1
|
He JH, Shen W, Han D, Yan M, Luo M, Deng H, Weng S, He J, Xu X. Molecular mechanism of the interaction between Megalocytivirus-induced virus-mock basement membrane (VMBM) and lymphatic endothelial cells. J Virol 2023; 97:e0048023. [PMID: 37877715 PMCID: PMC10688346 DOI: 10.1128/jvi.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.
Collapse
Affiliation(s)
- Jian-hui He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Deyu Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Muting Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Mengting Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Xu M, Chen X, Yu Z, Li X. Receptors that bind to PEDF and their therapeutic roles in retinal diseases. Front Endocrinol (Lausanne) 2023; 14:1116136. [PMID: 37139333 PMCID: PMC10149954 DOI: 10.3389/fendo.2023.1116136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.
Collapse
|
3
|
Bae E, Huang P, Müller-Greven G, Hambardzumyan D, Sloan AE, Nowacki AS, Marko N, Carlin CR, Gladson CL. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. Nat Commun 2022; 13:4268. [PMID: 35879332 PMCID: PMC9314429 DOI: 10.1038/s41467-022-31981-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Therapeutic targeting of angiogenesis in glioblastoma has yielded mixed outcomes. Investigation of tumor-associated angiogenesis has focused on the factors that stimulate the sprouting, migration, and hyperproliferation of the endothelial cells. However, little is known regarding the processes underlying the formation of the tumor-associated vessels. To address this issue, we investigated vessel formation in CD31+ cells isolated from human glioblastoma tumors. The results indicate that overexpression of integrin α3β1 plays a central role in the promotion of tube formation in the tumor-associated endothelial cells in glioblastoma. Blocking α3β1 function reduced sprout and tube formation in the tumor-associated endothelial cells and vessel density in organotypic cultures of glioblastoma. The data further suggest a mechanistic model in which integrin α3β1-promoted calcium influx stimulates macropinocytosis and directed maturation of the macropinosomes in a manner that promotes lysosomal exocytosis during nascent lumen formation. Altogether, our data indicate that integrin α3β1 may be a therapeutic target on the glioblastoma vasculature.
Collapse
Affiliation(s)
- Eunnyung Bae
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | | | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Andrew Edward Sloan
- Department of Neurosurgery, Seidman Cancer Center, Cleveland, OH, USA
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Nicholas Marko
- Department of Neurosurgery, LewisGale Medical Center, Salem, VA, USA
| | - Cathleen R Carlin
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Candece L Gladson
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA.
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
- The Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Großkopf AK, Schlagowski S, Fricke T, Ensser A, Desrosiers RC, Hahn AS. Plxdc family members are novel receptors for the rhesus monkey rhadinovirus (RRV). PLoS Pathog 2021; 17:e1008979. [PMID: 33657166 PMCID: PMC7959344 DOI: 10.1371/journal.ppat.1008979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/15/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
The rhesus monkey rhadinovirus (RRV), a γ2-herpesvirus of rhesus macaques, shares many biological features with the human pathogenic Kaposi's sarcoma-associated herpesvirus (KSHV). Both viruses, as well as the more distantly related Epstein-Barr virus, engage cellular receptors from the Eph family of receptor tyrosine kinases (Ephs). However, the importance of the Eph interaction for RRV entry varies between cell types suggesting the existence of Eph-independent entry pathways. We therefore aimed to identify additional cellular receptors for RRV by affinity enrichment and mass spectrometry. We identified an additional receptor family, the Plexin domain containing proteins 1 and 2 (Plxdc1/2) that bind the RRV gH/gL glycoprotein complex. Preincubation of RRV with soluble Plxdc2 decoy receptor reduced infection by ~60%, while overexpression of Plxdc1 and 2 dramatically enhanced RRV susceptibility and cell-cell fusion of otherwise marginally permissive Raji cells. While the Plxdc2 interaction is conserved between two RRV strains, 26-95 and 17577, Plxdc1 specifically interacts with RRV 26-95 gH. The Plxdc interaction is mediated by a short motif at the N-terminus of RRV gH that is partially conserved between isolate 26-95 and isolate 17577, but absent in KSHV gH. Mutation of this motif abrogated the interaction with Plxdc1/2 and reduced RRV infection in a cell type-specific manner. Taken together, our findings characterize Plxdc1/2 as novel interaction partners and entry receptors for RRV and support the concept of the N-terminal domain of the gammaherpesviral gH/gL complex as a multifunctional receptor-binding domain. Further, Plxdc1/2 usage defines an important biological difference between KSHV and RRV.
