1
|
Gao Y, Qu Q, Liu N, Sun M, Liu X, Cao Z, Dong J. Genome identification of the LRR-RLK gene family in maize (Zea mays) and expression analysis in response to Fusarium verticillioides infection. BMC PLANT BIOLOGY 2025; 25:524. [PMID: 40275175 PMCID: PMC12023693 DOI: 10.1186/s12870-025-06495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Plant leucine-rich repeat receptor-like kinases (LRR-RLKs) are a ubiquitous class of proteins in plants. These receptors are primarily responsible for recognizing pathogen-associated molecular patterns (PAMPs) and are crucial for regulating plant growth, development, and immune responses. Fusarium verticillioides, a significant maize pathogen, causes diseases such as ear rot and stalk rot. However, the expression patterns of LRR-RLK in maize following F. verticillioides infection remain unclear. RESULTS A total of 205 maize LRR-RLK gene family members from 15 subfamilies were identified. The gene structures, physicochemical properties, and conserved motifs of these LRR-RLKs were thoroughly analyzed. Co-expression analysis of the LRR-RLK genes suggested that the gene family may have expanded through gene duplication, with relatively high co-expression observed in closely related species. To explore their expression patterns, we conducted comprehensive tissue expression profiling, revealing significant variation in expression levels across different tissues. Using transcriptome sequencing, we obtained the expression profiles of LRR-RLK genes at different time points after F. verticillioides infection in maize. The expression levels of these genes exhibited significant changes following inoculation. Notably, genes such as Zm00001d027645, Zm00001d032116, Zm00001d032244, Zm00001d030323, Zm00001d031427, Zm00001d030981, Zm00001d031201, Zm00001d032344, and Zm00001d032745 showed marked alterations, indicating their potential involvement in resistance to F. verticillioides infection. CONCLUSIONS In this study, we systematically identified members of the LRR-RLK gene family in maize and characterized the biological information of selected family members. Additionally, our data revealed that certain LRR-RLK family members in maize responded to F. verticillioides infection, with their expression levels being significantly up-regulated.
Collapse
Affiliation(s)
- Yiao Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Qing Qu
- Hebei North University, Zhangjiakou, 075000, China
| | - Ning Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Xinfang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Dong Q, Ren H, Cai X, Zhang Y, Lu S, Liu D, Ateeq M, Chen L, Hu YG. Deciphering the regulatory network of lignocellulose biosynthesis in bread wheat through genome-wide association studies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:85. [PMID: 40148541 DOI: 10.1007/s00122-025-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
KEY MESSAGE This study identified 46 key QTL and 17 candidate genes and developed a KASP marker, providing valuable molecular tools for enhancing lignocellulose traits, lodging resistance, and bioenergy potential in wheat. Wheat lignocellulose, composed of lignin, cellulose, and hemicellulose, plays a crucial role in strengthening plant cell walls, enhancing lodging resistance, and contributing to bioenergy production. However, the genetic basis underlying the variation in lignocellulose content in wheat remains poorly understood. The stem lignin, cellulose, and hemicellulos contents in the second stem internode of a panel of 166 wheat accessions grown in three environments were measured, combined with the genotyping data with 660 K wheat SNP chip; a genome-wide association studies (GWAS) were conducted to identify loci associated with the lignocellulose content in wheat. Significant variations in lignin, cellulose, and hemicellulose contents were observed among the wheat accessions. GWAS identified 1146 significant SNPs associated with lignin, cellulose, and hemicellulose contents, distributed across the A, B, and D sub-genomes of wheat. Joint analysis of haplotype blocks refined these associations, identifying 46 significant quantitative trait loci (QTL) regions and 17 candidate genes, primarily linked to vascular development, hemicellulose synthesis, internode elongation regulation, and lignin biosynthesis. A KASP marker (NW_CC5951) for lignocellulose was developed. These findings provide valuable molecular markers for marker-assisted selection, supporting wheat breeding for improved stem quality and lodging resistance, and offer insights into balancing grain yield with lodging resistance and lignocellulosic energy production.
Collapse
Affiliation(s)
- Qingfeng Dong
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Ren
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefen Cai
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Dezheng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Ateeq
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
- Yangling Digital Agriculture Tech CO., LTD., Xi'an, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Ahmed RI, Ren A, Alshaya DS, Fiaz S, Kong Y, Liaqat S, Ali N, Saddique MAB, Attia KA, Taga MUH. Identification, charectrization and genetic transformation of lignin and pectin polysaccharides through CRISPR/Cas9 in Nicotiana tobacum. Funct Integr Genomics 2024; 24:188. [PMID: 39400746 DOI: 10.1007/s10142-024-01472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
CRISPR/Cas9 system has been successfully implemented in animals and plants is a second-generation genome editing tool. We are able to optimize a Cas9 system to edited Ntab06050 and Ntab0857410 genes in HD and K326 tobacco cultivars respectively. The gene Ntab06050 is related to lignin synthesis while the gene Ntab0857410 belongs to pectin synthesis by utilizing Agrobacterium-mediated leaf disc method. We have constructed total eight different constructs for the lignin related gene family CCoAMT, out of which three constructs have been selected from Ntab0184090, two constructs from Ntab0392460 while one construct from each Ntab0540120, Ntab0857410 and Ntab0135940 gene. To study the Cas9 system in pectin related genes, total five constructs have been utilized under Cas9 system and multiple target sites were selected by identifying PAM sequences. Out of which three constructs were targeted from NtabGAE1and NtabGAE6 homologous while two were targeted from NtabGAUT4 homologous. Where as, UDP-D-glucuronate 4-epimerase gene family is a Golgi localized, might have a role in the interconvertion of UDP-D-GlcA and UDP-D-GalA in pectin synthesis. We have succeeded in the mutation of pectin related NtabGAUT4 and lignin related NtabCCoAMT genes with 6.2% and 9.4% mutation frequency.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Regional Agricultural Research Institute, Bahawalpur, 63100, Pakistan
| | - Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, China
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266108, China
| | | | - Naushad Ali
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan
| | | | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Jiu S, Lv Z, Liu M, Xu Y, Chen B, Dong X, Zhang X, Cao J, Manzoor MA, Xia M, Li F, Li H, Chen L, Zhang X, Wang S, Dong Y, Zhang C. Haplotype-resolved genome assembly for tetraploid Chinese cherry ( Prunus pseudocerasus) offers insights into fruit firmness. HORTICULTURE RESEARCH 2024; 11:uhae142. [PMID: 38988622 PMCID: PMC11233885 DOI: 10.1093/hr/uhae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/11/2024] [Indexed: 07/12/2024]
Abstract
Chinese cherry (Prunus pseudocerasus) holds considerable importance as one of the primary stone fruit crops in China. However, artificially improving its traits and genetic analysis are challenging due to lack of high-quality genomic resources, which mainly result from difficulties associated with resolving its tetraploid and highly heterozygous genome. Herein, we assembled a chromosome-level, haplotype-resolved genome of the cultivar 'Zhuji Duanbing', comprising 993.69 Mb assembled into 32 pseudochromosomes using PacBio HiFi, Oxford Nanopore, and Hi-C. Intra-haplotype comparative analyses revealed extensive intra-genomic sequence and expression consistency. Phylogenetic and comparative genomic analyses demonstrated that P. pseudocerasus was a stable autotetraploid species, closely related to wild P. pusilliflora, with the two diverging ~18.34 million years ago. Similar to other Prunus species, P. pseudocerasus underwent a common whole-genome duplication event that occurred ~139.96 million years ago. Because of its low fruit firmness, P. pseudocerasus is unsuitable for long-distance transportation, thereby restricting its rapid development throughout China. At the ripe fruit stage, P. pseudocerasus cv. 'Zhuji Duanbing' was significantly less firm than P. avium cv. 'Heizhenzhu'. The difference in firmness is attributed to the degree of alteration in pectin, cellulose, and hemicellulose contents. In addition, comparative transcriptomic analyses identified GalAK-like and Stv1, two genes involved in pectin biosynthesis, which potentially caused the difference in firmness between 'Zhuji Duanbing' and 'Heizhenzhu'. Transient transformations of PpsGalAK-like and PpsStv1 increase protopectin content and thereby enhance fruit firmness. Our study lays a solid foundation for functional genomic studies and the enhancement of important horticultural traits in Chinese cherries.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Moyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baozheng Chen
