1
|
Ma C, Liang J, Fang H, Luo ZW, Chen S, Zhao C. Metabolic engineering of Neurospora crassa for the production of xylitol and ethylene glycol from xylose. BIORESOURCE TECHNOLOGY 2025; 428:132459. [PMID: 40164360 DOI: 10.1016/j.biortech.2025.132459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The use of pentose from lignocellulose is critical for economic production of biofuels and chemicals. In this study, a filamentous fungus, Neurospora crassa, was used to metabolize xylose and synthesize xylitol and ethylene glycol (EG). Firstly, xylulose kinase gene was knocked out to prevent excessive xylose usage for strain growth, resulting in 5.8 ± 0.3 g/L xylitol and 58.3 ± 2.6 mg/L EG. Through optimization, the xylitol accumulation in the hydrolysate containing xylose reached 62.0 ± 0.6 g/L. The expression of 6-phosphofructokinase increased EG production with a maximum titer of 102.1 ± 1.8 mg/L, proving that the strain synthesized EG through xylulose-1-phosphate pathway. Addition of furfural or hydrolysate, and oxygen-limited environment were conducive to the EG accumulation. Further optimized strain accumulated EG up to 2586.4 ± 198.9 mg/L. This study provided the evidence of an all-natural metabolic pathway for EG synthesis in N. crassa and also demonstrated a new chassis cell for synthesis of xylitol and EG from xylose-rich hydrolysate.
Collapse
Affiliation(s)
- Caihong Ma
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Jiacheng Liang
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 Zhejiang, China
| | - Zi Wei Luo
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China; Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, 22 Xinong Road, Yangling 712100 Shaanxi, China.
| |
Collapse
|
2
|
Günal-Köroğlu D, Karabulut G, Ozkan G, Yılmaz H, Gültekin-Subaşı B, Capanoglu E. Allergenicity of Alternative Proteins: Reduction Mechanisms and Processing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7522-7546. [PMID: 40105205 PMCID: PMC11969658 DOI: 10.1021/acs.jafc.5c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The increasing popularity of alternative proteins has raised concerns about allergenic potential, especially for plant-, insect-, fungal-, and algae-based proteins. Allergies arise when the immune system misidentifies proteins as harmful, triggering IgE-mediated reactions that range from mild to severe. Main factors influencing allergenicity include protein structure, cross-reactivity, processing methods, and gut microbiota. Disruptions in gut health or microbiota balance heighten risks. Common allergens in legumes, cereals, nuts, oilseeds, single-cell proteins, and insect-based proteins are particularly challenging, as they often remain stable and resistant to heat and digestion despite various processing techniques. Processing methods, such as roasting, enzymatic hydrolysis, and fermentation, show promise in reducing allergenicity by altering protein structures and breaking down epitopes that trigger immune responses. Future research should focus on optimizing these methods to ensure that they effectively reduce allergenic risks while maintaining the nutritional quality and safety of alternative protein products.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Gulsah Karabulut
- Department
of Food Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Hilal Yılmaz
- Department
of Biotechnology, Faculty of Science, Bartın
University, 74100 Kutlubey Campus, Bartın, Türkiye
| | - Büşra Gültekin-Subaşı
- Center
for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| |
Collapse
|
3
|
Lee SY, Lee DY, Mariano E, Park J, Han D, Choi Y, Kim JS, Park JW, Namkung S, Venter C, Hur SJ. Cutting-Edge Technologies of Meat Analogs: A Review. Food Sci Anim Resour 2025; 45:223-242. [PMID: 39840249 PMCID: PMC11743842 DOI: 10.5851/kosfa.2024.e129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
This study was conducted to investigate the recent research trends of alternative protein foods being developed to replace traditional livestock foods and thus determine the current state of the technology and the potential for industrialization. The results of this study showed that the technology related to cultured meat has not yet reached industrialization. However, serum-free media development, technologies to improve culture efficiency, and technologies to improve taste and flavor are being researched. In addition, the research on improving the production efficiency of cultured meat is increasingly expanding from using muscle satellite cells obtained from animal muscles to research on cell lines or immortalized cell lines. Edible insect-derived proteins have a wide range of food applications, and researchers are actively working on utilizing their functional properties. Plant-derived protein materials are also being studied to improve the flavor and texture of plant-based meat products to make them more similar to traditional livestock foods, as well as to remove allergens. In conclusion, despite ongoing technological development, the industrialization of cultured meat is expected to take some time. There is a growing body of research on the types, functionalities, extraction, and texturizing technologies of plant-derived, mycoprotein, or insect-derived ingredients for formulating meat alternative products, and it is expected that improved products will continue to enter the market. Although animal product substitutes are not expected to significantly replace traditional livestock products, continuous improvement research will contribute to the expansion of the alternative protein food market.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Colin Venter