Collapse
Affiliation(s)
- Anna K. Großkopf
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah Schlagowski
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Thomas Fricke
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Armin Ensser
- Universitätsklinikum Erlangen, Institute for Clinical and Molecular Virology, Erlangen, Germany
| | | | - Alexander S. Hahn
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
5
|
Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules. Cell Syst 2019; 8:456-466.e5. [DOI: 10.1016/j.cels.2019.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/13/2018] [Accepted: 04/19/2019] [Indexed: 11/20/2022]
|
6
|
Balzano M, De Grandis M, Vu Manh TP, Chasson L, Bardin F, Farina A, Sergé A, Bidaut G, Charbord P, Hérault L, Bailly AL, Cartier-Michaud A, Boned A, Dalod M, Duprez E, Genever P, Coles M, Bajenoff M, Xerri L, Aurrand-Lions M, Schiff C, Mancini SJ. Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the Peri-sinusoidal Hematopoietic Stem Cell Niche. Cell Rep 2019; 26:3257-3271.e8. [DOI: 10.1016/j.celrep.2019.02.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/24/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
|
7
|
Falchetti ML, D'Alessandris QG, Pacioni S, Buccarelli M, Morgante L, Giannetti S, Lulli V, Martini M, Larocca LM, Vakana E, Stancato L, Ricci-Vitiani L, Pallini R. Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1. Int J Cancer 2018; 144:1331-1344. [PMID: 30414187 PMCID: PMC6590500 DOI: 10.1002/ijc.31983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bevacizumab, a VEGF‐targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t‐test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t‐test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over‐expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient‐derived glioma stem‐like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab‐treated rats. Our study indicates that bevacizumab‐induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells. What's new? Bevacizumab, a VEGF‐targeting monoclonal antibody, has been observed to trigger an infiltrative growth pattern in glioblastoma as an escape mechanism. The mechanisms underlying this gliomatosis‐like growth pattern, however, remain unclear. Here, the authors found that the infiltrative growth pattern occurs mostly along perivascular spaces and relies on the over‐expression of PLXDC1 by tumor cells and on the restoration of the endothelial component of blood brain barrier. Altogether, the data show that the brain infiltration induced by bevacizumab is mainly driven by the vascular endothelium. Importantly, inhibition of PLXDC1 prevents bevacizumab‐induced infiltrative growth, resulting in significant increase of survival.
Collapse
Affiliation(s)
| | - Quintino Giorgio D'Alessandris
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Liliana Morgante
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Maria Larocca
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliza Vakana
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Louis Stancato
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Alečković M, Wei Y, LeRoy G, Sidoli S, Liu DD, Garcia BA, Kang Y. Identification of Nidogen 1 as a lung metastasis protein through secretome analysis. Genes Dev 2017; 31:1439-1455. [PMID: 28827399 PMCID: PMC5588926 DOI: 10.1101/gad.301937.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
Abstract
Secreted proteins play crucial roles in mediating tumor-stroma interactions during metastasis of cancer to different target organs. To comprehensively profile secreted proteins involved in lung metastasis, we applied quantitative mass spectrometry-based proteomics and identified 392 breast cancer-derived and 302 melanoma-derived proteins secreted from highly lung metastatic cells. The cancer-specific lung metastasis secretome signatures (LMSSs) displayed significant prognostic value in multiple cancer clinical data sets. Moreover, we observed a significant overlap of enriched pathways between the LMSSs of breast cancer and melanoma despite an overall small overlap of specific proteins, suggesting that common biological processes are executed by different proteins to enable the two cancer types to metastasize to the lung. Among the novel candidate lung metastasis proteins, Nidogen 1 (NID1) was confirmed to promote lung metastasis of breast cancer and melanoma, and its expression is correlated with poor clinical outcomes. In vitro functional analysis further revealed multiple prometastatic functions of NID1, including enhancing cancer cell migration and invasion, promoting adhesion to the endothelium and disrupting its integrity, and improving vascular tube formation capacity. As a secreted prometastatic protein, NID1 may be developed as a new biomarker for disease progression and therapeutic target in breast cancer and melanoma.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel D Liu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
9
|
Zhou Y, Zhu Y, Fan X, Zhang C, Wang Y, Zhang L, Zhang H, Wen T, Zhang K, Huo X, Jiang X, Bu Y, Zhang Y. NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget 2017; 8:33110-33121. [PMID: 28416770 PMCID: PMC5464854 DOI: 10.18632/oncotarget.16145] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Nidogen-1 (NID1) has been identified as a novel candidate diagnostic biomarker of ovarian cancer in our previous study. Nevertheless, the role of NID1 in the pathogenesis of ovarian cancer is unclear. In the present study, we demonstrated that NID1 was a mesenchymal associated gene and its high expression was significantly correlated with shorter overall survival of ovarian cancer patients. The ectopic expression of NID1 in OVCAR-3 cells revealed a epithelial-mesenchymal transition (EMT) phenotype accompanied by enhancement of motility, invasiveness and cisplatin resistance, whereas the knockdown of NID1 was sufficient to convert HEY cells into epithelial phenotype with decreased capability of motility, invasiveness and cisplatin resistance. Mechanistic studies disclosed that NID1 activated ERK/MAPK signaling pathway to promote EMT. Collectively, our findings have uncovered the molecular mechanisms of NID1 in promoting ovarian cancer metastasis and chemoresistance, and provide a rationale for the therapeutic potential of NID1 suppression in ovarian cancer.
