graphdiyne applications in sensors: A bibliometric analysis and literature review. CHEMOSPHERE 2022; 307:135720. [PMID: 35843425 DOI: 10.1016/j.chemosphere.2022.135720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Graphdiyne is a two-dimensional carbon nanomaterial synthesized artificially in 2010. Its outstanding performance is considered to have great potential in different fields. This article summarizes the work of graphdiyne in the sensing field by literature summary and bibliometrics analysis. The development of graphdiyne in the field of sensing has gone through a process from theoretical calculation to experimental verification. Especially in the last three years, there has been very rapid development. The theoretical calculations suggest that graphdiyne is an excellent gas sensing material, but there is little experimental evidence in this direction. On the contrary, graphdiyne has been widely reported in the field of electrochemical sensing. At the same time, graphdiyne can also be used as a molecular switch for DNA sequencing. Fluorescent sensors based on graphdiyne have also been reported. In general, the potential of graphdiyne in sensing still needs to be explored. Current research results do not show that graphdiyne has irreplaceable advantages in sensing. The bibliometric analysis used in this review also provides cooperative network analysis and co-citation analysis on this topic. This provides a reference for the audience wishing to undertake research on the topic. In addition, according to the analysis, we also listed the direction that which this field deserves attention in the future.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|