- Department Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Maini Rekdal V, Villalobos-Escobedo JM, Rodriguez-Valeron N, Olaizola Garcia M, Prado Vásquez D, Rosales A, Sörensen PM, Baidoo EEK, Calheiros de Carvalho A, Riley R, Lipzen A, He G, Yan M, Haridas S, Daum C, Yoshinaga Y, Ng V, Grigoriev IV, Munk R, Wijaya CH, Nuraida L, Damayanti I, Cruz-Morales P, Keasling JD. Neurospora intermedia from a traditional fermented food enables waste-to-food conversion. Nat Microbiol 2024; 9:2666-2683. [PMID: 39209985 PMCID: PMC11445060 DOI: 10.1038/s41564-024-01799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Fungal fermentation of food and agricultural by-products holds promise for improving food sustainability and security. However, the molecular basis of fungal waste-to-food upcycling remains poorly understood. Here we use a multi-omics approach to characterize oncom, a fermented food traditionally produced from soymilk by-products in Java, Indonesia. Metagenomic sequencing of samples from small-scale producers in Western Java indicated that the fungus Neurospora intermedia dominates oncom. Further transcriptomic, metabolomic and phylogenomic analysis revealed that oncom-derived N. intermedia utilizes pectin and cellulose degradation during fermentation and belongs to a genetically distinct subpopulation associated with human-generated by-products. Finally, we found that N. intermedia grew on diverse by-products such as fruit and vegetable pomace and plant-based milk waste, did not encode mycotoxins, and could create foods that were positively perceived by consumers outside Indonesia. These results showcase the traditional significance and future potential of fungal fermentation for creating delicious and nutritious foods from readily available by-products.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - José Manuel Villalobos-Escobedo
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Tecnológico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Nabila Rodriguez-Valeron
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Copenhagen, Denmark
- Basque Culinary Center, Mondragon Universitatea, Donostia, Gipuzkoa, Spain
| | | | - Diego Prado Vásquez
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Copenhagen, Denmark
| | - Alexander Rosales
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Pia M Sörensen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rasmus Munk
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Copenhagen, Denmark
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering, IPB University (Bogor Agricultural University), Dramaga, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering, IPB University (Bogor Agricultural University), Dramaga, Indonesia
| | - Isty Damayanti
- Department of Food Science and Technology, Faculty of Agricultural Engineering, IPB University (Bogor Agricultural University), Dramaga, Indonesia
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
- California Institute of Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Landeta-Salgado C, Salas-Wallach N, Munizaga J, González-Troncoso MP, Burgos-Díaz C, Araújo-Caldas L, Sartorelli P, Martínez I, Lienqueo ME. Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods 2024; 13:2376. [PMID: 39123566 PMCID: PMC11312218 DOI: 10.3390/foods13152376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach was employed to screen metabolites and annotate molecules with nutraceutical properties. Two products, each representing a distinct consortia of co-cultured fungi, named Myco 1 and Myco 2, were analysed in this study. These consortia demonstrated superior properties compared to those of Durvillaea spp., showing significant increases in total protein (~238%), amino acids (~219%), and β-D-glucans (~112%). The protein contains all essential amino acids, a low fatty acid content, and exhibits high antioxidant activity (21.5-25.5 µmol TE/g). Additionally, Myco 2 exhibited the highest anti-alpha-glucosidase activity (IC50 = 16.5 mg/mL), and Myco 1 exhibited notable anti-lipase activity (IC50 = 10.5 mg/mL). Among the 69 top differentially abundant metabolites screened, 8 nutraceutical compounds were present in relatively high concentrations among the identified mycoproteins. The proteins and polysaccharides in the mycoprotein may play a crucial role in the formation and stabilization of emulsions, identifying it as a potent bioemulsifier. In conclusion, the bioconversion of Durvillaea spp. results in a mycoprotein with high-quality protein, significant nutritional and functional value, and prebiotic and nutraceutical potential due to the production of unique bioactive compounds.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Nicolás Salas-Wallach