Collapse
Affiliation(s)
- Ya Zhou
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Zhu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Fan
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lian Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Huan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Wen
- First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Kaina Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Huo
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Carpenter RL, Paw I, Zhu H, Sirkisoon S, Xing F, Watabe K, Debinski W, Lo HW. The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis. Oncotarget 2016; 6:22653-65. [PMID: 26093087 PMCID: PMC4673189 DOI: 10.18632/oncotarget.4248] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
We recently discovered that truncated glioma-associated oncogene homolog 1 (TGLI1) is highly expressed in glioblastoma (GBM) and linked to increased GBM vascularity. The mechanisms underlying TGLI1-mediated angiogenesis are unclear. In this study, we compared TGLI1- with GLI1-expressing GBM xenografts for the expression profile of 84 angiogenesis-associated genes. The results showed that expression of six genes were upregulated and five were down-regulated in TGLI1-carrying tumors compared to those with GLI1. Vascular endothelial growth factor-C (VEGF-C) and tumor endothelial marker 7 (TEM7) were selected for further investigations because of their significant correlations with high vascularity in 135 patient GBMs. TGLI1 bound to both VEGF-C and TEM7 gene promoters. Conditioned medium from TGLI1-expressing GBM cells strongly induced tubule formation of brain microvascular endothelial cells, and the induction was prevented by VEGF-C/TEM7 knockdown. Immunohistochemical analysis of 122 gliomas showed that TGLI1 expression was positively correlated with VEGF-C, TEM7 and microvessel density. Analysis of NCBI Gene Expression Omnibus datasets with 161 malignant gliomas showed an inverse relationship between tumoral VEGF-C, TEM7 or microvessel density and patient survival. Together, our findings support an important role that TGLI1 plays in GBM angiogenesis and identify VEGF-C and TEM7 as novel TGLI1 target genes of importance to GBM vascularity.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ivy Paw
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hu Zhu
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
11
|
Mittal V, Nolan DJ. Genomics and proteomics approaches in understanding tumor angiogenesis. Expert Rev Mol Diagn 2014; 7:133-47. [PMID: 17331062 DOI: 10.1586/14737159.7.2.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional genomic and proteomic approaches have begun to revolutionize cancer research. The advent of powerful technologies, such as DNA microarrays, serial analysis of gene expression, RNA interference and proteomics, has accelerated investigations of gene identification and function at a scale never before accomplished. Approaches integrating these technologies with high-throughput forward and reverse genetic screens, are already providing insights into the mechanistic understanding of angiogenesis, leading to the identification of proteins that can be used for selective targeting of tumor vessels.
Collapse
Affiliation(s)
- Vivek Mittal
- Cold Spring Harbor Laboratory, Cancer Genome Research Center, NY, USA.