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiao Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyu Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingxu Xia
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangdong Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Hongwen Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Lijuan Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Alzain AA. Insights from computational studies on the potential of natural compounds as inhibitors against SARS-CoV-2 spike omicron variant. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:953-968. [PMID: 36469669 DOI: 10.1080/1062936x.2022.2152486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a major global health emergency, with more than six million deaths worldwide. It is becoming increasingly challenging to treat COVID-19 due to the emergence of novel variants. The omicron variant is capable to evade defences and spread quickly. Among many validated COVID-19 targets, the spike (S) protein plays an important role in receptor recognition (via the S1 subunit) and membrane fusion (via the S2 subunit). The S protein is one of the vital targets for the development of drugs to combat this illness. In this research, we applied various computational methods such as molecular docking, molecular dynamics, MM-GBSA calculations, and ADMET prediction to identify potential natural products from Saudi medicinal plants against the spike omicron variant. As a result, three compounds (LTS0002490, LTS0117007, and LTS0217912) were identified with better binding affinity to the spike omicron variant compared to the reference compound (VE607). In addition, these compounds showed stable interactions with the target during molecular dynamics simulations for 140 ns. Last, these compounds have optimal ADMET properties. We suggest that these compounds may be considered promising hits to treat COVID-19 if experimentally validated.
Collapse
Affiliation(s)
- A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
6
|
Rodamilans B, Oliveros JC, San León D, Martínez-García PJ, Martínez-Gómez P, García JA, Rubio M. sRNA Analysis Evidenced the Involvement of Different Plant Viruses in the Activation of RNA Silencing-Related Genes and the Defensive Response Against Plum pox virus of 'GF305' Peach Grafted with 'Garrigues' Almond. PHYTOPATHOLOGY 2022; 112:2012-2021. [PMID: 35302895 DOI: 10.1094/phyto-01-22-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plum pox virus (PPV) causes sharka disease in Prunus trees. Peach (P. persica) trees are severely affected by PPV, and no definitive source of genetic resistance has been identified. However, previous results showed that PPV-resistant 'Garrigues' almond (P. dulcis) was able to transfer its resistance to 'GF305' peach through grafting, reducing symptoms and viral load in PPV-infected plants. A recent study tried to identify genes responsible for this effect by studying messenger RNA expression through RNA sequencing in peach and almond plants, before and after grafting and before and after PPV infection. In this work, we used the same peach and almond samples but focused the high-throughput analyses on small RNA (sRNA) expression. We studied massive sequencing data and found an interesting pattern of sRNA overexpression linked to antiviral defense genes that suggested activation of these genes followed by downregulation to basal levels. We also discovered that 'Garrigues' almond plants were infected by different plant viruses that were transferred to peach plants. The large amounts of viral sRNA found in grafted peaches indicated a strong RNA silencing antiviral response and led us to postulate that these plant viruses could be collaborating in the observed "Garrigues effect."
Collapse
Affiliation(s)
| | - Juan C Oliveros
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - David San León
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | | | | | - Juan A García
- Department of Plant Molecular Genetics, CNB-CSIC, 28049 Madrid, Spain
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, 30100 Murcia, Spain
| |
Collapse
|
7
|
Jiang X, Gong J, Zhang J, Zhang Z, Shi Y, Li J, Liu A, Gong W, Ge Q, Deng X, Fan S, Chen H, Kuang Z, Pan J, Che J, Zhang S, Jia T, Wei R, Chen Q, Wei S, Shang H, Yuan Y. Quantitative Trait Loci and Transcriptome Analysis Reveal Genetic Basis of Fiber Quality Traits in CCRI70 RIL Population of Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:753755. [PMID: 34975939 PMCID: PMC8716697 DOI: 10.3389/fpls.2021.753755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Upland cotton (Gossypium hirsutum) is widely planted around the world for its natural fiber, and producing high-quality fiber is essential for the textile industry. CCRI70 is a hybrid cotton plant harboring superior yield and fiber quality, whose recombinant inbred line (RIL) population was developed from two upland cotton varieties (sGK156 and 901-001) and were used here to investigate the source of high-quality related alleles. Based on the material of the whole population, a high-density genetic map was constructed using specific locus-amplified fragment sequencing (SLAF-seq). It contained 24,425 single nucleotide polymorphism (SNP) markers, spanning a distance of 4,850.47 centimorgans (cM) over 26 chromosomes with an average marker interval of 0.20 cM. In evaluating three fiber quality traits in nine environments to detect multiple environments stable quantitative trait loci (QTLs), we found 289 QTLs, of which 36 of them were stable QTLs and 18 were novel. Based on the transcriptome analysis for two parents and two RILs, 24,941 unique differentially expressed genes (DEGs) were identified, 473 of which were promising genes. For the fiber strength (FS) QTLs, 320 DEGs were identified, suggesting that pectin synthesis, phenylpropanoid biosynthesis, and plant hormone signaling pathways could influence FS, and several transcription factors may regulate fiber development, such as GAE6, C4H, OMT1, AFR18, EIN3, bZIP44, and GAI. Notably, the marker D13_56413025 in qFS-chr18-4 provides a potential basis for enhancing fiber quality of upland cotton via marker-assisted breeding and gene cloning of important fiber quality traits.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haodong Chen
- Cotton Sciences Research Institute of Hunan, National Hybrid Cotton Research Promotion Center, Changde, China
| | - Zhengcheng Kuang
- Cotton Sciences Research Institute of Hunan, National Hybrid Cotton Research Promotion Center, Changde, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jincan Che
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuya Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhui Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Zhou Y, Lu X, Chen L, Zhang P, Zhou J, Xiong Q, Shen Y, Tian W. Polysaccharides from Chrysanthemun indicum L. enhance the accumulation of polysaccharide and atractylenolide in Atractylodes macrocephala Koidz. Int J Biol Macromol 2021; 190:649-659. [PMID: 34517026 DOI: 10.1016/j.ijbiomac.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Atractylodes macrocephala Koidz. (AM), an herb of traditional Chinese medicine, is well-known for anti-oxidant, anti-tumor and immune regulation potential. However, it is low bioactive compound content that restricts the application of this species. Elicitation is considered as an effective method to enhance biomass and bioactive compound in plants. Our precious study found that polysaccharide of Chrysanthemun indicum L. could promote plant growth by triggering plant defense. In the present study, polysaccharide of Chrysanthemun indicum L. is used to stimulate the accumulation of biomass and bioactive compound with different concentration in Atractylodes macrocephala Koidz. during pot, plot and field experiments. The results suggested that polysaccharide of Chrysanthemun indicum L. could significantly enhance the accumulation of biomass, atractylenolides and polysacchrides. Moreover, 2 mg/mL is determined and verified to be the appropriate concentration during field experiments. In addition, RT-qPCR revealed that CIP-induced terpenoid synthesis in AM mainly depended on mevalonate (MVA) pathway. This is the first report on the discovery of polysaccharide of Chrysanthemun indicum L. for the enhanced accumulation of biaomass and bioactive compound and the use of its for agricultural production.
