1
|
Yamamoto Y, Sakisaka T. ADP ribosylation factor-like GTPase 6-interacting protein 5 (Arl6IP5) is an ER membrane-shaping protein that modulates ER-phagy. J Biol Chem 2025; 301:108493. [PMID: 40209949 PMCID: PMC12136792 DOI: 10.1016/j.jbc.2025.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is the membrane-bound organelle characterized by the reticular network of tubules. It is well established that the ER tubules are shaped by ER membrane proteins containing the conserved reticulon-homology domain (RHD). Membrane shaping by the RHD-containing proteins is also involved in the regulation of ER-phagy, selective autophagy of the ER. However, it remains unclear whether there exists ER membrane-shaping proteins other than the RHD-containing proteins. In this study, we characterize Arl6IP5, an ER membrane protein containing the conserved PRA1 domain, as an ER membrane-shaping protein. Upon overexpression, Arl6IP5 induces the extensive network of the ER tubules and constricts the ER membrane as judged by exclusion of a luminal ER enzyme from the ER tubules. The membrane constriction by Arl6IP5 allows the cells to maintain the tubular ER network in the absence of microtubules. siRNA-mediated knockdown of Arl6IP5 impairs the ER morphology, and the phenotype of the Arl6IP5 knockdown cells is rescued by exogenous expression of Arl6IP1, an RHD-containing protein. Furthermore, exogenous expression of Arl6IP5 rescues the phenotype of Arl6IP1 knockdown cells, and the PRA1 domain is sufficient to rescue it. Upon disruption of the possible short hairpin structures of the PRA1 domain, Arl6IP5 abolishes membrane constriction. The siRNA-mediated knockdown of Arl6IP5 impairs flux of the ER-phagy mediated by FAM134B. These results indicate that Arl6IP5 acts as an ER membrane-shaping protein involved in the regulation of ER-phagy, implying that the PRA1 domain may serve as a general membrane-shaping unit other than the RHD.
Collapse
Affiliation(s)
- Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Wang Z, Bi Z, Bo H, Xu J, Sha R, Yin Z, Yu C, Xu Y, Shi X, Song W, Chen B, Wang Y, Zhang Q, Chen J. PRAF2 as a novel biomarker for breast cancer with machine learning and experimentation validation. BMC Cancer 2025; 25:32. [PMID: 39773456 PMCID: PMC11708060 DOI: 10.1186/s12885-024-13258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent malignancy in women. Potential therapeutic targets for BC are of great significance. In our previous study, we found that prenylated rab acceptor 1 domain family member 2 (PRAF2) is an oncogene in BC. However, the exact mechanism of PRAF2 in BC cancer promotion is still not fully understood. METHODS Pan-cancer analysis of PRAF2 was performed in the TIMER, Kaplan‒Meier, UALCAN and GEPIA databases.The prognostic value of PRAF2 in BC was investigated in the GEPIA database. The influence of PRAF2 on immune infiltration in BC was analyzed in the TISIDE and TIMER databases. Finally, we validated the expression of PRAF2 in our institutional samples. After downregulating PRAF2 in two BC cell lines, we tested cell proliferation by CCK-8 and Wound healing assays. RESULTS PRAF2 was highly expressed in various cancers, including BC, and in most BC cell lines. Higher expression of PRAF2 indicated poorer overall survival (OS) but not disease-free survival (DFS). Higher expression of PRAF2 is an independent prognostic factor in BC.PRAF2 is more highly expressed in BC than in the corresponding normal tissues. Downregulation of PRAF2 in BC can significantly inhibit viability and migration. CONCLUSIONS PRAF2 is highly expressed in various cancers, including BC. The expression of PRAF2 is related to Liquid-Liquid Phase Separation in BC. Finally, PRAF2 is upregulated in BC based on our institutional data. Downregulation of PRAF2 significantly inhibits cellular viability、migration in BC. PRAF2 may be a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Zilin Bi
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Hongguang Bo
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Junyi Xu
- School of Basic Medical Science, Capital Medical University, No. 10 Right Outside the Western Headlines, Beijing, 100069, China
| | - Rui Sha
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Zhaocai Yin
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Changsheng Yu
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Yufa Xu
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Xiaomeng Shi
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Wenbo Song
- Department of Oncology, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, 9 Dongfanghong Road, Jiangdu District, Jiangsu Province, Yangzhou, 225299, China
| | - Bin Chen
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China
| | - Yabing Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China.
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, University Town, Xue Yuan Road 1, Fujian Province, Fuzhou, 350122, China.
| | - Jianping Chen
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Zheshan West Rd No. 2, Wuhu , Anhui Province, 241001, China.
| |
Collapse
|
3
|
Da Silva E, Scott MGH, Enslen H, Marullo S. Control of CCR5 Cell-Surface Targeting by the PRAF2 Gatekeeper. Int J Mol Sci 2023; 24:17438. [PMID: 38139265 PMCID: PMC10744302 DOI: 10.3390/ijms242417438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain the receptors in the ER. PRAF2, an ER-resident four trans- membrane domain protein with cytoplasmic extremities, operates as a gatekeeper for the GB1 protomer of the heterodimeric GABAB receptor, interacting with a tandem di-leucine/RXR retention motif in the carboxyterminal tail of GB1. PRAF2 was also reported to interact in a two-hybrid screen with a peptide corresponding to the carboxyterminal tail of the chemokine receptor CCR5 despite the absence of RXR motifs in its sequence. Using a bioluminescence resonance energy transfer (BRET)-based subcellular localization system, we found that PRAF2 inhibits, in a concentration-dependent manner, the plasma membrane export of CCR5. BRET-based proximity assays and Co-IP experiments demonstrated that PRAF2/CCR5 interaction does not require the presence of a receptor carboxyterminal tail and involves instead the transmembrane domains of both proteins. The mutation of the potential di-leucine/RXR motif contained in the third intracellular loop of CCR5 does not affect PRAF2-mediated retention. It instead impairs the cell-surface export of CCR5 by inhibiting CCR5's interaction with its private escort protein, CD4. PRAF2 and CD4 thus display opposite roles on the cell-surface export of CCR5, with PRAF2 inhibiting and CD4 promoting this process, likely operating at the level of CCR5 recruitment into COPII vesicles, which leave the ER.
Collapse
Affiliation(s)
| | | | | | - Stefano Marullo
- CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France; (E.D.S.); (M.G.H.S.); (H.E.)
| |
Collapse
|
4
|
Wang Y, Zhao Z, Jiao W, Yin Z, Zhao W, Bo H, Bi Z, Dong B, Chen B, Wang Z. PRAF2 is an oncogene acting to promote the proliferation and invasion of breast cancer cells. Exp Ther Med 2022; 24:738. [PMID: 36478884 PMCID: PMC9716117 DOI: 10.3892/etm.2022.11674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Prenylated rab acceptor 1 domain family member 2 (PRAF2) acts as an oncogene and is closely related to the occurrence and development of various tumors. The present study aimed to clarify the functional relevance of PRAF2 in the biological behaviors of breast cancer by determining the expression of PRAF2 in breast cancer tissues and the corresponding adjacent tissues. The gene phenotypes of PRAF2 in patients with breast cancer in The Cancer Genome Atlas database were predicted using a cancer data online analysis website: The University of Alabama at Birmingham Cancer Data Analaysis Portal (UALCAN). The mRNA and protein expression of PRAF2 was further examined in 37 pairs of fresh frozen breast cancer tissues and adjacent non-tumor tissues by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. High expression of PRAF2 was verified by RT-qPCR in the breast cancer cell line, MCF-7, and small interfering RNA (siRNA) technology was used to silence PRAF2. In the in vitro cell functional experiment, three groups were used: Negative control (NC) group, siRNA-NC group and siRNA-PRAF2 group. Cell Counting Kit-8 (CCK-8) and colony formation assays were conducted to analyze the effect of downregulation of PRAF2 on the proliferation of breast cancer cells. Transwell invasion and cell scratch assays were performed to examine the effect of downregulation of PRAF2 on the invasion and migration of breast cancer cells. UALCAN analysis results indicated that PRAF2 expression was upregulated in breast cancer compared with normal tissue samples (P<0.001). High expression of PRAF2 in breast cancer was associated with TNM stage and regional lymph node metastasis. RT-qPCR results showed increased mRNA expression of PRAF2 in clinical tissue samples from 37 patients with breast cancer, compared with normal adjacent tissues (P<0.001). Protein expression of PRAF2 was also shown to be higher in the breast cancer MCF-7 cells than in the MDA-MB-231 cells. Western blotting analysis combined with ImageJ software quantification showed that the relative expression of PRAF2 protein was significantly higher in clinical tissue samples from 37 patients with breast cancer (1.9750±0.0103) than that in normal adjacent tissues (0.9818±0.0140) (P<0.001). Western blotting analysis results indicated that transfection with siRNA PRAF2 in MCF-7 cells decreased PRAF2 expression (P<0.001). The results of CCK-8 and colony formation assays revealed that downregulation of PRAF2 expression suppressed the proliferation of MCF-7 cells (P<0.05 and P<0.001, respectively). In addition, Transwell invasion and cell scratch assay results showed that downregulation of PRAF2 expression in MCF-7 cells repressed invasion and migration of cancer cells (P<0.001). Overall, PRAF2 expression was significantly higher in breast cancer tissues than normal adjacent tissues, and was closely related to TNM stage and regional lymph node metastasis in breast cancer. PRAF2 was found to act as an oncogene that is able to promote breast cancer cell proliferation and invasion. Thus, PRAF2 may be a potential prognostic factor in patients with breast cancer and a potential target for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yabing Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhiyong Zhao
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wei Jiao
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhaocai Yin
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wanjun Zhao
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Hongguang Bo
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zilin Bi
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Bingbin Dong
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Bin Chen
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Zheng Wang or Dr Bin Chen, Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| | - Zheng Wang
- Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Zheng Wang or Dr Bin Chen, Department of Thyroid and Breast Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
5
|
Targeting JWA for Cancer Therapy: Functions, Mechanisms and Drug Discovery. Cancers (Basel) 2022; 14:cancers14194655. [PMID: 36230577 PMCID: PMC9564207 DOI: 10.3390/cancers14194655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary JWA has been identified as a potential therapeutic target for several cancers. In this review, we summarize the tumor suppressive functions of the JWA gene and its role in anti-cancer drug development. The focus is on elucidating the key regulatory proteins up and downstream of JWA and their signaling networks. We also discuss current strategies for targeting JWA (JWA peptides, small molecule agonists, and JWA-targeted Pt (IV) prodrugs). Abstract Tumor heterogeneity limits the precision treatment of targeted drugs. It is important to find new tumor targets. JWA, also known as ADP ribosylation factor-like GTPase 6 interacting protein 5 (ARL6IP5, GenBank: AF070523, 1998), is a microtubule-associated protein and an environmental response gene. Substantial evidence shows that JWA is low expressed in a variety of malignancies and is correlated with overall survival. As a tumor suppressor, JWA inhibits tumor progression by suppressing multiple oncogenes or activating tumor suppressor genes. Low levels of JWA expression in tumors have been reported to be associated with multiple aspects of cancer progression, including angiogenesis, proliferation, apoptosis, metastasis, and chemotherapy resistance. In this review, we will discuss the structure and biological functions of JWA in tumors, examine the potential therapeutic strategies for targeting JWA and explore the directions for future investigation.