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile;
| | - Lhaís Araújo-Caldas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Patricia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Irene Martínez
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| |
Collapse
|
6
|
Zhang C, Wu X, Chen J, Zhou J. Novel fungal alternative proteins from Penicillium limosum for enhancing structural and functional properties of plant-based meat analogues. Food Chem 2024; 444:138627. [PMID: 38330605 DOI: 10.1016/j.foodchem.2024.138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Fungal proteins are excellent novel protein resources due to their high nutritional value and biological activity. In this study, a non-toxic strain of Penicillium limosum with a high biomass yield, protein, and essential amino acid contents, was isolated from wheat Qu (solid-state fermentation starter culture). Pea protein isolate (PPI) and P. limosum mycelial protein powder were extruded to prepare high-moisture meat analogues (HMMA), and their structural and functional properties were evaluated. Compared with 100% PPI, the addition of 5% mycoprotein enhanced the viscosity, gelling properties, chewiness, fibrous degree and in vitro protein digestibility (68.65%) of HMMA. Protein aggregates formed during high temperature extrusion, which increased the oil absorption capacity of HMMA (5% MY substitution). Conversely, their water absorption capacity indices were reduced by 5%. These findings provide a theoretical basis for the functional application of novel fungal alternative proteins.
Collapse
Affiliation(s)
- Changtai Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaohui Wu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Scaife K, Taylor SL, Pařenicová L, Goodman RE, Vo TD, Leune E, Abdelmoteleb M, Dommels Y. In silico evaluation of the potential allergenicity of a fungal biomass from Rhizomucor pusillus for use as a novel food ingredient. Regul Toxicol Pharmacol 2024; 150:105629. [PMID: 38657894 DOI: 10.1016/j.yrtph.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The world's hunger for novel food ingredients drives the development of safe, sustainable, and nutritious novel food products. For foods containing novel proteins, potential allergenicity of the proteins is a key safety consideration. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus. The annotated whole genome sequence of this strain was subjected to sequence homology searches against the AllergenOnline database (sliding 80-amino acid windows and full sequence searches). In a stepwise manner, proteins were designated as potentially allergenic and were further compared to proteins from commonly consumed foods and from humans. From the sliding 80-mer searches, 356 proteins met the conservative >35% Codex Alimentarius threshold, 72 of which shared ≥50% identity over the full sequence. Although matches were identified between R. pusillus proteins and proteins from allergenic food sources, the matches were limited to minor allergens from these sources, and they shared a greater degree of sequence homology with those from commonly consumed foods and human proteins. Based on the in silico analysis and a literature review for the source organism, the risk of allergenic cross-reactivity of R. pusillus is low.
Collapse
Affiliation(s)
- Kevin Scaife
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 201, Mississauga, ON, L5N 2X7, Canada.
| | - Steve L Taylor
- Taylor Consulting LLC, 941 Evergreen Drive, Lincoln, NE, 68510, USA
| | - Lucie Pařenicová
- The Protein Brewery B.V., Goeseelsstraat 10, 4817 MV, Breda, the Netherlands; BioXact B.V., Böttgerwater 44, 2497 ZJ, Den Haag, the Netherlands
| | - Richard E Goodman
- RE Goodman Consulting LLC, 8110 Dougan Circle, Lincoln, NE, 68516, USA
| | - Trung D Vo
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 201, Mississauga, ON, L5N 2X7, Canada
| | - Elisa Leune
- The Protein Brewery B.V., Goeseelsstraat 10, 4817 MV, Breda, the Netherlands
| | - Mohamed Abdelmoteleb
- Mohamed Abdelmoteleb, Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yvonne Dommels
- The Protein Brewery B.V., Goeseelsstraat 10, 4817 MV, Breda, the Netherlands
| |
Collapse
|
8
|
Lee D, Pan JH, Kim D, Heo W, Shin EC, Kim YJ, Shim YY, Reaney MJT, Ko SG, Hong SB, Cho HT, Kim TG, Lee K, Kim JK. Mycoproteins and their health-promoting properties: Fusarium species and beyond. Compr Rev Food Sci Food Saf 2024; 23:e13365. [PMID: 38767863 DOI: 10.1111/1541-4337.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.