Collapse
Affiliation(s)
- Yulei Zhou
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiaofang Lu
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Lei Chen
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Peifeng Zhang
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Jingqi Zhou
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Qianwen Xiong
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yirui Shen
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Wei Tian
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
9
|
Medina-Puche L, Martínez-Rivas FJ, Molina-Hidalgo FJ, García-Gago JA, Mercado JA, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. Ectopic expression of the atypical HLH FaPRE1 gene determines changes in cell size and morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110830. [PMID: 33691964 DOI: 10.1016/j.plantsci.2021.110830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 05/22/2023]
Abstract
PACLOBUTRAZOL RESISTANCE (PRE) genes code atypical HLH transcriptional regulators characterized by the absence of a DNA-binding domain but present an HLH dimerization domain. In vegetative tissues, the function of these HLH proteins has been related with cell elongation processes. In strawberry, three FaPRE genes are expressed, two of them (FaPRE2 and FaPRE3) in vegetative tissues while FaPRE1 is fruit receptacle-specific. Ubiquitous FaPRE1 accumulation produced elongated flower receptacles and plants due to the elongation of the main aerial vegetative organs, with the exception of leaves. Histological analysis clearly demonstrated that the observed phenotype was due to significant changes in the parenchymal cell's morphology. In addition, transcriptomic studies of the transgenic elongated flower receptacles allowed to identify a small group of differentially expressed genes that encode cell wall-modifying enzymes. Together, the data seem to indicate that, in the strawberry plant vegetative organs, FaPRE proteins could modulate the expression of genes related with the determination of the size and shape of the parenchymal cells.
Collapse
Affiliation(s)
- L Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - F J Martínez-Rivas
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - F J Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - J A García-Gago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain.
| | - J A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain.
| | - J L Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - J Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| | - R Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
10
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|
11
|
Ahmed RI, Ren A, Yang D, Ding A, Kong Y. Identification and characterization of pectin related gene NbGAE6 through virus-induced gene silencing in Nicotiana benthamiana. Gene 2020; 741:144522. [PMID: 32145329 DOI: 10.1016/j.gene.2020.144522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Virus-induced gene silencing (VIGS) is a transient based reverse genetic tool used to elucidate the function of novel gene in N. benthamiana. In current study, 14 UDP-D-glucuronate 4-epimerase (GAE) family members were identified and their gene structure, phylogeny and expression pattern were analyzed. VIGS system was optimized for the functional characterization of NbGAE6 homologous genes in N. benthamiana. Whilst the GAE family is well-known for the interconversion of UDP-D-GlcA and UDP-D-GalA during pectin synthesis. Our results revealed that the downregulation of these genes significantly reduced the amount of GalA in the homogalacturunan which is the major component of pectin found in primary cell wall. Biphenyl assay and high performance liquid chromatography analysis (HPLC) depicted that the level of 'GalA' monosaccharide reduced to 40-51% in VIGS plants as compared to the wild type plants. Moreover, qRT-PCR also confirmed the downregulation of the NbGAE6 mRNA in VIGS plants. In all, this is the first comprehensive study of the optimization of VIGS system for the provision of rapid silencing of GAE family members in N. benthamiana, eliminating the need of stable transformants.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Dahai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao 266108, China.
| |
Collapse
|
12
|
López-Hernández F, Cortés AJ. Last-Generation Genome-Environment Associations Reveal the Genetic Basis of Heat Tolerance in Common Bean ( Phaseolus vulgaris L.). Front Genet 2019; 10:954. [PMID: 31824551 PMCID: PMC6883007 DOI: 10.3389/fgene.2019.00954] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Abstract
Genome-environment associations (GEAs) are a powerful strategy for the study of adaptive traits in wild plant populations, yet they still lack behind in the use of modern statistical methods as the ones suggested for genome-wide association studies (GWASs). In order to bridge this gap, we couple GEA with last-generation GWAS algorithms in common bean to identify novel sources of heat tolerance across naturally heterogeneous ecosystems. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption, and breeding it for resistance to heat stress is key because annual increases in atmospheric temperature are causing decreases in yield of up to 9% for every 1°C. A total of 78 geo-referenced wild accessions, spanning the two gene pools of common bean, were genotyped by sequencing (GBS), leading to the discovery of 23,373 single-nucleotide polymorphism (SNP) markers. Three indices of heat stress were developed for each accession and inputted in last-generation algorithms (i.e. SUPER, FarmCPU, and BLINK) to identify putative associated loci with the environmental heterogeneity in heat stress. Best-fit models revealed 120 significantly associated alleles distributed in all 11 common bean chromosomes. Flanking candidate genes were identified using 1-kb genomic windows centered in each associated SNP marker. Some of these genes were directly linked to heat-responsive pathways, such as the activation of heat shock proteins (MED23, MED25, HSFB1, HSP40, and HSP20). We also found protein domains related to thermostability in plants such as S1 and Zinc finger A20 and AN1. Other genes were related to biological processes that may correlate with plant tolerance to high temperature, such as time to flowering (MED25, MBD9, and PAP), germination and seedling development (Pkinase_Tyr, Ankyrin-B, and Family Glicosil-hydrolase), cell wall stability (GAE6), and signaling pathway of abiotic stress via abscisic acid (histone-like transcription factors NFYB and phospholipase C) and auxin (Auxin response factor and AUX_IAA). This work offers putative associated loci for marker-assisted and genomic selection for heat tolerance in common bean. It also demonstrates that it is feasible to identify genome-wide environmental associations with modest sample sizes by using a combination of various carefully chosen environmental indices and last-generation GWAS algorithms.