Collapse
|
6
|
Angelotti T. Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function? Front Mol Biosci 2022; 9:912848. [PMID: 36060263 PMCID: PMC9437294 DOI: 10.3389/fmolb.2022.912848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Polytopic cargo proteins are synthesized and exported along the secretory pathway from the endoplasmic reticulum (ER), through the Golgi apparatus, with eventual insertion into the plasma membrane (PM). While searching for proteins that could enhance cell surface expression of olfactory receptors, a new family of proteins termed “receptor expression-enhancing proteins” or REEPs were identified. These membrane-shaping hairpin proteins serve as adapters, interacting with intracellular transport machinery, to regulate cargo protein trafficking. However, REEPs belong to a larger family of proteins, the Yip (Ypt-interacting protein) family, conserved in yeast and higher eukaryotes. To date, eighteen mammalian Yip family members, divided into four subfamilies (Yipf, REEP, Yif, and PRAF), have been identified. Yeast research has revealed many intriguing aspects of yeast Yip function, functions that have not completely been explored with mammalian Yip family members. This review and analysis will clarify the different Yip family nomenclature that have encumbered prior comparisons between yeast, plants, and eukaryotic family members, to provide a more complete understanding of their interacting proteins, membrane topology, organelle localization, and role as regulators of cargo trafficking and localization. In addition, the biological role of membrane shaping and sensing hairpin and amphipathic helical domains of various Yip proteins and their potential cellular functions will be described. Lastly, this review will discuss the concept of Yip proteins as members of a larger superfamily of membrane-shaping adapter proteins (MSAPs), proteins that both shape membranes via membrane-sensing and hairpin insertion, and well as act as adapters for protein-protein interactions. MSAPs are defined by their localization to specific membranes, ability to alter membrane structure, interactions with other proteins via specific domains, and specific interactions/effects on cargo proteins.
Collapse
|
7
|
Qian Z, Wei B, Zhou Y, Wang Q, Wang J, Sun Y, Gao Y, Chen X. PRAF2 overexpression predicts poor prognosis and promotes tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer 2019; 19:585. [PMID: 31200670 PMCID: PMC6570937 DOI: 10.1186/s12885-019-5818-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prenylated Rab acceptor 1 domain family, member 2 (PRAF2) is involved in the occurrence and progression of several malignant tumors. However, its potential role in esophageal squamous cell carcinoma (ESCC) is still unknown. METHODS PRAF2 mRNA expression was determined in 77 frozen ESCC samples by quantitative reverse transcription-polymerase chain reaction (qPCR) and its association with clinical features and overall survival were evaluated. The roles of PRAF2 in ESCC cells were investigated by proliferation, cell cycle, invasion and apoptosis assays in vitro. RESULTS The PRAF2 mRNA expression was significantly increased in ESCC tissues compared with matched surrounding non-tumor tissues. Survival analysis showed that high PRAF2 mRNA expression was associated with worse overall survival in ESCC patients. Multivariate analysis revealed that PRAF2 (hazard ratio 2.05, 95% CI 1.10-3.85, P = 0.025) emerged as the independent predictor for poor overall survival in ESCC. The in vitro experiments revealed that knockdown of PRAF2 expression blocked cell proliferation, cell cycle progression and cell invasion and induced cell apoptosis in ESCC cells. CONCLUSION Taken together, our data demonstrate that PRAF2 could be used as a potential prognostic biomarker and represent a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhaoye Qian
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Bin Wei
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yu Zhou
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Qiuzi Wang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Jiru Wang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yuan Sun
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yong Gao
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Xiaofei Chen
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
8
|
He W, Tang J, Li W, Li Y, Mei Y, He L, Zhong K, Xu R. Mutual regulation of JAG2 and PRAF2 promotes migration and invasion of colorectal cancer cells uncoupled from epithelial-mesenchymal transition. Cancer Cell Int 2019; 19:160. [PMID: 31198409 PMCID: PMC6558914 DOI: 10.1186/s12935-019-0871-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Our previous studies revealed that Jagged 2 (JAG2) is involved in the regulation of migration and invasion of colon cancer cells without affecting cell proliferation. This study further explored the specific mechanism by which JAG2 promotes migration and invasion of colorectal cancer cells. Methods JAG2 mRNA expression in different clinical stages of colorectal cancer and normal intestinal tissues was detected by quantitative PCR (QPCR). QPCR and Western Blot were used to analyze the differential expression of JAG2 mRNA and protein between normal human colon tissue cells and various colorectal cancer cells. Co-expression status of JAG2 and epithelial–mesenchymal transition (EMT) markers in colon cancer tissues and cells was analyzed. The difference between TGF-β-induced EMT model and the JAG2 overexpression model were compared in promoting migration and invasion of HT29 cells. HT29 cells were treated with EMT pathway inhibitors (LY2157299 and Slug siRNA) to identify a cross-talk between the JAG2 effect and the Notch pathway. Co-expressed genes of JAG2 in colorectal cancer cells were identified using siRNA and transcriptome microarray technology. The mutual regulation of JAG2 and the co-expressed gene PRAF2 and the regulation of the paracrine effect of exosomes were analyzed. Results JAG2 was abnormally expressed in colorectal cancer tissues and directly related to clinical stages. Similar to the findings in tissues, the expression of both JAG2 mRNA and protein was significantly increased in the colorectal cancer cell lines compared with that of normal colorectal cell line CCD18-Co. It was shown in our cell model that JAG2 was involved in the regulation of migration and invasion independent of the canonical Notch signaling pathway. More interestingly, JAG2 also promoted the migration and invasion of colon cancer cells in a non-EMT pathway. Further analysis revealed the co-expression of JAG2 with PRAF2 in colorectal cancer cells. JAG2-rich exosomes were released from colorectal cancer cells in a PRAF2-dependent way, while these exosomes regulated the metastasis of colorectal cancer cells in a paracrine manner. Conclusions This is the evidence supporting the biological function of JAG2 through non-canonical Notch and non-EMT-dependent pathways and also the first demonstration of the functions of PRAF2 in colorectal cancer cells. These findings also provide theoretical basis for the development of small molecules or biological agents for therapeutic intervention targeting JAG2/PRAF2. Electronic supplementary material The online version of this article (10.1186/s12935-019-0871-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wan He
- 1Department of Oncology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Jun Tang
- 1Department of Oncology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Wenwen Li
- 1Department of Oncology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Yong Li
- 2Department of Interventional Radiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Yi Mei
- 3Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Lisheng He
- 4Department of Pathology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Keli Zhong
- 5Department of Gastrointestinal Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| | - Ruilian Xu
- 1Department of Oncology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 Guangdong China
| |
Collapse
|
9
|
Kim P, Scott MR, Meador-Woodruff JH. Abnormal ER quality control of neural GPI-anchored proteins via dysfunction in ER export processing in the frontal cortex of elderly subjects with schizophrenia. Transl Psychiatry 2019; 9:6. [PMID: 30664618 PMCID: PMC6341114 DOI: 10.1038/s41398-018-0359-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/09/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023] Open
Abstract
Abnormalities of posttranslational protein modifications (PTMs) have recently been implicated in the pathophysiology of schizophrenia. Glycosylphosphatidylinositols (GPIs) are a class of complex glycolipids, which anchor surface proteins and glycoproteins to the cell membrane. GPI attachment to proteins represents one of the most common PTMs and GPI-associated proteins (GPI-APs) facilitate many cell surface processes, including synapse development and maintenance. Mutations in the GPI processing pathway are associated with intellectual disability, emphasizing the potential role of GPI-APs in cognition and schizophrenia-associated cognitive dysfunction. As initial endoplasmic reticulum (ER)-associated protein processing is essential for GPI-AP function, we measured protein expression of molecules involved in attachment (GPAA1), modification (PGAP1), and ER export (Tmp21) of GPI-APs, in homogenates and in an ER enriched fraction derived from dorsolateral prefrontal cortex (DLPFC) of 15 matched pairs of schizophrenia and comparison subjects. In total homogenate we found a significant decrease in transmembrane protein 21 (Tmp21) and in the ER-enriched fraction we found reduced expression of post-GPI attachment protein (PGAP1). PGAP1 modifies GPI-anchors through inositol deacylation, allowing it to be recognized by Tmp21. Tmp21 is a component of the p24 complex that recognizes GPI-anchored proteins, senses the status of the GPI-anchor, and regulates incorporation into COPII vesicles for export to the Golgi apparatus. Together, these proteins are the molecular mechanisms underlying GPI-AP quality control and ER export. To investigate the potential consequences of a deficit in export and/or quality control, we measured cell membrane-associated expression of known GPI-APs that have been previously implicated in schizophrenia, including GPC1, NCAM, MDGA2, and EPHA1, using Triton X-114 phase separation. Additionally, we tested the sensitivity of those candidate proteins to phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that cleaves GPI from GPI-APs. While we did not observe a difference in the amount of these GPI-APs in Triton X-114 phase separated membrane fractions, we found decreased NCAM and GPC1 within the PI-PLC sensitive fraction. These findings suggest dysregulation of ER-associated GPI-AP protein processing, with impacts on post-translational modifications of proteins previously implicated in schizophrenia such as NCAM and GPC1. These findings provide evidence for a deficit in ER protein processing pathways in this illness.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Madeline R Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