Collapse
Affiliation(s)
- Daseul Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Tae Gyun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
10
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
11
|
Holt RR, Munafo JP, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A Nutrient-Dense Food To Help Address World Hunger, Promote Health, and Support a Regenerative Food System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2697-2707. [PMID: 38054424 PMCID: PMC10853969 DOI: 10.1021/acs.jafc.3c03307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
There is a need for transformational innovation within the existing food system to achieve United Nations Sustainable Development Goal 2 of ending hunger within a sustainable agricultural system by 2030. Mycelium, the vegetative growth form of filamentous fungi, may represent a convergence of several features crucial for the development of food products that are nutritious, desirable, scalable, affordable, and environmentally sustainable. Mycelium has gained interest as technology advances demonstrate its ability to provide scalable biomass for food production delivering good flavor and quality protein, fiber, and essential micronutrients urgently needed to improve public health. We review the potential of mycelium as an environmentally sustainable food to address malnutrition and undernutrition, driven by food insecurity and caloric dense diets with less than optimal macro- and micronutrient density.
Collapse
Affiliation(s)
- Roberta R. Holt
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - John P. Munafo
- Department
of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Julie Salmen
- Nutritious
Ideas, LLC, Saint John, Indiana 46373, United States
| | - Carl L. Keen
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Behroze S. Mistry
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Justin M. Whiteley
- Meati
Foods, 6880 Winchester
Cir Unit D, Boulder, Colorado 80301, United States
| | - Harold H. Schmitz
- March
Capital US, LLC, Davis, California 95616, United States
- T.O.P.,
LLC, Davis, California 95616, United States
- Graduate
School of Management, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Lee DY, Lee SY, Yun SH, Lee J, Mariano E, Park J, Choi Y, Han D, Kim JS, Hur SJ. Current Technologies and Future Perspective in Meat Analogs Made from Plant, Insect, and Mycoprotein Materials: A Review. Food Sci Anim Resour 2024; 44:1-18. [PMID: 38229865 PMCID: PMC10789558 DOI: 10.5851/kosfa.2023.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 01/18/2024] Open
Abstract
This study reviewed the current data presented in the literature on developing meat analogs using plant-, insect-, and protein-derived materials and presents a conclusion on future perspectives. As a result of this study, it was found that the current products developed using plant-, insect-, and mycoprotein-derived materials still did not provide the quality of traditional meat products. Plant-derived meat analogs have been shown to use soybean-derived materials and beta-glucan or gluten, while insect-derived materials have been studied by mixing them with plant-derived materials. It is reported that the development of meat analogs using mycoprotein is somewhat insufficient compared to other materials, and safety issues should also be considered. Growth in the meat analog market, which includes products made using plant-, insect-, and mycoprotein-derived materials is reliant upon further research being conducted, as well as increased efforts for it to coexist alongside the traditional livestock industry. Additionally, it will become necessary to clearly define legal standards for meat analogs, such as their classification, characteristics, and product-labeling methods.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
13
|
Li K, Qiao K, Xiong J, Guo H, Zhang Y. Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. Foods 2023; 12:4388. [PMID: 38137192 PMCID: PMC10742821 DOI: 10.3390/foods12244388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the preparation of bread, cheese, beer, and condiments to vegetarian meat products, fungi play a leading role in the food fermentation industry. With the shortage of global protein resources and the decrease in cultivated land, fungal protein has received much attention for its sustainability. Fungi are high in protein, rich in amino acids, low in fat, and almost cholesterol-free. These properties mean they could be used as a promising supplement for animal and plant proteins. The selection of strains and the fermentation process dominate the flavor and quality of fungal-protein-based products. In terms of function, fungal proteins exhibit better digestive properties, can regulate blood lipid and cholesterol levels, improve immunity, and promote gut health. However, consumer acceptance of fungal proteins is low due to their flavor and safety. Thus, this review puts forward prospects in terms of these issues.
Collapse
Affiliation(s)
- Ku Li
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jian Xiong
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Hui Guo
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|