Collapse
Affiliation(s)
- Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia) - CI La Selva, Rionegro, Colombia
- Facultad de Ciencias – Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia) - CI La Selva, Rionegro, Colombia
- Facultad de Ciencias Agrarias - Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| |
Collapse
|
13
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Keller M, Simm S. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genomics 2018; 19:447. [PMID: 29884134 PMCID: PMC5994098 DOI: 10.1186/s12864-018-4824-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pollen development is central for plant reproduction and is assisted by changes of the transcriptome and proteome. At the same time, pollen development and viability is largely sensitive to stress, particularly to elevated temperatures. The transcriptomic and proteomic changes during pollen development and of different stages in response to elevated temperature was targeted to define the underlying molecular principles. RESULTS The analysis of the transcriptome and proteome of Solanum lycopersicum pollen at tetrad, post-meiotic and mature stage before and after heat stress yielded a decline of the transcriptome but an increase of the proteome size throughout pollen development. Comparison of the transcriptome and proteome led to the discovery of two modes defined as direct and delayed translation. Here, genes of distinct functional processes are under the control of direct and delayed translation. The response of pollen to elevated temperature occurs rather at proteome, but not as drastic at the transcriptome level. Heat shock proteins, proteasome subunits, ribosomal proteins and eukaryotic initiation factors are most affected. On the example of heat shock proteins we demonstrate a decoupling of transcript and protein levels as well as a distinct regulation between the developmental stages. CONCLUSIONS The transcriptome and proteome of developing pollen undergo drastic changes in composition and quantity. Changes at the proteome level are a result of two modes assigned as direct and delayed translation. The response of pollen to elevated temperature is mainly regulated at the proteome level, whereby proteins related to synthesis and degradation of proteins are most responsive and might play a central role in the heat stress response of pollen.
Collapse
Affiliation(s)
- Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Ding X, Li J, Pan Y, Zhang Y, Ni L, Wang Y, Zhang X. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato. Int J Mol Sci 2018; 19:ijms19061583. [PMID: 29861481 PMCID: PMC6032376 DOI: 10.3390/ijms19061583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into seven groups, designated UGlcAE1 to UGlcAE6, of which the UGlcAE2 were classified into two groups. Expression profile analysis revealed that the SlUGlcAE genes display diverse expression patterns in various tomato tissues. Selective pressure analysis indicated that all of the amino acid sites of SlUGlcAE proteins are undergoing purifying selection. Fifteen stress-, hormone-, and development-related elements were identified in the upstream regions (0.5 kb) of these SlUGlcAE genes. Furthermore, we investigated the expression patterns of SlUGlcAE genes in response to three hormones (indole-3-acetic acid (IAA), gibberellin (GA), and salicylic acid (SA)). We detected firmness, pectin contents, and expression levels of UGlcAE family genes during the development of tomato fruit. Here, we systematically summarize the general characteristics of the SlUGlcAE genes in tomato, which could provide a basis for further function studies of tomato UGlcAE genes.
Collapse
Affiliation(s)
- Xing Ding
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yue Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Lei Ni
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yaling Wang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions (Chinese Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Saffer AM, Irish VF. Flavonol rhamnosylation indirectly modifies the cell wall defects of RHAMNOSE BIOSYNTHESIS1 mutants by altering rhamnose flux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:649-660. [PMID: 29505161 DOI: 10.1111/tpj.13885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP-l-rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left-handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol-independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose-containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP-l-rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose-containing cell wall polysaccharides in the morphogenesis of epidermal cells.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT, 06520-8104, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT, 06520-8104, USA
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06520-8016, USA
| |
Collapse
|
17
|
Yu X, Torzewska A, Zhang X, Yin Z, Drzewiecka D, Cao H, Liu B, Knirel YA, Rozalski A, Wang L. Genetic diversity of the O antigens of Proteus species and the development of a suspension array for molecular serotyping. PLoS One 2017; 12:e0183267. [PMID: 28817637 PMCID: PMC5560731 DOI: 10.1371/journal.pone.0183267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Proteus species are well-known opportunistic pathogens frequently associated with skin wound and urinary tract infections in humans and animals. O antigen diversity is important for bacteria to adapt to different hosts and environments, and has been used to identify serotypes of Proteus isolates. At present, 80 Proteus O-serotypes have been reported. Although the O antigen structures of most Proteus serotypes have been identified, the genetic features of these O antigens have not been well characterized. The O antigen gene clusters of Proteus species are located between the cpxA and secB genes. In this study, we identified 55 O antigen gene clusters of different Proteus serotypes. All clusters contain both the wzx and wzy genes and exhibit a high degree of heterogeneity. Potential functions of O antigen-related genes were proposed based on their similarity to genes in available databases. The O antigen gene clusters and structures were compared, and a number of glycosyltransferases were assigned to glycosidic linkages. In addition, an O serotype-specific suspension array was developed for detecting 31 Proteus serotypes frequently isolated from clinical specimens. To our knowledge, this is the first comprehensive report to describe the genetic features of Proteus O antigens and to develop a molecular technique to identify different Proteus serotypes.
Collapse
Affiliation(s)
- Xiang Yu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Agnieszka Torzewska
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Xinjie Zhang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Dominika Drzewiecka
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Hengchun Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
18
|
cDNA Isolation and Functional Characterization of UDP-d-glucuronic Acid 4-Epimerase Family from Ornithogalum caudatum. Molecules 2016; 21:molecules21111505. [PMID: 27834878 PMCID: PMC6273887 DOI: 10.3390/molecules21111505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 11/16/2022] Open
Abstract
d-Galacturonic acid (GalA) is an important component of GalA-containing polysaccharides in Ornithogalum caudatum. The incorporation of GalA into these polysaccharides from UDP-d-galacturonic acid (UDP-GalA) was reasonably known. However, the cDNAs involved in the biosynthesis of UDP-GalA were still unknown. In the present investigation, one candidate UDP-d-glucuronic acid 4-epimerase (UGlcAE) family with three members was isolated from O. caudatum based on RNA-Seq data. Bioinformatics analyses indicated all of the three isoforms, designated as OcUGlcAE1~3, were members of short-chain dehydrogenases/reductases (SDRs) and shared two conserved motifs. The three full-length cDNAs were then transformed to Pichia pastoris GS115 for heterologous expression. Data revealed both the supernatant and microsomal fractions from the recombinant P. pastoris expressing OcUGlcAE3 can interconvert UDP-GalA and UDP-d-glucuronic acid (UDP-GlcA), while the other two OcUGlcAEs had no activity on UDP-GlcA and UDP-GalA. Furthermore, expression analyses of the three epimerases in varied tissues of O. caudatum were performed by real-time quantitative PCR (RT-qPCR). Results indicated OcUGlcAE3, together with the other two OcUGlcAE-like genes, was root-specific, displaying highest expression in roots. OcUGlcAE3 was UDP-d-glucuronic acid 4-epimerase and thus deemed to be involved in the biosynthesis of root polysaccharides. Moreover, OcUGlcAE3 was proposed to be environmentally induced.