10
|
Wang CH, Liu LL, Liao DZ, Zhang MF, Fu J, Lu SX, Chen SL, Wang H, Cai SH, Zhang CZ, Zhang HZ, Yun JP. PRAF2 expression indicates unfavorable clinical outcome in hepatocellular carcinoma. Cancer Manag Res 2018; 10:2241-2248. [PMID: 30100755 PMCID: PMC6065608 DOI: 10.2147/cmar.s166789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Introduction Prenylated Rab acceptor 1 domain family member 2 (PRAF2), a novel oncogene, has been shown to be essential for the development of several human cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. Materials and methods PRAF2 mRNA and protein expressions were examined in fresh tissues by quantitative reverse transcription-polymerase chain reaction and Western blot, respectively, and in 518 paraffin-embedded HCC samples by immunohistochemistry. The correlation of PRAF2 expression and clinical outcomes was determined by the Student's t-test, Kaplan-Meier test, and multivariate Cox regression analysis. The role of PRAF2 in HCC was investigated by cell viability, colony formation, and migration assays in vitro and with a nude mouse model in vivo. Results In our study, the PRAF2 expression was noticeably increased in HCC tissues at both the mRNA and protein levels compared with that of the nontumorous tissues. Kaplan-Meier analysis indicated that high PRAF2 expression was correlated with worse overall survival in a cohort of 518 patients with HCC. The prognostic implication of PRAF2 was verified by stratified survival analysis. The multivariate Cox regression model revealed PRAF2 as an independent poor prognostic factor for overall survival (hazard ratio = 1.244, 95% CI: 1.039-1.498, P<0.017) in HCC. The in vitro data demonstrated that PRAF2 overexpression markedly enhanced cell viability, colony formation, and cell migration. Moreover, ectopic expression of PRAF2 promoted tumor growth and metastasis in vivo. Conclusion Collectively, we conclude that PRAF2 is increased in HCC and is a novel unfavorable biomarker for prognostic prediction for patients with HCC.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Ding-Zhun Liao
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mei-Fang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Shi-Lu Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Hong Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Shao-Hang Cai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Hui-Zhong Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China, ; .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, ;
| |
Collapse
|
11
|
Doly S, Marullo S. Gatekeepers Controlling GPCR Export and Function. Trends Pharmacol Sci 2016; 36:636-644. [PMID: 26435209 DOI: 10.1016/j.tips.2015.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022]
Abstract
Regulated export of G protein-coupled receptors (GPCRs) from intracellular stores involves chaperones and escort proteins, which promote their progression to the cell surface, and gatekeepers, which retain them in intracellular compartments. Functional γ-aminobutyric acid (GABA)B receptors, the paradigm of this phenomenon, comprise GB1 and GB2 subunits forming a heterodimer. GB1 is retained in the endoplasmic reticulum (ER) in the absence of GB2. A specific ER-resident gatekeeper, prenylated Rab acceptor family 2 (PRAF2), is involved in GB1 retention and prevents its progression into the biosynthetic pathway. GB1 can be released from PRAF2 only on competitive interaction with GB2. PRAF2 is ubiquitous and belongs to a subgroup of the mammalian Ypt-interacting protein (Yip) family. Several other GPCRs are likely to be regulated by Yip proteins, which might be involved in the pathophysiology of human diseases that are associated with impaired receptor targeting to the cell surface.
Collapse
Affiliation(s)
- Stéphane Doly
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stefano Marullo
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
12
|
Doly S, Shirvani H, Gäta G, Meye F, Emerit MB, Enslen H, Achour L, Pardo-Lopez L, Kwon YS, Armand V, Gardette R, Giros B, Gassmann M, Bettler B, Mameli M, Darmon M, Marullo S. GABAB receptor cell-surface export is controlled by an endoplasmic reticulum gatekeeper. Mol Psychiatry 2016; 21:480-90. [PMID: 26033241 PMCID: PMC4828513 DOI: 10.1038/mp.2015.72] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) release and cell-surface export of many G protein-coupled receptors (GPCRs) are tightly regulated. For gamma-aminobutyric acid (GABA)B receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell-surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gatekeepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function.
Collapse
Affiliation(s)
- Stéphane Doly
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Hamasseh Shirvani
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Gabriel Gäta
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Frank Meye
- Institut du Fer à Moulin
Université Pierre et Marie Curie - Paris 6INSERM17 Rue du fer à moulin 75005 Paris
| | - Michel-Boris Emerit
- CPN, Centre de Psychiatrie et Neurosciences
INSERMUniversité Paris Descartes - Paris 5Groupe Hospitalier BrocaSite Broca - Sainte Anne 2 ter Rue d'Alésia75014 Paris
| | - Hervé Enslen
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Lamia Achour
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Liliana Pardo-Lopez
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Yang Seung Kwon
- CPN, Centre de Psychiatrie et Neurosciences
INSERMUniversité Paris Descartes - Paris 5Groupe Hospitalier BrocaSite Broca - Sainte Anne 2 ter Rue d'Alésia75014 Paris
| | - Vincent Armand
- CPN, Centre de Psychiatrie et Neurosciences
INSERMUniversité Paris Descartes - Paris 5Groupe Hospitalier BrocaSite Broca - Sainte Anne 2 ter Rue d'Alésia75014 Paris
| | - Robert Gardette
- CPN, Centre de Psychiatrie et Neurosciences
INSERMUniversité Paris Descartes - Paris 5Groupe Hospitalier BrocaSite Broca - Sainte Anne 2 ter Rue d'Alésia75014 Paris
| | - Bruno Giros
- Physiopathologie des Maladies du Système Nerveux Central
Université Pierre et Marie Curie - Paris 6INSERMCentre National de la Recherche ScientifiqueBâtiment B, 4ème étage, case courrier 37 9 Quai Saint Bernard 75252 Paris Cedex 05
- Service Psychiatrie
McGill University [Montréal]Institut Universitaire en Santé Mentale Douglas6875 Boulevard Lasalle, Montréal, QC H4H 1R2
| | - Martin Gassmann
- Department of Biomedicine
University of Basel Petersplatz 1, 4003 Basel
| | - Bernhard Bettler
- Department of Biomedicine
University of Basel Petersplatz 1, 4003 Basel
| | - Manuel Mameli
- Institut du Fer à Moulin
Université Pierre et Marie Curie - Paris 6INSERM17 Rue du fer à moulin 75005 Paris
| | - Michèle Darmon
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| | - Stefano Marullo
- Institut Cochin
INSERMCentre National de la Recherche ScientifiqueUniversité Paris Descartes - Paris 5Institut National de la Recherche Agronomique (INRA)Université de Versailles Saint-Quentin-en-Yvelines22 Rue Méchain, 75014 Paris
| |
Collapse
|
13
|
Cifuentes-Diaz C, Marullo S, Doly S. Anatomical and ultrastructural study of PRAF2 expression in the mouse central nervous system. Brain Struct Funct 2015; 221:4169-4185. [PMID: 26645984 DOI: 10.1007/s00429-015-1159-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 02/01/2023]
Abstract
Prenylated Rab acceptor family, member 2 (PRAF2) is a four transmembrane domain protein of 19 kDa that is highly expressed in particular areas of mammalian brains. PRAF2 is mostly found in the endoplasmic reticulum (ER) of neurons where it plays the role of gatekeeper for the GB1 subunit of the GABAB receptor, preventing its progression in the biosynthetic pathway in the absence of hetero-dimerization with the GB2 subunit. However, PRAF2 can interact with several receptors and immunofluorescence studies indicate that PRAF2 distribution is larger than the ER, suggesting additional biological functions. Here, we conducted an immuno-cytochemical study of PRAF2 distribution in mouse central nervous system (CNS) at anatomical, cellular and ultra-structural levels. PRAF2 appears widely expressed in various regions of mature CNS, such as the olfactory bulbs, cerebral cortex, amygdala, hippocampus, ventral tegmental area and spinal cord. Consistent with its regulatory role of GABAB receptors, PRAF2 was particularly abundant in brain regions known to express GB1 subunits. However, other brain areas where GB1 is expressed, such as basal ganglia, thalamus and hypothalamus, contain little or no PRAF2. In these areas, GB1 subunits might reach the cell surface of neurons independently of GB2 to exert biological functions distinct from those of GABAB receptors, or be regulated by other gatekeepers. Electron microscopy studies confirmed the localization of PRAF2 in the ER, but identified previously unappreciated localizations, in mitochondria, primary cilia and sub-synaptic region. These data indicate additional modes of GABAB regulation in specific brain areas and new biological functions of PRAF2.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Institut du Fer à Moulin, INSERM UMR-S839, Université Pierre et Marie Curie, 75005, Paris, France
| | - Stefano Marullo
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 27 rue du Faubourg St-Jacques, 75014, Paris, France
| | - Stéphane Doly
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 27 rue du Faubourg St-Jacques, 75014, Paris, France.
| |
Collapse
|
14
|
Galea G, Bexiga MG, Panarella A, O'Neill ED, Simpson JC. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J Cell Sci 2015; 128:2339-49. [PMID: 25999475 DOI: 10.1242/jcs.167973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Here, we describe a high-content microscopy-based screen that allowed us to systematically assess and rank proteins involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport in mammalian cells. Using a cell line stably expressing a GFP-tagged Golgi enzyme, we used brefeldin A treatment to stimulate the production of Golgi-to-ER carriers and then quantitatively analysed populations of cells for changes in this trafficking event. Systematic RNA interference (RNAi)-based depletion of 58 Rab GTPase proteins and 12 Rab accessory proteins of the PRAF, YIPF and YIF protein families revealed that nine of these were strong regulators. In addition to demonstrating roles for Rab1a, Rab1b, Rab2a, and Rab6a or Rab6a' in this transport step, we also identified Rab10 and Rab11a as playing a role and being physically present on a proportion of the Golgi-to-ER tubular intermediates. Combinatorial depletions of Rab proteins also revealed previously undescribed functional co-operation and physical co-occurrence between several Rab proteins. Our approach therefore provides a novel and robust strategy for a more complete investigation of the molecular components required to regulate Golgi-to-ER transport in mammalian cells.