| | | |
Collapse
|
12
|
Bagley RG, Rouleau C, Weber W, Mehraein K, Smale R, Curiel M, Callahan M, Roy A, Boutin P, St Martin T, Nacht M, Teicher BA. Tumor endothelial marker 7 (TEM-7): a novel target for antiangiogenic therapy. Microvasc Res 2011; 82:253-62. [PMID: 21958527 DOI: 10.1016/j.mvr.2011.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/10/2011] [Accepted: 09/09/2011] [Indexed: 12/25/2022]
Abstract
Antiangiogenesis has been validated as a therapeutic strategy to treat cancer, however, a need remains to identify new targets and therapies for specific diseases and to improve clinical benefit from antiangiogenic agents. Tumor endothelial marker 7 (TEM-7) was investigated as a possible target for therapeutic antiangiogenic intervention in cancer. TEM-7 expression was assessed by in situ hybridization or by immunohistochemistry (IHC) in 130 formalin-fixed paraffin-embedded (FFPE) and 410 frozen human clinical specimens of cancer plus 301 normal tissue samples. In vitro TEM-7 expression was evaluated in 4 human endothelial cell models and in 32 human cancer cell lines by RT-PCR and flow cytometry. An anti-TEM-7 antibody was tested in vitro on human SKOV3 ovarian and MDA-MB-231 breast carcinoma cells that expressed TEM-7 in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis assays. In frozen tumor tissues, TEM-7 mRNA and protein was detected in all but one of the cancer types tested and was infrequently expressed in normal frozen tissues. In FFPE tumor tissues, TEM-7 protein was detected by IHC in colon, breast, lung, bladder, ovarian and endometrial cancers and in sarcomas. TEM-7 protein was not detected in head and neck, prostate or liver cancers. TEM-7 expression was restricted to the vasculature and was absent from tumor cells. In vitro, TEM-7 was not detected in human microvascular endothelial cells (HMVEC) or human umbilical vein endothelial cells (HUVEC) but was induced in endothelial precursor/progenitor cells (EPC) in the presence of the mitogen phorbol ester PMA. An anti-TEM-7 antibody mediated ADCC and phagocytosis in SKOV3 and MDA-MB-231 cell lines infected with an adenovirus expressing TEM-7. These data demonstrate that TEM-7 is a vascular protein associated with angiogenic states. TEM-7 is a novel and attractive target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Rebecca G Bagley
- Genzyme Corporation, 49 New York Ave., Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Miller-Delaney SFC, Lieberam I, Murphy P, Mitchell KJ. Plxdc2 is a mitogen for neural progenitors. PLoS One 2011; 6:e14565. [PMID: 21283688 PMCID: PMC3024984 DOI: 10.1371/journal.pone.0014565] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 12/03/2010] [Indexed: 12/27/2022] Open
Abstract
The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system.
Collapse
Affiliation(s)
| | - Ivo Lieberam
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York, United States of America
| | - Paula Murphy
- Department of Zoology, Trinity College Dublin, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Dutta D, Ray S, Home P, Saha B, Wang S, Sheibani N, Tawfik O, Cheng N, Paul S. Regulation of angiogenesis by histone chaperone HIRA-mediated incorporation of lysine 56-acetylated histone H3.3 at chromatin domains of endothelial genes. J Biol Chem 2010; 285:41567-77. [PMID: 21041298 DOI: 10.1074/jbc.m110.190025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is critically dependent on endothelial cell-specific transcriptional mechanisms. However, the molecular processes that regulate chromatin domains and thereby dictate transcription of key endothelial genes are poorly understood. Here, we report that, in endothelial cells, angiogenic signal-mediated transcriptional induction of Vegfr1 (vascular endothelial growth factor receptor 1) is dependent on the histone chaperone, HIRA (histone cell cycle regulation-defective homolog A). Our molecular analyses revealed that, in response to angiogenic signals, HIRA is induced in endothelial cells and mediates incorporation of lysine 56 acetylated histone H3.3 (H3acK56) at the chromatin domain of Vegfr1. HIRA-mediated incorporation of H3acK56 is a general mechanism associated with transcriptional induction of several angiogenic genes in endothelial cells. Depletion of HIRA inhibits H3acK56 incorporation and transcriptional induction of Vegfr1 and other angiogenic genes. Our functional analyses revealed that depletion of HIRA abrogates endothelial network formation on Matrigel and inhibits angiogenesis in an in vivo Matrigel plug assay. Furthermore, analysis in a laser-induced choroidal neovascularization model showed that depletion of HIRA significantly inhibits neovascularization. Our results for the first time decipher a histone chaperone (HIRA)-dependent molecular mechanism in endothelial gene regulation and indicate that histone chaperones could be new targets for angiogenesis therapy.