Collapse
|
19
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
20
|
Ruggieri V, Bostan H, Barone A, Frusciante L, Chiusano ML. Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato. PLANT MOLECULAR BIOLOGY 2016; 91:397-412. [PMID: 27007138 DOI: 10.1007/s11103-016-0469-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Ascorbic acid is involved in a plethora of reactions in both plant and animal metabolism. It plays an essential role neutralizing free radicals and acting as enzyme co-factor in several reaction. Since humans are ascorbate auxotrophs, enhancing the nutritional quality of a widely consumed vegetable like tomato is a desirable goal. Although the main reactions of the ascorbate biosynthesis, recycling and translocation pathways have been characterized, the assignment of tomato genes to each enzymatic step of the entire network has never been reported to date. By integrating bioinformatics approaches, omics resources and transcriptome collections today available for tomato, this study provides an overview on the architecture of the ascorbate pathway. In particular, 237 tomato loci were associated with the different enzymatic steps of the network, establishing the first comprehensive reference collection of candidate genes based on the recently released tomato gene annotation. The co-expression analyses performed by using RNA-Seq data supported the functional investigation of main expression patterns for the candidate genes and highlighted a coordinated spatial-temporal regulation of genes of the different pathways across tissues and developmental stages. Taken together these results provide evidence of a complex interplaying mechanism and highlight the pivotal role of functional related genes. The definition of genes contributing to alternative pathways and their expression profiles corroborates previous hypothesis on mechanisms of accumulation of ascorbate in the later stages of fruit ripening. Results and evidences here provided may facilitate the development of novel strategies for biofortification of tomato fruit with Vitamin C and offer an example framework for similar studies concerning other metabolic pathways and species.
Collapse
Affiliation(s)
- Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| |
Collapse
|
21
|
|
22
|
Poulsen CP, Dilokpimol A, Geshi N. Arabinogalactan biosynthesis: Implication of AtGALT29A enzyme activity regulated by phosphorylation and co-localized enzymes for nucleotide sugar metabolism in the compartments outside of the Golgi apparatus. PLANT SIGNALING & BEHAVIOR 2015; 10:e984524. [PMID: 25723364 PMCID: PMC4622509 DOI: 10.4161/15592324.2014.984524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 05/27/2023]
Abstract
Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize not only to the Golgi cisternae but also to smaller compartments, which may be a part of the unconventional protein secretory pathway in plants. In Poulsen et al., (1) we have demonstrated increased targeting of AtGALT29A to small compartments when Y144 is substituted with another amino acid, and we implicated a role for Y144 in the subcellular targeting of AtGALT29A. In this paper, we are presenting another aspect of Y144 substitution in AtGALT29A; namely, Y144A construct demonstrated a 2.5-fold increase while Y144E construct demonstrated a 2-fold decrease in the galactosyltransferase activity of AtGALT29A. Therefore, the electrostatic status of Y144, which is regulated by an unknown kinase/phosphatase system, may regulate AtGALT29A enzyme activity. Moreover, we have identified additional proteins, apyrase 3 (APY3; At1g14240) and UDP-glucuronate epimerases 1 and 6 (GAE1, At4g30440; GAE6, At3g23820), from Arabidopsis thaliana that co-localize with AtGALT31A in the small compartments when expressed transiently in Nicotiana benthamiana. These proteins may play roles in nucleotide sugar metabolism in the small compartments together with arabinogalactan glycosyltransferases.
Collapse
Affiliation(s)
- Christian Peter Poulsen
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C, Denmark
| | - Adiphol Dilokpimol
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C, Denmark
- Present address: Fungal Physiology; CBS-KNAW Fungal Biodiversity Center; Utrecht CT, The Netherlands
| | - Naomi Geshi
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C, Denmark
| |
Collapse
|
23
|
Janská A, Aprile A, Cattivelli L, Zámečník J, de Bellis L, Ovesná J. The up-regulation of elongation factors in the barley leaf and the down-regulation of nucleosome assembly genes in the crown are both associated with the expression of frost tolerance. Funct Integr Genomics 2014; 14:493-506. [PMID: 24838952 DOI: 10.1007/s10142-014-0377-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
We report a series of microarray-based leaf and crown transcriptome comparisons involving three barley cultivars (cvs. Luxor, Igri and Atlas 68) which express differing degrees of frost tolerance. The transcripts were obtained following the exposure of seedlings to low (above and below zero) temperatures, aiming to identify those genes and signalling/metabolic pathways which are associated with frost tolerance. Both the leaves and the crowns responded to low temperature by the up-regulation of a suite of abscisic acid (ABA)-responsive genes, most of which have already been recognized as components of the plant low temperature response. The inter-cultivar comparison indicated that genes involved in maintaining the leaf's capacity to synthesize protein and to retain chloroplast activity were important for the expression of frost tolerance. In the crown, the repression of genes associated with nucleosome assembly and transposon regulation were the most relevant transcriptional changes associated with frost tolerance, highlighting the role of gene repression in the cold acclimation response.
Collapse
Affiliation(s)
- Anna Janská
- Department of Molecular Biology, Crop Research Institute, v.v.i., Drnovská 507, 161 06, Prague 6, Czech Republic,
| | | | | | | | | | | |
Collapse
|
24
|
Caldeira CF, Bosio M, Parent B, Jeanguenin L, Chaumont F, Tardieu F. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. PLANT PHYSIOLOGY 2014; 164:1718-30. [PMID: 24420931 PMCID: PMC3982736 DOI: 10.1104/pp.113.228379] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 05/03/2023]
Abstract
Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture.
Collapse
Affiliation(s)
- Cecilio F. Caldeira
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Mickael Bosio
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Boris Parent
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - Linda Jeanguenin
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | - François Chaumont
- INRA, Unité Mixte de Recherche 759 Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, F–34060 Montpellier, France (C.F.C., B.P., F.T.)
- Biogemma, 63028 Clermont-Ferrand cedex 2, France (M.B.); and
- Institut des Sciences de la Vie, Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium (L.J., F.C.)
| | | |
Collapse
|
25
|
Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6237-51. [PMID: 23105132 PMCID: PMC3481215 DOI: 10.1093/jxb/ers279] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome.