Collapse
Affiliation(s)
- George Galea
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mariana G Bexiga
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Angela Panarella
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Elaine D O'Neill
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
15
|
Sha S, Xu J, Lu ZH, Hong J, Qu WJ, Zhou JW, Chen L. Lack of JWA Enhances Neurogenesis and Long-Term Potentiation in Hippocampal Dentate Gyrus Leading to Spatial Cognitive Potentiation. Mol Neurobiol 2014; 53:355-368. [PMID: 25432888 DOI: 10.1007/s12035-014-9010-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/14/2014] [Indexed: 01/28/2023]
Abstract
JWA (Arl6ip5), a homologous gene of glutamate-transporter-associated protein 3-18 (GTRAP3-18) and addicsin, is highly expressed in hippocampus. We generated systemic and neuronal JWA knockout (JWA-KO and JWA-nKO) mice to investigate the influence of JWA deficiency on spatial cognitive performance, process of neurogenesis, and induction of long-term potentiation (LTP) in hippocampal dentate gyrus (DG). In comparison with wild-type (WT) mice and JWA (loxP/loxP) (control of JWA-nKO) mice, 8-week-old JWA-KO mice and JWA-nKO mice showed spatial cognitive potentiation as assessed by Morris water maze test. In hippocampal DG of JWA-nKO mice, either survival and migration or neurite growth of newborn neurons were significantly enhanced without the changes in proliferation and differentiation of stem cells. In addition, the increase of LTP amplitude and the decline of LTP threshold were observed in DG, but not in CA1 region, of JWA-nKO mice compared to control mice. The levels of hippocampal FAK, Akt, and mTOR phosphorylation in JWA-nKO mice were higher than those in control mice. The PI3K or FAK inhibitor could abolish the enhanced neurogenesis and LTP induction in JWA-nKO mice, which was accompanied by disappearance of the spatial cognitive potentiation. The treatment of JWA-nKO mice with 3'-azido-3'-deoxythymidine (AZT), a telomerase inhibitor, suppressed not only the enhanced neurogenesis but also the enhanced LTP induction in DG, but it did not affect the LTP induction in CA1 region. The results suggest that the JWA deficiency through cascading FAK-PI3K-Akt-mTOR pathway increases the newborn neurons and enhances the LTP induction in hippocampal DG, which leads to the spatial cognitive potentiation.
Collapse
Affiliation(s)
- Sha Sha
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Jin Xu
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Zi-Hong Lu
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Juan Hong
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Wei-Jun Qu
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Jian-Wei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China.
| | - Ling Chen
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
16
|
Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell Oncol (Dordr) 2014; 37:179-91. [PMID: 24916915 DOI: 10.1007/s13402-014-0171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previously, we found that the Graffi murine leukemia virus (MuLV) is able to induce a wide spectrum of hematologic malignancies in vivo. Using high-density oligonucleotide microarrays, we established the gene expression profiles of several of these malignancies, thereby specifically focusing on genes deregulated in the lymphoid sub-types. We observed over-expression of a variety of genes, including Arntl2, Bfsp2, Gfra2, Gpm6a, Gpm6b, Nln, Fbln1, Bmp7, Etv5 and Celsr1 and, in addition, provided evidence that Fmn2 and Parm-1 may act as novel oncogenes. In the present study, we assessed the expression patterns of eight selected human homologs of these genes in primary human B-cell malignancies, and explored the putative oncogenic potential of GPM6A and GPM6B. METHODS The gene expression levels of the selected human homologs were tested in human B-cell malignancies by semi-quantitative RT-PCR. The protein expression profiles of human GPM6A and GPM6B were analyzed by Western blotting. The localization and the effect of GPM6A and GPM6B on the cytoskeleton were determined using confocal and indirect immunofluorescence microscopy. To confirm the oncogenic potential of GPM6A and GPM6B, classical colony formation assays in soft agar and focus forming assays were used. The effects of these proteins on the cell cycle were assessed by flow cytometry analysis. RESULTS Using semi-quantitative RT-PCR, we found that most of the primary B-cell malignancies assessed showed altered expression patterns of the genes tested, including GPM6A and GPM6B. Using confocal microscopy, we found that the GPM6A protein (isoform 3) exhibits a punctate cytoplasmic localization and that the GPM6B protein (isoform 4) exhibits a peri-nuclear and punctate cytoplasmic localization. Interestingly, we found that exogenous over-expression of both proteins in NIH/3T3 cells alters the actin and microtubule networks and induces the formation of long filopodia-like protrusions. Additionally, we found that these over-expressing NIH/3T3 cells exhibit anchorage-independent growth and enhanced proliferation rates. Cellular transformation (i.e., loss of contact inhibition) was, however, only observed after exogenous over-expression of GPM6B. CONCLUSIONS Our results indicate that several human homologs of the genes found to be deregulated in Graffi MuLV experimental mouse models may serve as candidate biomarkers for human B-cell malignancies. In addition, we found that GPM6A and GPM6B may act as novel oncogenes in the development of these malignancies.
Collapse
|
17
|
Chiu HC, Hannemann H, Heesom KJ, Matthews DA, Davidson AD. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One 2014; 9:e93305. [PMID: 24671231 PMCID: PMC3966871 DOI: 10.1371/journal.pone.0093305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/01/2014] [Indexed: 01/18/2023] Open
Abstract
Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.
Collapse
Affiliation(s)
- Han-Chen Chiu
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Holger Hannemann
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - David A. Matthews
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Corda D, Mosca MG, Ohshima N, Grauso L, Yanaka N, Mariggiò S. The emerging physiological roles of the glycerophosphodiesterase family. FEBS J 2014; 281:998-1016. [PMID: 24373430 DOI: 10.1111/febs.12699] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 01/21/2023]
Abstract
The glycerophosphodiester phosphodiesterases are evolutionarily conserved proteins that have been linked to several patho/physiological functions, comprising bacterial pathogenicity and mammalian cell proliferation or differentiation. The bacterial enzymes do not show preferential substrate selectivities among the glycerophosphodiesters, and they are mainly dedicated to glycerophosphodiester hydrolysis, producing glycerophosphate and alcohols as the building blocks that are required for bacterial biosynthetic pathways. In some cases, this enzymatic activity has been demonstrated to contribute to bacterial pathogenicity, such as with Hemophilus influenzae. Mammalian glyerophosphodiesterases have high substrate specificities, even if the number of potential physiological substrates is continuously increasing. Some of these mammalian enzymes have been directly linked to cell differentiation, such as GDE2, which triggers motor neuron differentiation, and GDE3, the enzymatic activity of which is necessary and sufficient to induce osteoblast differentiation. Instead, GDE5 has been shown to inhibit skeletal muscle development independent of its enzymatic activity.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Lu J, Tang Y, Farshidpour M, Cheng Y, Zhang G, Jafarnejad SM, Yip A, Martinka M, Dong Z, Zhou J, Xu J, Li G. JWA inhibits melanoma angiogenesis by suppressing ILK signaling and is an independent prognostic biomarker for melanoma. Carcinogenesis 2013; 34:2778-88. [PMID: 24064223 DOI: 10.1093/carcin/bgt318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanoma is the deadliest cutaneous malignancy because of its high incidence of metastasis. Melanoma growth and metastasis relies on sustained angiogenesis; therefore, inhibiting angiogenesis is a promising approach to treat metastatic melanoma. JWA is a novel microtubule-associated protein and our previous work revealed that JWA inhibited melanoma cell invasion and metastasis. However, the role of JWA in melanoma angiogenesis and the prognostic value are still unknown. Here, we report that JWA in melanoma cells significantly inhibited the tube formation of endothelial cells. In addition, JWA regulated integrin-linked kinase (ILK) through integrin αVβ3 and such regulation was achieved through the transcription factor Sp1. Notably, both in vitro and in vivo angiogenesis assays revealed that JWA dramatically suppressed melanoma angiogenesis by inhibiting ILK signaling. Furthermore, we examined the expression of JWA protein in a large set of melanocytic lesions (n = 505) at different stages by tissue microarray and found an inverse correlation between JWA expression and melanoma progression (P = 5 × 10(-6)). Importantly, reduced JWA expression was correlated with a poorer overall, and disease-specific 5 year survival of patients (P = 0.001 and 0.007, respectively). Multivariate Cox regression analyses indicated that JWA was an independent prognostic marker for melanoma patients. Moreover, we found a significant negative correlation between JWA and ILK in melanoma biopsies, and their concomitant expression was closely correlated with melanoma patient survival (P = 0.004), further indicating the regulation of ILK expression by JWA is critical in melanoma. Taken together, our data highlight the function of JWA in melanoma angiogenesis and reveal the clinical prognostic value of JWA.
Collapse
Affiliation(s)
- Jing Lu
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, 828 West 10th Avenue, Vancouver, British Columbia, V5Z 1L8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
PRAF2 stimulates cell proliferation and migration and predicts poor prognosis in neuroblastoma. Int J Oncol 2013; 42:1408-16. [PMID: 23440329 DOI: 10.3892/ijo.2013.1836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 11/05/2022] Open
Abstract
Prenylated Rab acceptor 1 domain family, member 2 (PRAF2) is a novel 19-kDa protein with four transmembrane-spanning domains that belongs to the PRAF protein family. Neuroblastoma (NB) is the most common malignant extracranial solid tumor of childhood that originates in primitive cells of the developing sympathetic nervous system. We investigated the correlation of PRAF2 mRNA expression to NB clinical and genetic parameters using Affymetrix expression analysis of a series of 88 NB tumors and examined the functional role of PRAF2 in an NB cell line using RNA interference. We found that high PRAF2 expression is significantly correlated to several unfavorable NB characteristics: MYCN amplification, high age at diagnosis, poor outcome and high INSS stage. The shRNA-mediated PRAF2 downregulation in the SK-N-SH NB cell line resulted in decreased cellular proliferation, migration and matrix-attachment. These findings were confirmed in NB patient tumor samples, where high PRAF2 expression is significantly correlated to bone and bone marrow metastasis, the main cause of death in NB patients. The present study shows that PRAF2 plays an essential role in NB tumorigenesis and metastasis.
Collapse
|
21
|
Wu X, Chen H, Gao Q, Bai J, Wang X, Zhou J, Qiu S, Xu Y, Shi Y, Wang X, Zhou J, Fan J. Downregulation of JWA promotes tumor invasion and predicts poor prognosis in human hepatocellular carcinoma. Mol Carcinog 2012; 53:325-36. [PMID: 23169062 DOI: 10.1002/mc.21981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
We previously identified JWA as a novel microtubule-associated protein (MAP), which is implicated in carcinogenesis and tumor progression. The aims of the present study were to investigate the biological action and the prognostic significance of JWA in hepatocellular carcinoma (HCC). Quantitative real-time PCR and Western blot were used to detect JWA mRNA and protein expression, respectively, in stepwise metastatic HCC cell lines and HCC tissues. Short hairpin RNA was used to inhibit JWA expression in HCC cells. The effects of JWA depletion on cell migration, invasion, adhesion and in vivo metastasis were investigated. Immunohistochemistry of JWA was conducted in microarrays with tissue from 314 HCC patients who had undergone surgical resection. Prognostic significance was assessed using the Kaplan-Meier method and log-rank tests. The result showed JWA expression was decreased in the highly metastatic HCC cell lines and HCC tissues. Depletion of JWA caused a notable increase in cell migration, invasion and adhesion in vitro and metastasis in vivo. Furthermore, there was an inverse correlation between JWA expression and FAK expression and phosphorylation, RhoA activation and matrix metalloproteinase-2 (MMP-2) activity in HCC cells. More notably, multivariate analysis revealed that a low level of JWA expression was an independent prognosticator for both recurrence-free and overall survival for HCC patients after surgical resection, especially for AFP-normal HCC patients. Taken together, our data demonstrate that JWA plays a crucial role in HCC progression and suggest JWA may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hammond JC, Meador-Woodruff JH, Haroutunian V, McCullumsmith RE. AMPA receptor subunit expression in the endoplasmic reticulum in frontal cortex of elderly patients with schizophrenia. PLoS One 2012; 7:e39190. [PMID: 22720072 PMCID: PMC3375247 DOI: 10.1371/journal.pone.0039190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 05/21/2012] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence indicate altered trafficking of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors in schizophrenia. Previous reports have shown potential changes in the trafficking of AMPA receptors based on subunit expression of endosomes, subcellular organelles located near post-synaptic sites. We hypothesized that alterations in AMPA receptor trafficking through the endoplasmic reticulum (ER) may also be altered in schizophrenia. Accordingly, we developed a technique to isolate and measure content of the ER from postmortem brain tissue. We used Western blot and electron microscopy to show that we isolated an ER enriched fraction. We found no changes in the expression of the AMPA receptor subunits, GluR1–4, in the ER from the dorsolateral prefrontal cortex in schizophrenia. These data suggest that AMPA receptor trafficking through the ER is largely intact in schizophrenia.
Collapse
Affiliation(s)
- John C Hammond
- Department of Neurobiology, University of Alabama Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | |
Collapse
|
23
|
Gong Z, Shi Y, Zhu Z, Li X, Ye Y, Zhang J, Li A, Li G, Zhou J. JWA deficiency suppresses dimethylbenz[a]anthracene-phorbol ester induced skin papillomas via inactivation of MAPK pathway in mice. PLoS One 2012; 7:e34154. [PMID: 22461904 PMCID: PMC3312911 DOI: 10.1371/journal.pone.0034154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/23/2012] [Indexed: 12/17/2022] Open
Abstract
Our previous studies indicated that JWA plays an important role in DNA damage repair, cell migration, and regulation of MAPKs. In this study, we investigated the role of JWA in chemical carcinogenesis using conditional JWA knockout (JWAΔ2/Δ2) mice and two-stage model of skin carcinogenesis. Our results indicated that JWAΔ2/Δ2 mice were resistant to the development of skin papillomas initiated by 7, 12-dimethylbenz(a)anthracene (DMBA) followed by promotion with 12-O-tetradecanoylphorbol-13-acetate (TPA). In JWAΔ2/Δ2 mice, the induction of papilloma was delayed, and the tumor number and size were reduced. In primary keratinocytes from JWAΔ2/Δ2 mice, DMBA exposure induced more intensive DNA damage, while TPA-promoted cell proliferation was reduced. The further mechanistic studies showed that JWA deficiency blocked TPA-induced activation of MAPKs and its downstream transcription factor Elk1 both in vitro and in vivo. JWAΔ2/Δ2 mice are resistance to tumorigenesis induced by DMBA/TPA probably through inhibition of transcription factor Elk1 via MAPKs. These results highlight the importance of JWA in skin homeostasis and in the process of skin tumor development.
Collapse
Affiliation(s)
- Zhenghua Gong
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Yaowei Shi
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Ze Zhu
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuan Li
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Ye
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianbing Zhang
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, the Key Laboratory of Modern Toxicology, Ministry of Education and Department of Occupational Medicine and Environmental Health, School of Public Health; Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center; Nanjing Medical University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
24
|
Shi GZ, Yuan Y, Jiang GJ, Ge ZJ, Zhou J, Gong DJ, Tao J, Tan YF, Huang SD. PRAF3 induces apoptosis and inhibits migration and invasion in human esophageal squamous cell carcinoma. BMC Cancer 2012; 12:97. [PMID: 22433565 PMCID: PMC3353225 DOI: 10.1186/1471-2407-12-97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prenylated Rab acceptor 1 domain family member 3 (PRAF3) is involved in the regulation of many cellular processes including apoptosis, migration and invasion. This study was conducted to investigate the effect of PRAF3 on apoptosis, migration and invasion in human esophageal squamous cell carcinoma (ESCC). METHODS The expression of PRAF3 mRNA and protein in primary ESCC and the matched normal tissues (57cases) was determined by quantitative RT-PCR and Western blot. Immunohistochemical analysis of PRAF3 expression was carried out in paraffin-embedded sections of ESCC and correlated with clinical features. The role of PRAF3 in apoptosis, migration and invasion was studied in ESCC cell lines of Eca109 and TE-1 through the adenovirus mediated PRAF3 gene transfer. The effect of PRAF3 on apoptosis was analyzed by annexin V-FITC assay. The regulation of PRAF3 on migration was determined by transwell and wounding healing assay, while the cellular invasion was analyzed by matrigel-coated transwell assay. RESULTS We found that the expression of PRAF3 was significantly down-regulated in ESCC tissue compared with the matched normal tissue and was correlated with the clinical features of pathological grade, tumor stage and lymph node metastasis. Moreover, overexpression of PRAF3 induced cell apoptosis through both caspase-8 and caspase-9 dependent pathways, and inhibited cell migration and invasion by suppressing the activity of both MMP-2 and MMP-9 in human ESCC cell lines. CONCLUSIONS Our data suggest that PRAF3 plays an important role in the regulation of tumor progression and metastasis and serves as a tumor suppressor in human ESCC. We propose that PRAF3 might be used as a potential therapeutic agent for human ESCC.
Collapse
Affiliation(s)
- Guo-Zhen Shi
- Department of Cardiothoracic Surgery, Yixing People's Hospital, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee MH, Jung C, Lee J, Kim SY, Lee Y, Hwang I. An Arabidopsis prenylated Rab acceptor 1 isoform, AtPRA1.B6, displays differential inhibitory effects on anterograde trafficking of proteins at the endoplasmic reticulum. PLANT PHYSIOLOGY 2011; 157:645-58. [PMID: 21828250 PMCID: PMC3192560 DOI: 10.1104/pp.111.180810] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/04/2011] [Indexed: 05/23/2023]
Abstract
Prenylated Rab acceptors (PRAs), members of the Ypt-interacting protein family of small membrane proteins, are thought to aid the targeting of prenylated Rabs to their respective endomembrane compartments. In plants, the Arabidopsis (Arabidopsis thaliana) PRA1 family contains 19 members that display varying degrees of sequence homology to animal PRA1 and localize to the endoplasmic reticulum (ER) and/or endosomes. However, the exact role of these proteins remains to be fully characterized. In this study, the effect of AtPRA1.B6, a member of the AtPRA1 family, on the anterograde trafficking of proteins targeted to various endomembrane compartments was investigated. High levels of AtPRA1.B6 resulted in differential inhibition of coat protein complex II vesicle-mediated anterograde trafficking. The trafficking of the vacuolar proteins sporamin:GFP (for green fluorescent protein) and AALP:GFP, the secretory protein invertase:GFP, and the plasma membrane proteins PMP:GFP and H+-ATPase:GFP was inhibited in a dose-dependent manner, while the trafficking of the Golgi-localized proteins ST:GFP and KAM1(ΔC):mRFP was not affected. Conversely, in RNA interference plants displaying lower levels of AtPRA1.B6 transcripts, the trafficking efficiency of sporamin:GFP and AALP:GFP to the vacuole was increased. Localization and N-glycan pattern analyses of cargo proteins revealed that AtPRA1.B6-mediated inhibition of anterograde trafficking occurs at the ER. In addition, AtPRA1.B6 levels were controlled by cellular processes, including 26S proteasome-mediated proteolysis. Based on these results, we propose that AtPRA1.B6 is a negative regulator of coat protein complex II vesicle-mediated anterograde trafficking for a subset of proteins at the ER.