Collapse
Affiliation(s)
- Maria Cristina Palmieri
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Michele Perazzolli
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
- * To whom correspondence should be addressed. E-mail:
| | - Vittoria Matafora
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy
| | - Marco Moretto
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| | - Angela Bachi
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milano, Italy
| | - Ilaria Pertot
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Trento, Italy
| |
Collapse
|
26
|
Molecular and genetic analyses of the putative Proteus O antigen gene locus. Appl Environ Microbiol 2010; 76:5471-8. [PMID: 20581173 DOI: 10.1128/aem.02946-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus species are well-characterized opportunistic pathogens primarily associated with urinary tract infections (UTI) of humans. The Proteus O antigen is one of the most variable constituents of the cell surface, and O antigen heterogeneity is used for serological classification of Proteus isolates. Even though most Proteus O antigen structures have been identified, the O antigen locus has not been well characterized. In this study, we identified the putative Proteus O antigen locus and demonstrated this region's high degree of heterogeneity by comparing sequences of 40 Proteus isolates using PCR-restriction fragment length polymorphism (RFLP). This analysis identified five putative Proteus O antigen gene clusters, and the probable functions of these O antigen-related genes were proposed, based on their similarity to genes in the available databases. Finally, Proteus-specific genes from these five serogroups were identified by screening 79 strains belonging to the 68 Proteus O antigen serogroups. To our knowledge, this is the first molecular characterization of the putative Proteus O antigen locus, and we describe a novel molecular classification method for the identification of different Proteus serogroups.
Collapse
|
27
|
Pieslinger AM, Hoepflinger MC, Tenhaken R. Cloning of Glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars. J Biol Chem 2009; 285:2902-10. [PMID: 19951951 PMCID: PMC2823444 DOI: 10.1074/jbc.m109.069369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleotide sugars are building blocks for carbohydrate polymers in plant cell walls. They are synthesized from sugar-1-phosphates or epimerized as nucleotide sugars. The main precursor for primary cell walls is UDP-glucuronic acid, which can be synthesized via two independent pathways. One starts with the ring cleavage of myo-inositol into glucuronic acid, which requires a glucuronokinase and a pyrophosphorylase for activation into UDP-glucuronate. Here we report on the purification of glucuronokinase from Lilium pollen. A 40-kDa protein was purified combining six chromatographic steps and peptides were de novo sequenced. This allowed the cloning of the gene from Arabidopsis thaliana and the expression of the recombinant protein in Escherichia coli for biochemical characterization. Glucuronokinase is a novel member of the GHMP-kinase superfamily having an unique substrate specificity for d-glucuronic acid with a Km of 0.7 mm. It requires ATP as phosphate donor (Km 0.56 mm). In Arabidopsis, the gene is expressed in all plant tissues with a preference for pollen. Genes for glucuronokinase are present in (all) plants, some algae, and a few bacteria as well as in some lower animals.
Collapse
Affiliation(s)
- Anja Maria Pieslinger
- Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | |
Collapse
|
28
|
Penning BW, Hunter CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC. Genetic resources for maize cell wall biology. PLANT PHYSIOLOGY 2009; 151:1703-28. [PMID: 19926802 PMCID: PMC2785990 DOI: 10.1104/pp.109.136804] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.
Collapse
|
29
|
Gu X, Wages CJ, Davis KE, Guyett PJ, Bar-Peled M. Enzymatic characterization and comparison of various poaceae UDP-GlcA 4-epimerase isoforms. J Biochem 2009; 146:527-34. [PMID: 19564155 DOI: 10.1093/jb/mvp099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UDP-alpha-D-galacturonic acid (UDP-GalA) is a key precursor for the synthesis of various bacterial and plant polysaccharides. UDP-glucuronic acid 4-epimerase (UGlcAE) catalyses the reversible conversion of UDP-alpha-D-glucuronic acid to UDP-GalA. UGlcAEs isolated from bacterial species have different biochemical properties when compared with the isoenzymes from the plant dicot species, Arabidopsis. However, little is known about the specificity of UGlcAE in Poaceae species. Therefore, we cloned and expressed in Escherichia coli several maize and rice UGlcAE genes, and compared their enzymatic properties with dicot homologs from Arabidopsis. Our data show that UGlcAE isoforms in different plant species have different enzymatic properties. For example, the Poaceae UGlcAE enzymes from rice and maize have significantly lower K(i) for UDP-xylose when compared with the Arabidopsis enzymes. The epimerases from different plant species are very specific and unlike their bacterial homolog in Klebsiella pneumoniae, can only use UDP-GlcA or UDP-GalA as their substrate. This study demonstrates that although members of the plant UGlcAE isoforms are highly conserved, the in vitro enzymatic activity of specific Poaceae isoform(s) may be regulated differently by specific nucleotide or nucleotide sugar.
Collapse
Affiliation(s)
- Xiaogang Gu
- Department of Plant Biology, University of Georgia, Athens, GA 30602-4712, USA
| | | | | | | | | |
Collapse
|
30
|
Yang T, Bar-Peled L, Gebhart L, Lee SG, Bar-Peled M. Identification of galacturonic acid-1-phosphate kinase, a new member of the GHMP kinase superfamily in plants, and comparison with galactose-1-phosphate kinase. J Biol Chem 2009; 284:21526-35. [PMID: 19509290 DOI: 10.1074/jbc.m109.014761] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The process of salvaging sugars released from extracellular matrix, during plant cell growth and development, is not well understood, and many molecular components remain to be identified. Here we identify and functionally characterize a unique Arabidopsis gene encoding an alpha-d-galacturonic acid-1-phosphate kinase (GalAK) and compare it with galactokinase. The GalAK gene appeared to be expressed in all tissues implicating that glycose salvage is a common catabolic pathway. GalAK catalyzes the ATP-dependent conversion of alpha-d-galacturonic acid (d-GalA) to alpha-d-galacturonic acid-1-phosphate (GalA-1-P). This sugar phosphate is then converted to UDP-GalA by a UDP-sugar pyrophosphorylase as determined by a real-time (1)H NMR-based assay. GalAK is a distinct member of the GHMP kinase family that includes galactokinase (G), homoserine kinase (H), mevalonate kinase (M), and phosphomevalonate kinase (P). Although these kinases have conserved motifs for sugar binding, nucleotide binding, and catalysis, they do have subtle difference. For example, GalAK has an additional domain near the sugar-binding motif. Using site-directed mutagenesis we established that mutation in A368S reduces phosphorylation activity by 40%; A41E mutation completely abolishes GalAK activity; Y250F alters sugar specificity and allows phosphorylation of d-glucuronic acid, the 4-epimer of GalA. Unlike many plant genes that undergo duplication, GalAK occurs as a single copy gene in vascular plants. We suggest that GalAK generates GalA-1-P from the salvaged GalA that is released during growth-dependent cell wall restructuring, or from storage tissue. The GalA-1-P itself is then available for use in the formation of UDP-GalA required for glycan synthesis.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, and Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
31
|
Arsovski AA, Villota MM, Rowland O, Subramaniam R, Western TL. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2601-12. [PMID: 19401413 PMCID: PMC2692007 DOI: 10.1093/jxb/erp102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.