Collapse
|
26
|
Vento MT, Zazzu V, Loffreda A, Cross JR, Downward J, Stoppelli MP, Iaccarino I. Praf2 is a novel Bcl-xL/Bcl-2 interacting protein with the ability to modulate survival of cancer cells. PLoS One 2010; 5:e15636. [PMID: 21203533 PMCID: PMC3006391 DOI: 10.1371/journal.pone.0015636] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/18/2010] [Indexed: 11/18/2022] Open
Abstract
Increased expression of Bcl-xL in cancer has been shown to confer resistance to a broad range of apoptotic stimuli and to modulate a number of other aspects of cellular physiology, including energy metabolism, cell cycle, autophagy, mitochondrial fission/fusion and cellular adhesion. However, only few of these activities have a mechanistic explanation. Here we used Tandem Affinity purification to identify novel Bcl-xL interacting proteins that could explain the pleiotropic effects of Bcl-xL overexpression. Among the several proteins co-purifying with Bcl-xL, we focused on Praf2, a protein with a predicted role in trafficking. The interaction of Praf2 with Bcl-xL was found to be dependent on the transmembrane domain of Bcl-xL. We found that Bcl-2 also interacts with Praf2 and that Bcl-xL and Bcl-2 can interact also with Arl6IP5, an homologue of Praf2. Interestingly, overexpression of Praf2 results in the translocation of Bax to mitochondria and the induction of apoptotic cell death. Praf2 dependent cell death is prevented by the co-transfection of Bcl-xL but not by its transmembrane domain deleted mutant. Accordingly, knock-down of Praf2 increases clonogenicity of U2OS cells following etoposide treatment by reducing cell death. In conclusion a screen for Bcl-xL-interacting membrane proteins let us identify a novel proapoptotic protein whose activity is strongly counteracted exclusively by membrane targeted Bcl-xL.
Collapse
Affiliation(s)
- Maria Teresa Vento
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Valeria Zazzu
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessia Loffreda
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Justin R. Cross
- Signal Transduction Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Julian Downward
- Signal Transduction Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ingram Iaccarino
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso,” Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| |
Collapse
|
27
|
Yang S, Wang W, Lei C, Liu Q, Xu F, Xing X, Chen H, Liu J, Wu S, Wang M. Localization and characterization of rat transmembrane protein 225 specifically expressed in testis. DNA Cell Biol 2010; 30:9-16. [PMID: 20979528 DOI: 10.1089/dna.2010.1048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Testis is the one and only location of spermatogenesis and sexual hormone production. Spermatogenesis is a complicated physiological process regulated by many genes specifically and differentially expressed in the testis. In this study, Transmembrane Protein 225 (TMEM225), which is specifically expressed in rat testis, has been identified. TMEM225 was cloned from the testis cDNA library and was mapped to chromosome 8q22 by browsing the University of California Santa Cruz genomic database. It contains an open reading frame with a length of 696 bp, encoding a protein with four putative transmembrane helices. TMEM225 mRNA expression was evaluated by reverse transcription-polymerase chain reaction and in situ hybridization. In addition, the subcellular location of TMEM225 was evaluated. The results obtained highlighted age related specific expression of TMEM225 in testis, specifically during the adult period after age of 13 months. In situ hybridization analysis indicated that TMEM225 mRNA was mainly expressed in spermatocyte cells and round spermatids. Green fluorescence protein localization analysis showed that rat TMEM225 mainly surrounded the nuclear membrane, with a minority distribution in the cytoplasm, and the distribution of TMEM225 was affected by the deletion of N-terminal transmembrane domain. As the expression phase is not related to the first wave of spermatozoon development, our data presented here suggest that TMEM225 may play an important role in sperm degeneration but not in spermatogenesis.
Collapse
Affiliation(s)
- Shirui Yang
- Department of Biochemistry and Molecular Biology, Medical School, Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Borsics T, Lundberg E, Geerts D, Koomoa DLT, Koster J, Wester K, Bachmann AS. Subcellular distribution and expression of prenylated Rab acceptor 1 domain family, member 2 (PRAF2) in malignant glioma: Influence on cell survival and migration. Cancer Sci 2010; 101:1624-31. [PMID: 20412121 PMCID: PMC11158841 DOI: 10.1111/j.1349-7006.2010.01570.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Our previous studies revealed that the expression of the 19-kDa protein prenylated Rab acceptor 1 domain family, member 2 (PRAF2) is elevated in cancer tissues of the breast, colon, lung, and ovary, when compared to noncancerous tissues of paired samples. PRAF2 mRNA expression also correlated with several genetic and clinical features and is a candidate prognostic marker in the pediatric cancer neuroblastoma. The PRAF2-related proteins, PRAF1 and PRAF3, play multiple roles in cellular processes, including endo/exocytic vesicle trafficking and glutamate uptake. PRAF2 shares a high sequence homology with these family members, but its function remains unknown. In this study, we examined PRAF2 mRNA and protein expression in 20 different human cancer types using Affymetrix microarray and human tissue microarray (TMA) analyses, respectively. In addition, we investigated the subcellular distribution of PRAF2 by immunofluorescence microscopy and cell fractionation studies. PRAF2 mRNA and protein expression was elevated in several cancer tissues with highest levels in malignant glioma. At the molecular level, we detected native PRAF2 in small, vesicle-like structures throughout the cytoplasm as well as in and around cell nuclei of U-87 malignant glioma cells. We further found that monomeric and dimeric forms of PRAF2 are associated with different cell compartments, suggesting possible functional differences. Importantly, PRAF2 down-regulation by RNA interference significantly reduced the cell viability, migration, and invasiveness of U-87 cells. This study shows that PRAF2 expression is elevated in various tumors with exceptionally high expression in malignant gliomas, and PRAF2 therefore presents a candidate molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Tamás Borsics
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Bai J, Zhang J, Wu J, Shen L, Zeng J, Ding J, Wu Y, Gong Z, Li A, Xu S, Zhou J, Li G. JWA regulates melanoma metastasis by integrin alphaVbeta3 signaling. Oncogene 2009; 29:1227-37. [PMID: 19946336 DOI: 10.1038/onc.2009.408] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
JWA, a newly identified novel microtubule-associated protein (MAP), was recently demonstrated to be indispensable for the rearrangement of actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As(2)O(3)) and phorbol ester (PMA). JWA depletion blocked the inhibitory effect of As(2)O(3) on HeLa cell migration, but enhanced cell migration after PMA treatment. As cancer cell migration is a hallmark of tumor metastasis and the functional role of JWA in cancer metastasis is not understood, here we show that JWA has an important role in melanoma metastasis. Our data demonstrated that JWA knockdown increased the adhesion and invasion abilities of melanoma cells. Furthermore, JWA knockdown in B16-F10 and A375 melanoma cells significantly promoted the formation and growth of metastatic colonies in vivo. Moreover, in the tumor biopsies from human melanoma patients, JWA expression was significantly decreased in malignant melanoma compared with normal nevi. In addition, we found that JWA knockdown could intensify tumor integrin alpha(V)beta(3) signaling by regulating nuclear factor Sp1. These findings suggest that JWA suppresses melanoma metastasis and may serve a potential therapeutic target for human melanoma.
Collapse
Affiliation(s)
- J Bai
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kwok T, Heinrich J, Jung-Shiu J, Meier MG, Mathur S, Moelling K. Reduction of gene expression by a hairpin-loop structured oligodeoxynucleotide: alternative to siRNA and antisense. Biochim Biophys Acta Gen Subj 2009; 1790:1170-8. [PMID: 19505533 DOI: 10.1016/j.bbagen.2009.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/29/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND We previously described the inhibition of HIV-1 replication by a 54-mer hairpin-loop structured oligodeoxynucleotide (ODN) A, which binds the polypurine tract (PPT) on HIV-1 RNA. ODN A was shown to lead to reduced viral RNA in virions or early during infection. METHODS AND RESULTS Here we demonstrated that ODN A was able to cause hydrolysis of viral RNA not only by retroviral RT-associated RNase H but also cellular RNase H1 and RNase H2 in vitro. Furthermore, ODN A reduced gene expression in a dose-dependent manner in a cell-based reporter assay where a PPT sequence was inserted in the 5' untranslated region of the reporter gene. The efficacy of ODN A was higher than that of its siRNA and antisense counterparts. By knocking down cellular RNases H, we showed that RNase H1 contributed to the gene silencing by ODN A but the possibility of a partial contribution of RNase H-independent mechanisms could not be ruled out. GENERAL SIGNIFICANCE Our findings highlight the potential application of hairpin-loop structured ODNs for reduction of gene expression in mammalian cells and underscore the possibility of using ODN A to trigger the hydrolysis of HIV RNA in infected cells by cellular RNases H.
Collapse
Affiliation(s)
- Terry Kwok
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH 8006 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Alvim Kamei CL, Boruc J, Vandepoele K, Van den Daele H, Maes S, Russinova E, Inzé D, De Veylder L. The PRA1 gene family in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1735-49. [PMID: 18583532 PMCID: PMC2492607 DOI: 10.1104/pp.108.122226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Abstract
Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.
Collapse
Affiliation(s)
- Claire Lessa Alvim Kamei
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Koomoa DLT, Go RCV, Wester K, Bachmann AS. Expression profile of PRAF2 in the human brain and enrichment in synaptic vesicles. Neurosci Lett 2008; 436:171-6. [PMID: 18395978 DOI: 10.1016/j.neulet.2008.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/23/2008] [Accepted: 03/07/2008] [Indexed: 11/16/2022]
Abstract
PRA1 domain family, member 2 (PRAF2) is a novel 19-kDa protein with a prenylated Rab acceptor 1 (PRA1) motif and four transmembrane domains. Our previous studies revealed that PRAF2 is highly expressed in the brain and serves as a candidate prognostic marker in neuroblastoma (NB). PRAF2 is related to proteins PRAF1 (PRA1, prenylin, Yip3) and PRAF3 (GTRAP3-18, JWA, Arl6-IP5), both of which are enriched in the brain and implicated in cellular transport and endo/exocytic vesicle trafficking. However, the function for PRAF2 remains unknown. In this study, we analyzed the distribution and localization of PRAF2 in the mature human brain using two new antibodies specific for the protein. Analysis by immunohistochemistry revealed that in the human cerebellum, the PRAF2 protein was strongly expressed in Purkinje cells and, more moderately, in cells of the molecular and the granular layers. In the cerebral cortex, hippocampus, and lateral ventricles, PRAF2 protein was detected in neuronal cells, but not in non-neuronal cells. Intriguingly, immunoblot analysis revealed that PRAF2 is enriched in synaptic vesicles (SVs) prepared from rat brains. The expression of PRAF2 in specific regions of the brain including SVs suggest an important physiological function for this novel protein, possibly by participating in multiple aspects of SV maturation, transport, and signal transmission.