Collapse
Affiliation(s)
| | - Maria M. Villota
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Tamara L. Western
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
32
|
Egelund J, Obel N, Ulvskov P, Geshi N, Pauly M, Bacic A, Petersen BL. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. PLANT MOLECULAR BIOLOGY 2007; 64:439-51. [PMID: 17401635 DOI: 10.1007/s11103-007-9162-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas reinhardtii. The expression pattern of the two genes was analyzed by semi-quantitative RT-PCR using mRNA extracted from various organs of bolting Arabidopsis thaliana plants. In addition, promoter::gusA analysis of transgenic Arabidopsis thaliana containing a fusion between either the RRA-1 or -2 promoter fragment and the gusA reporter gene showed that whereas the RRA1 promoter was primarily active in the apical meristem, the expression pattern of the RRA2 promoter was more diverse but also highly active in the meristematic region. In addition, T-DNA mutant insertion lines of both RRA-1 and -2, were identified and characterized at the molecular and biochemical level. Monosaccharide compositional analyses of cell wall material isolated from the meristematic region showed a ca. 20% reduction in the arabinose content in the insoluble/undigested cell wall residue after enzymatic removal of xyloglucan and pectic polysaccharides. These data indicate that both RRA-1 and -2 play a role in the arabinosylation of cell wall component(s).
Collapse
Affiliation(s)
- Jack Egelund
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus and Center for Molecular Plant Physiol (PlaCe), Thorvaldsensvej 40. 8. 2, 1871, Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ. UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana. THE PLANT CELL 2007; 19:1565-79. [PMID: 17496119 PMCID: PMC1913733 DOI: 10.1105/tpc.106.049619] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 05/15/2023]
Abstract
Five Arabidopsis thaliana genes that encode UDP-glucose 4-epimerase (UGE) and represent two ancient plant UGE clades might be involved in the regulation of cell wall carbohydrate biosynthesis. We tested this hypothesis in a genome-wide reverse genetic study. Despite significant contributions of each gene to total UGE activity, none was essential for normal growth on soil. uge2 uge4 displayed dramatic general growth defects, while other mutant combinations were partially aberrant. UGE2 together with UGE3 influenced pollen development. UGE2 and UGE4 synergistically influenced cell wall galactose content, which was correlated with shoot growth. UGE2 strongly and UGE1 and UGE5 lightly supported UGE4 in influencing root growth and cell wall galactose content by affecting galactan content. By contrast, only UGE4 influenced xyloglucan galactosylation in roots. Secondary hypocotyl thickening and arabinogalactan protein carbohydrate structure in xylem parenchyma depended on the combination of UGE2 and UGE4. As opposed to cell wall galactose content, tolerance to external galactose strictly paralleled total UGE activity. We suggest a gradual recruitment of individual UGE isoforms into specific roles. UGE2 and UGE4 influence growth and cell wall carbohydrate biosynthesis throughout the plant, UGE3 is specialized for pollen development, and UGE1 and UGE5 might act in stress situations.
Collapse
Affiliation(s)
- Johannes Rösti
- Department of Cell and Developmental Biology, John Ines Centre, NR4 7UH Norwich, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Oka T, Nemoto T, Jigami Y. Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J Biol Chem 2006; 282:5389-403. [PMID: 17190829 DOI: 10.1074/jbc.m610196200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on rhamnogalacturonan-I-directed development in Arabidopsis thaliana. RHM2/MUM4-related genes, RHM1 and RHM3, can be found in the A. thaliana genome. Here we present direct evidence that all three RHM proteins have UDP-D-glucose 4,6-dehydratase, UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, and UDP-4-keto-L-rhamnose 4-keto-reductase activities in the cytoplasm when expressed in the yeast Saccharomyces cerevisiae. Functional domain analysis revealed that the N-terminal region of RHM2 (RHM2-N; amino acids 1-370) has the first activity and the C-terminal region of RHM2 (RHM2-C; amino acids 371-667) has the two following activities. This suggests that RHM2 converts UDP-d-glucose to UDP-L-rhamnose via an UDP-4-keto-6-deoxy-D-glucose intermediate. Site-directed mutagenesis of RHM2 revealed that mucilage defects in MUM4-1 and MUM4-2 mutant seeds of A. thaliana are caused by abolishment of RHM2 enzymatic activity in the mutant strains and furthermore, that the GXXGXX(G/A) and YXXXK motifs are important for enzymatic activity. Moreover, a kinetic analysis of purified His(6)-tagged RHM2-N protein revealed 5.9-fold higher affinity of RHM2 for UDP-D-glucose than for dTDP-D-glucose, the preferred substrate for dTDP-D-glucose 4,6-dehydratase from bacteria. RHM2-N activity is strongly inhibited by UDP-L-rhamnose, UDP-D-xylose, and UDP but not by other sugar nucleotides, suggesting that RHM2 maintains cytoplasmic levels of UDP-D-glucose and UDP-L-rhamnose via feedback inhibition by UDP-L-rhamnose and UDP-D-xylose.
Collapse
Affiliation(s)
- Takuji Oka
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
35
|
Barber C, Rösti J, Rawat A, Findlay K, Roberts K, Seifert GJ. Distinct Properties of the Five UDP-d-glucose/UDP-d-galactose 4-Epimerase Isoforms of Arabidopsis thaliana. J Biol Chem 2006; 281:17276-17285. [PMID: 16644739 DOI: 10.1074/jbc.m512727200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant genomes contain genetically encoded isoforms of most nucleotide sugar interconversion enzymes. Here we show that Arabidopsis thaliana has five genes encoding functional UDP-D-glucose/UDP-D-galactose 4-epimerase (named UGE1 to UGE5). All A. thaliana UDP-d-glucose 4-epimerase isoforms are dimeric in solution, maximally active in vitro at 30-40 degrees C, and show good activity between pH 7 and pH 9. In vitro, UGE1, -3, and -5 act independently of externally added NAD+, whereas cofactor addition stimulates the activity of UGE2 and is particularly important for UGE4 activity. UGE1 and UGE3 are most efficiently inhibited by UDP. The five isoforms display kcatUDP-Gal values between 23 and 128 s(-1) and KmUDP-Gal values between 0.1 and 0.3 mm. This results in enzymatic efficiencies ranging between 97 and 890 mm(-1) s(-1) for UGE4 = UGE1 < UGE3 < UGE5 < UGE2. The KmUDP-Glc values, derived from the Haldane relationship, were 0.76 mm for UGE1, 0.56 mm for UGE4, and between 0.13 and 0.23 mm for UGE2, -3, and -5. The expression of UGE isoforms is ubiquitous and displays developmental and cell type-dependent variations. UGE1 and -3 expression patterns globally resemble enzymes involved in carbohydrate catabolism, and UGE2, -4, and -5 expression is more related to carbohydrate biosynthesis. UGE1, -2, and -4 are present in the cytoplasm, whereasUGE4 is additionally enriched close to Golgi stacks. All UGE genes tested complement the UGE4rhd1 phenotype, confer increased galactose tolerance in planta, and complement the galactose metabolization deficiency in the Saccharomyces cerevisiae gal10 mutant. We suggest that plant UGE isoforms function in different metabolic situations and that enzymatic properties, gene expression pattern, and subcellular localization contribute to the differentiation of isoform function.
Collapse
Affiliation(s)
- Christine Barber
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Johannes Rösti
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Arun Rawat
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Keith Roberts
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | - Georg J Seifert
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
36
|
Ohashi T, Cramer N, Ishimizu T, Hase S. Preparation of UDP-galacturonic acid using UDP-sugar pyrophosphorylase. Anal Biochem 2006; 352:182-7. [PMID: 16581011 DOI: 10.1016/j.ab.2006.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/23/2006] [Accepted: 02/27/2006] [Indexed: 11/23/2022]
Abstract
UDP-galacturonic acid, the activated form of galacturonic acid (GalUA), is synthesized both de novo and by salvage pathways. The UDP-GalUA pyrophosphorylase gene involved in the salvage pathway has not been identified. Here we show that UDP-sugar pyrophosphorylase from Pisum sativum with a broad specificity has UDP-GalUA pyrophosphorylase activity. The enzyme catalyzed the formation of UDP-GalUA and pyrophosphate from GalUA 1-phosphate and UTP with an equilibrium constant value of 0.24. The recombinant UDP-sugar pyrophosphorylase had optimal pH of 6.0, and the apparent K(m) values for GalUA 1-phosphate, UTP, UDP-GalUA, and pyrophosphate were 2.27, 1.15, 0.70, and 1.26 mM, respectively. In the presence of inorganic pyrophosphatase, the recombinant enzyme produced UDP-GalUA in an 84% yield (based on the GalUA 1-phosphate substrate) on a preparative scale. Thus, this UDP-sugar pyrophosphorylase is useful for the highly efficient production of UDP-GalUA for studies on pectin biosynthesis.
Collapse
Affiliation(s)
- Takao Ohashi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
37
|
Norambuena L, Nilo R, Handford M, Reyes F, Marchant L, Meisel L, Orellana A. AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. PLANTA 2005; 222:521-9. [PMID: 15891899 DOI: 10.1007/s00425-005-1557-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 04/02/2005] [Indexed: 05/02/2023]
Abstract
The synthesis of noncellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as a substrate. We have cloned and characterized a nucleotide sugar transporter from Arabidopsis thaliana (L.) Heynh. named AtUTr2. Expression in tobacco and Saccharomyces cerevisiae and subsequent biochemical characterization indicate that AtUTr2 transports UDP-galactose, but not UDP-glucose, UDP-N-acetyl glucosamine, UDP-xylose, UDP-glucuronic acid, GDP-fucose or GDP-mannose. Experiments expressing an AtUTr2-GFP fusion protein in onion epidermal cells suggest that AtUTr2 is located in the Golgi apparatus. Finally, northern analysis indicates that the AtUTr2 transcript was more abundant in roots and calli although it was also present in other Arabidopsis organs but at lower levels. Therefore, AtUTr2 is a nucleotide sugar transporter capable of transporting UDP-galactose that may play an important role in the synthesis of galactose-containing glycoconjugates in Arabidopsis.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Cell Biology Millennium Nucleus, Department of Biology, Faculty of Science, University of Chile and Centre of Plant Biotechnology, University Andrés Bello, Republica 217, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. PLANTA 2005; 221:243-54. [PMID: 15660207 DOI: 10.1007/s00425-004-1441-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 10/15/2004] [Indexed: 05/18/2023]
Abstract
The nucleotide sugar UDP-glucuronic acid (UDP-GlcA) is the principal precursor for galacturonic acid, xylose, apiose and arabinose residues of the plant cell-wall polymers. UDP-GlcA can be synthesized by two different functional pathways in Arabidopsis involving either UDP-glucose dehydrogenase or inositol oxygenase as the initial enzyme reaction to channel carbohydrates into a pool of UDP sugars used for cell-wall biosynthesis. The genes for the enzyme myo-inositol oxygenase (MIOX) were analyzed in Arabidopsis. They represent a small gene family containing four members. The transcription of all those members indicates a transient and organ-specific gene expression pattern in growing plant tissues as analyzed by RT-PCR and in promoter::GUS reporter gene lines. Two isoforms (MIOX1, MIOX2) are expressed in almost all tissues of the plant, whereas the expression of MIOX4 and MIOX5 is largely restricted to flowers, particularly maturing pollen. T-DNA insertion lines in MIOX genes were isolated; however, single knock-outs show growth phenotypes similar to the wild type. The monosaccharide composition of the cell wall in these mutants is not significantly changed compared to wild type plants. However, the incorporation of 3H-inositol into wall polymers of seedlings is greatly impaired in the mutant lines (Delta)MIOX1 and (Delta)MIOX2, which are the only isoforms that are expressed in seedlings.
Collapse
Affiliation(s)
- Ulrike Kanter
- Plant Molecular Biology, University of Frankfurt, Biocenter N200, Marie-Curie-Strasse 9, 60439, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Gu X, Bar-Peled M. The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase. PLANT PHYSIOLOGY 2004; 136:4256-64. [PMID: 15563616 PMCID: PMC535855 DOI: 10.1104/pp.104.052365] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/25/2004] [Accepted: 10/25/2004] [Indexed: 05/17/2023]
Abstract
UDP-GlcA 4-epimerase (UGlcAE) catalyzes the epimerization of UDP-alpha-D-glucuronic acid (UDP-GlcA) to UDP-alpha-D-galacturonic acid (UDP-GalA). UDP-GalA is a precursor for the synthesis of numerous cell-surface polysaccharides in bacteria and plants. Using a biochemical screen, a gene encoding AtUGlcAE1 in Arabidopsis (Arabidopsis thaliana) was identified and the recombinant enzyme biochemically characterized. The gene belongs to a small gene family composed of six isoforms. All members of the UGlcAE gene family encode a putative type-II membrane protein and have two domains: a variable N-terminal region approximately 120 amino acids long composed of a predicted cytosolic, transmembrane, and stem domain, followed by a large conserved C-terminal catalytic region approximately 300 amino acids long composed of a highly conserved catalytic domain found in a large protein family of epimerase/dehydratases. The recombinant epimerase has a predicted molecular mass of approximately 43 kD, although size-exclusion chromatography suggests that it may exist as a dimer (approximately 88 kD). AtUGlcAE1 forms UDP-GalA with an equilibrium constant value of approximately 1.9 and has an apparent K(m) value of 720 microm for UDP-GlcA. The enzyme has maximum activity at pH 7.5 and is active between 20 degrees C and 55 degrees C. Arabidopsis AtUGlcAE1 is not inhibited by UDP-Glc, UDP-Gal, or UMP. However, the enzyme is inhibited by UDP-Xyl and UDP-Ara, suggesting that these nucleotide sugars have a role in regulating the synthesis of pectin. The cloning of the AtUGlcAE1 gene will increase our ability to investigate the molecular factors that regulate pectin biosynthesis in plants. The availability of a functional recombinant UDP-GlcA 4-epimerase will be of considerable value for the facile generation of UDP-d-GalA in the amounts required for detailed studies of pectin biosynthesis.
Collapse
Affiliation(s)
- Xiaogang Gu
- Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712, USA
| | | |
Collapse
|