Collapse
Affiliation(s)
- Dana-Lynn T Koomoa
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
33
|
Maier S, Reiterer V, Ruggiero AM, Rothstein JD, Thomas S, Dahm R, Sitte HH, Farhan H. GTRAP3-18 serves as a negative regulator of Rab1 in protein transport and neuronal differentiation. J Cell Mol Med 2008; 13:114-24. [PMID: 18363836 PMCID: PMC3823040 DOI: 10.1111/j.1582-4934.2008.00303.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Glutamate transporter associated protein 3–18 (GTRAP3-18) is an endoplasmic reticulum (ER)-localized protein belonging to the prenylated rab-acceptor-family interacting with small Rab GTPases, which regulate intracellular trafficking events. Its impact on secretory trafficking has not been investigated. We report here that GTRAP3-18 has an inhibitory effect on Rab1, which is involved in ER-to-Golg trafficking. The effects on the early secretory pathway in HEK293 cells were: reduction of the rate of ER-to-Golgi transport of the vesicular stomatitis virus glycoprotein (VSVG), slowed accumulation of a Golgi marker plasmid in pre-Golgi structures after Brefeldin A treatment and inhibition of cargo concentration of the neuronal glutamate transporter excitatory amino-acid carrier 1 (EAAC1) into transpor complexes in HEK293 cells, an effect that could be completely reversed in the presence of an excess of Rab1. In accordance with the known role of Rab1 in neurite formation, overexpression of GTRAP3-18 significantly inhibited the length of outgrowing neurites in differentiated CAD cells. The inhibitory effect of GTRAP3-18 on neurite growth was rescued by co-expression with Rab1, supporting the conclusion that GTRAP 3-18 acted by inhibiting Rab1 action. Finally, we hypothesized that expression of GTRAP3-18 in the brain shoul be lower at stages of active synaptogenesis compared to early developmental stages. This was the case as expression of GTRAP3-18 declined from E17 to P0 and adult rat brains. Thus, we propose a model where protein trafficking and neuronal differentiation are directly linked by the interaction of Rab1 and its regulator GTRAP3-18.
Collapse
Affiliation(s)
- S Maier
- Institute of Pharmacology, Center for Biomolecular Medicine and Pharmacology, Medical University Vienna, Waehringer Strasse, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
JWA is required for arsenic trioxide induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria linked signal pathway. Toxicol Appl Pharmacol 2008; 230:33-40. [PMID: 18387645 DOI: 10.1016/j.taap.2008.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/08/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
Abstract
Arsenic trioxide, emerging as a standard therapy for refractory acute promyelocytic leukemia, induces apoptosis in a variety of malignant cell lines. JWA, a novel retinoic acid-inducible gene, is known to be involved in apoptosis induced by various agents, for example, 12-O-tetradecanoylphorbol 13-acetate, N-4-hydroxy-phenyl-retinamide and arsenic trioxide. However, the molecular mechanisms underlying how JWA gene is functionally involved in apoptosis remain largely unknown. Herein, our studies demonstrated that treatment of arsenic trioxide produced apoptosis in HeLa and MCF-7 cells in a dose-dependent manner and paralleled with increased JWA expression. JWA expression was dependent upon generation of intracellular reactive oxygen species induced by arsenic trioxide. Knockdown of JWA attenuated arsenic trioxide induced apoptosis, and was accompanied by significantly reduced activity of caspase-9, enhanced Bad phosphorylation and inhibited MEK1/2, ERK1/2 and JNK phosphorylations. Arsenic trioxide induced loss of mitochondrial transmembrane potential was JWA-dependent. These findings suggest that JWA may serve as a pro-apoptotic molecule to mediate arsenic trioxide triggered apoptosis via a reactive oxygen species and mitochondria-associated signal pathway.
Collapse
|
35
|
Geerts D, Wallick CJ, Koomoa DLT, Koster J, Versteeg R, Go RCV, Bachmann AS. Expression of prenylated Rab acceptor 1 domain family, member 2 (PRAF2) in neuroblastoma: correlation with clinical features, cellular localization, and cerulenin-mediated apoptosis regulation. Clin Cancer Res 2008; 13:6312-9. [PMID: 17975142 DOI: 10.1158/1078-0432.ccr-07-0829] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prenylated Rab acceptor 1 domain family, member 2 (PRAF2) is a novel 19-kDa protein that has recently been implicated in human cancer. In the present study, we analyzed for the first time PRAF2 mRNA expression in a large set of human tumors. The high expression in neuroblastic tumors prompted us to analyze PRAF2 expression correlations with genetic and clinical features of these tumors. In addition, we determined the localization of PRAF2 protein in neuroblastoma cells and studied its regulation in apoptosis. EXPERIMENTAL DESIGN Affymetrix microarray analysis was done with a set of 41 different tumor types (1,426 samples) in the public domain, a set of three different neuroblastic tumor types (110 samples), and a panel of 25 neuroblastoma cell lines. The subcellular localization of endogenous PRAF2 in neuroblastoma cells was identified by immunofluorescence microscopy and apoptosis detected by Annexin V staining and poly(ADP-ribose) polymerase cleavage. RESULTS PRAF2 mRNA was detected in 970 of 1,426 samples in the public data set. All 110 neuroblastic tumors expressed PRAF2 at higher levels than any other tumor examined. Importantly, PRAF2 expression levels significantly correlated with the following clinical features: patient age at diagnosis (P = 6.19 x 10(-5)), survival (P = 1.32 x 10(-3)), International Neuroblastoma Staging System stage (P = 2.86 x 10(-4)), and MYCN amplification (P = 3.74 x 10(-3)). PRAF2 localized in bright cytoplasmic punctae and protein levels increased in neuroblastoma cells that underwent cerulenin-induced apoptosis. CONCLUSIONS Elevated PRAF2 expression levels correlated with unfavorable genetic and clinical features, suggesting PRAF2 as a candidate prognostic marker of neuroblastoma.
Collapse
Affiliation(s)
- Dirk Geerts
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tang WY, Wang L, Li C, Hu ZB, Chen R, Zhu YJ, Shen HB, Wei QY, Zhou JW. Identification and functional characterization of JWA polymorphisms and their association with risk of gastric cancer and esophageal squamous cell carcinoma in a Chinese population. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:885-94. [PMID: 17479402 DOI: 10.1080/15287390701285915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recently, a novel single nucleotide polymorphism (SNP) in the promoter of the JWA gene (-76G --> C) was identified that may alter the transcription activity and thus play a role in increased risk of bladder cancer. In this study, a screen for more novel variants in the JWA exons was undertaken by using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) followed by a PCR-restriction fragment length polymorphism (PCR-RFLP) method and evaluating the functions of newl identified JWA -76G --> C using the reporter gene assay. In addition to the -76G --> C polymorphism, another novel SNP (723T --> G) in exon 3 of JWA was identified. In a case-control study of these two SNPs in 413 gastric cancer and 250 esophageal squamous-cell carcinoma (ESCC) patients and 814 cancer-free controls in a Chinese population, data showed that both SNPs were associated with enhanced risk of these cancers. The reporter gene assay showed that the -76C variant allele lost its response to benzo[a]pyrene (BaP) exposure, compared to the -76G allele. In addition, the JWA -76C allele was found to be associated with increased gastric and esophageal cancer risks in this study population. Further studies are needed to substantiate the biological significance and related mechanisms underlying the associations.
Collapse
Affiliation(s)
- Wei-Yan Tang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li CP, Zhu YJ, Chen R, Wu W, Li AP, Liu J, Liu QZ, Wei QY, Zhang ZD, Zhou JW. Functional polymorphisms of JWA gene are associated with risk of bladder cancer. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:876-84. [PMID: 17479401 DOI: 10.1080/15287390701285824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The JWA gene is a novel cell differentiation-related gene thought to be a responsive gene in response to DNA damage and repair induced by environmental stressors. Recently, a novel single nucleotide polymorphism (SNP) was identified in the promoter of the JWA gene (-76GC) that may alter the transcription activity and thus play a role in increased risk of bladder cancer. Further, studies were conducted to screen for more novel variants in the JWA exons by using PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) followed by PCR-RFLP (PCR restriction fragment length polymorphism) methods. Finally, the functional relevance of the newly identified genetic variants in a hospital-based case-control study of 215 bladder cancer patients and 250 cancer-free controls was evaluated. In addition to the -76GC polymorphism, another novel SNP (454CA in exon2 and 723TG in exon 3) of JWA was identified. The -76GC allele and genotype frequencies were found to vary in different ethnic groups. The -76C allele and 454A allele were both associated with significantly increased risk of bladder cancer. In contrast, the 723GG genotype was associated with a decreased risk of bladder cancer. Furthermore, -76C and 454A together increased the risk of bladder caner using haplotype and stratification analysis. In conclusion, the three novel functional genetic polymorphisms of JWA gene, -76GC, 454CA, and 723TG, appear to contribute to the etiology of bladder cancer.
Collapse
Affiliation(s)
- Chun-Ping Li
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen H, Bai J, Ye J, Liu Z, Chen R, Mao W, Li A, Zhou J. JWA as a functional molecule to regulate cancer cells migration via MAPK cascades and F-actin cytoskeleton. Cell Signal 2007; 19:1315-27. [PMID: 17336041 DOI: 10.1016/j.cellsig.2007.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/07/2007] [Accepted: 01/07/2007] [Indexed: 11/21/2022]
Abstract
Mitogen activated protein kinase (MAPK) cascades are thought to mediate diverse biological functions such as cell growth, differentiation and migration. Activated MAPK may affect microtubule (MT) which is essential for cellular polarity, differentiation and motility. Data in this study show that JWA, a newly identified novel microtubule-associated protein (MAP) was essential for the rearrangement of F-actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As2O3) and phorbol ester (PMA). Over-expression of JWA alone in HeLa, B16 and HCCLM3 cancer cells effectively inhibited cellular migration; whereas, cellular migration was significantly accelerated when cells were deficient in JWA expression. The mechanism underlying these phenomena might be due to JWA affected F-actin rearrangement. Furthermore, JWA deficiency blocked anti-migratory effect produced by As2O3 but enhanced the migratory effect initiated by PMA in HeLa cells. JWA SDR-SLR motifs are not only critical for the MAPK cascades activation, but also for cell migration. Further studies found that JWA differentially regulated cell migration via ERK downstream effectors focal adhesion kinase (FAK) and cyclooxygenase-2 (COX-2). Therefore, JWA regulated-tumor cellular migration might involve MAPK cascades activation and F-actin cytoskeleton rearrangement mechanisms. Our data provide an unexpected role for JWA in tumor cell migration behaviors.
Collapse
Affiliation(s)
- Hairong Chen
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mao WG, Liu ZL, Chen R, Li AP, Zhou JW. JWA is required for the antiproliferative and pro-apoptotic effects of all-trans retinoic acid in Hela cells. Clin Exp Pharmacol Physiol 2006; 33:816-24. [PMID: 16922813 DOI: 10.1111/j.1440-1681.2006.04446.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. All-trans retinoic acid (ATRA) is known to inhibit cellular proliferation and induce differentiation and apoptosis. It usually activates gene expression by binding to a nuclear receptor that interacts with retinoic acid-response elements (RARE) and then activates the mitogen-activated protein kinase signal pathway. JWA, a newly identified ATRA-responsive gene, has recently been proposed as an important molecule for cellular differentiation induced by some chemicals, including ATRA. 2. To investigate the possible involvement of JWA in the inhibition of cellular proliferation and induction of apoptosis by ATRA, HeLa cells were stably transfected with sense or antisense JWA to establish cell lines that overexpressed or were deficient in JWA; ATRA (0.05-10 micromol/L) was used to induce cellular differentiation and apoptosis. 3. Western blot analysis revealed that ATRA caused increased expression of JWA in HeLa cells in a dose- and time-dependent manner, accompanied by activation of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. However, ERK1/2 phosphorylation induced by ATRA was inhibited in JWA-deficient HeLa cells. In JWA-overexpressing HeLa cells, ATRA showed more significant antiproliferative effects and induced more apoptosis. 4. The reporter gene assay showed that ATRA (5 mmol/L) enhanced the transcriptional activity of JWA by interacting with its promoter in the region from -194 to +107 bp (P < 0.01). Bioinformatic analysis indicated that the JWA promoter did not contain RARE, but did contain two CCAAT boxes in this fragment spanning -194 to +107 bp, which may be responsive to the ATRA-activated nuclear transcription factor CCAAT/enhancer binding proteins (C/EBP) or interacting proteins. Therefore, ATRA-inhibited cellular proliferation and -induced apoptosis in HeLa cells may be dependent on JWA transactivation via its C/EBP-binding motifs. 5. These data indicate that the inhibition of proliferation and the induction of apoptosis by ATRA are dependent on JWA expression in HeLa cells. The findings may represent a novel mechanism by which the effects of ATRA in regulating cellular proliferation and apoptosis are mediated, at least in part, by JWA expression.
Collapse
Affiliation(s)
- Wen-Ge Mao
- Department of Molecular Cell Biology and Toxicology, Jiangsu Provincial Key Laboratories of Human Functional Genomics and of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | | | | | | | | |
Collapse
|
40
|
Fo CS, Coleman CS, Wallick CJ, Vine AL, Bachmann AS. Genomic organization, expression profile, and characterization of the new protein PRA1 domain family, member 2 (PRAF2). Gene 2006; 371:154-65. [PMID: 16481131 DOI: 10.1016/j.gene.2005.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/29/2022]
Abstract
PRA1 domain family, member 2 (PRAF2) is a new 19 kDa protein with four putative transmembrane (TM) domains. PRAF2 (formerly designated JM4) belongs to a new protein family, which plays a role in the regulation of intracellular protein transport. Recently, PRAF2 was found to interact with the chemokine receptor CCR5. In order to further study the function and regulation of PRAF2, we determined its genomic structure and its protein expression pattern in normal and cancerous human tissues. PRAF2 encodes a 178-residue protein, whose sequence is related to PRAF1 (PRA1/prenylin) and PRAF3 (JWA/GTRAP3-18). The human PRAF2 gene contains three exons separated by two introns and is located on human chromosome Xp11.23. The recombinant PRAF2 protein was readily expressed in Schneider 2 (S2) insect cells, and the native protein was detected in human tissues with strong expression in the brain, small intestine, lung, spleen, and pancreas. The protein was undetectable in tissue of the testes. Strong PRAF2 protein expression was also found in human tumor tissues of the breast, colon, lung, and ovary, with a weaker staining pattern in normal tissues of the same patient. Our studies show for the first time that the CCR5-interacting PRAF2 protein is expressed in several human tissues with a possible function in ER/Golgi transport and vesicular traffic.
Collapse
Affiliation(s)
- Crystal S Fo
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
41
|
Bachmann AS, Duennebier FF, Mocz G. Genomic organization, characterization, and molecular 3D model of GDE1, a novel mammalian glycerophosphoinositol phosphodiesterase. Gene 2006; 371:144-53. [PMID: 16472945 DOI: 10.1016/j.gene.2005.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Glycerophosphodiester phosphodiesterase (GDPD) catalyzes the hydrolysis of deacylated glycerophospholipids to glycerol phosphate and alcohol. A mammalian glycerophosphoinositol phosphodiesterase, GDE1/MIR16, was recently identified as an interacting protein of the regulator of G protein signaling 16 (RGS16) providing a link between phosphoinositide metabolism and G protein signal transduction. To further understand the function and properties of human GDE1, we determined its genomic organization and its biochemical and structural characteristics. GDE1 encodes a 331-residue protein with two hydrophobic domains and contains a GDE domain that shares strong homologies with GDE1-related proteins as well as bacterial GDPDs. The human GDE1 gene is located on chromosome 16p12-p11.2 and contains six exons and five introns. A molecular 3D model, which was built based on the crystal structure of Escherichia coli GDPD (1YDY), provides the first structural information of human GDE1 and suggests a TIM barrel core as typically found in bacterial GDPDs. Furthermore, a model of the putative catalytic motif within the GDE domain was nearly identical to the corresponding domain of GDPD and highlights the individual core residues Glu97, Asp99, and His112, which are crucial to maintaining GDE1 catalytic activity. These studies provide important new insights into understanding the function of GDE1 and GDE1-related proteins.
Collapse
Affiliation(s)
- André S Bachmann
- Cancer Research Center of Hawaii, Natural Products and Cancer Biology Program, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | | | |
Collapse
|
42
|
Huang S, Shen Q, Mao WG, Li AP, Ye J, Liu QZ, Zou CP, Zhou JW. JWA, a novel signaling molecule, involved in all-trans retinoic acid induced differentiation of HL-60 cells. J Biomed Sci 2006; 13:357-71. [PMID: 16468075 DOI: 10.1007/s11373-005-9068-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 12/28/2005] [Indexed: 10/25/2022] Open
Abstract
JWA (AF070523) was originally identified as a novel all-trans retinoic acid (ATRA) responsible gene in primary human tracheal bronchial epithelial cells. For the notable performance achieved by ATRA in the differentiation induction therapy, we investigated the role of JWA in ATRA-mediated differentiation of the human myeloid leukemia HL-60 cells. We found that concomitant with the progressive cell differentiation, JWA expression was up-regulated by ATRA in a dose- and time-dependent manner. Inhibition of JWA expression by RNA interference partially blocked ATRA-induced differentiation and growth inhibition of HL-60 cells. Pre-treatment of phorbol-12-myristate-13-acetate (TPA), a PKC activator, decreased ATRA-mediated differentiation, companied with the down-regulation of JWA expression. Arsenic trioxide (As(2)O(3), 0.5 microM) enhanced the cellular differentiation induced by 0.01 microM ATRA, but had no noticeable effect on the differentiation induced by 0.1 microM ATRA. Concurrent with the enhancement, JWA expression was up-regulated. All the data suggest that up-regulation of JWA expression is essential for ATRA-induced differentiation of HL-60 cells. And JWA, associated with PKC, is involved in its signal pathways. Ideal therapeutic efficacy with low toxicity may be obtained if low doses of ATRA (0.01 microM) and As(2)O(3) (0.5 microM) are combined. These findings may present a novel mechanism that cellular differentiation and growth inhibition induced by ATRA are mediated at least in part through regulation of JWA expression. JWA may be a novel molecular marker for ATRA-induced HL-60 cell differentiation. ATRA up-regulates JWA expression by stimulating the transcriptional activity of JWA gene promoter.
Collapse
Affiliation(s)
- Shu Huang
- Department of Molecular Cell Biology and Toxicology, Jiangsu Provincial Key Laboratory of Human Functional Genomics and Applied Toxicology, School of Public Health, Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang S, Shen Q, Mao WG, Li AP, Ye J, Liu QZ, Zou CP, Zhou JW. JWA, a novel signaling molecule, involved in the induction of differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 2006; 341:440-50. [PMID: 16430862 DOI: 10.1016/j.bbrc.2005.12.197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 12/30/2005] [Indexed: 11/25/2022]
Abstract
Dysregulation of hematopoietic cellular differentiation contributes to leukemogenesis. Unfortunately, relatively little is known about how cell differentiation is regulated. JWA (AF070523) is a novel all-trans retinoic acid (ATRA) responsible gene that initially isolated from ATRA-treated primary human tracheal bronchial epithelial cells. For the notable performance achieved by ATRA in the differentiation induction therapy, we investigated the role of JWA in the induction of differentiation of human myeloid leukemia cells. Our results showed that JWA was not only regulated by ATRA but also by several other differentiation inducers such as phorbol-12-myristate-13-acetate (TPA), arabinoside (Ara-C), and hemin, involved in the mechanisms of differentiation along different lineages of myeloid leukemia cells arrested at different stages of development. Generally, JWA was up-regulated by these inducers in a time-dependent manner. Inhibition of JWA by RNA interference decreased the induced cellular differentiation. However, in NB4 cells treated with ATRA, dissimilar with others, the expression of JWA was down-regulated, and the induced cellular differentiation could be enhanced by silencing of JWA. Collectively, JWA works as a potential critical molecule, associated with multi-directional differentiation of human myeloid leukemia cells. In NB4 cells, JWA may function as a lineage-restricted gene during differentiation along the monocyte/macrophage-like or granulocytic pathway.
Collapse
Affiliation(s)
- Shu Huang
- Department of Molecular Toxicology, The Jiangsu Key Laboratory of Human Functional Genomics and Applied Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|