Collapse
Affiliation(s)
- Debasree Dutta
- Department of Pathology and Laboratory Medicine, Division of Cancer and Developmental Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
VP23R of infectious spleen and kidney necrosis virus mediates formation of virus-mock basement membrane to provide attaching sites for lymphatic endothelial cells. J Virol 2010; 84:11866-75. [PMID: 20810728 DOI: 10.1128/jvi.00990-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Putative open reading frames (ORFs) encoding laminin-like proteins are found in all members of the genus Megalocytivirus, family Iridoviridae. This is the first study that identified the VP23R protein encoded by ORF23R of the infectious spleen and kidney necrosis virus (ISKNV), a member of these genes of megalocytiviruses. The VP23R mRNA covering the ISKNV genomic coordinates 19547 to 22273 was transcribed ahead of the major capsid protein. Immunofluorescence analysis demonstrated that VP23R was expressed on the plasma membrane of the ISKNV-infected cells and could not be a viral envelope protein. Residues 292 to 576 of VP23R are homologous to the laminin γ1III2-6 fragment, which covers the nidogen-binding site. An immunoprecipitation assay showed that VP23R could interact with nidogen-1, and immunohistochemistry showed that nidogen-1 was localized on the outer membrane of the infected cells. Electron microscopy showed that a virus-mock basement membrane (VMBM) was formed on the surface of the infected cells and a layer of endothelial cells (ECs) was attached to the VMBM. The VMBM contained VP23R and nidogen-1 but not collagen IV. The attached ECs were identified as lymphatic endothelial cells (LECs), which have unique feature of overlapping intercellular junctions and can be stained by immunohistochemistry using an antibody against a specific lymphatic marker, Prox-1. Such infection signs have never been described in viruses. Elucidating the functions of LECs attached to the surface of the infected cells may be useful for studies on the pathogenic mechanisms of megalocytiviruses and may also be important for studies on lymphangiogenesis and basement membrane functions.
Collapse
|
16
|
Lee HK, Seo IA, Suh DJ, Park HT. Nidogen plays a role in the regenerative axon growth of adult sensory neurons through Schwann cells. J Korean Med Sci 2009; 24:654-9. [PMID: 19654948 PMCID: PMC2719197 DOI: 10.3346/jkms.2009.24.4.654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/26/2008] [Indexed: 01/08/2023] Open
Abstract
We previously reported that nidogen is an extracellular matrix protein regulating Schwann cell proliferation and migration. Since Schwann cells play a critical role in peripheral nerve regeneration, nidogen may play a role in it via regulation of Schwann cells. Here, we demonstrate direct evidence that nidogen induces elongation of regenerative axon growth of adult sensory neurons, and that the effect is Schwann cell dependent. Continuous infusion of recombinant ectodomain of tumor endothelial marker 7, which specifically blocks nidogen function in Schwann cells, suppressed regenerative neurite growth in a sciatic nerve axotomy model. Taken together, it is likely that nidogen is required for proper regeneration of peripheral nerves after injury.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology & Medical Science Research Institute, College of Medicine, Dong-A University, Busan, Korea
| | - In Ae Seo
- Department of Physiology & Medical Science Research Institute, College of Medicine, Dong-A University, Busan, Korea
| | - Duk Joon Suh
- Department of Physiology & Medical Science Research Institute, College of Medicine, Dong-A University, Busan, Korea
| | - Hwan Tae Park
- Department of Physiology & Medical Science Research Institute, College of Medicine, Dong-A University, Busan, Korea
| |
Collapse
|
17
|
Lee HK, Seo IA, Suh DJ, Lee HJ, Park HT. A novel mechanism of methylglyoxal cytotoxicity in neuroglial cells. J Neurochem 2008; 108:273-84. [PMID: 19012752 DOI: 10.1111/j.1471-4159.2008.05764.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methylglyoxal (MGO) is an endogenous dicarbonyl compound that is highly produced in hyperglycemic conditions. It forms advanced glycation endproducts that are believed to contribute, as etiological factors, to the pathophysiology of diabetic complications. In addition, MGO suppresses cell viability through the induction of apoptosis in vitro. In this study, we have, for the first time, demonstrated the effect of MGO on the gp130 cytokine-induced signal transducer and activator of transcription 3 (STAT3) responses in RT4 schwannoma, PC12 pheochromocytoma and U87MG glioma cells. At dose that very mildly affects cell viability, MGO rapidly induces endocytotic degradation of gp130, which involves the di-leucine internalization motif in the cytoplasmic domain of gp130, without affecting other growth factor receptors. Concomitant inhibition of basal and interleukin-6-induced STAT3 activation was observed following pre-treatment with MGO. The inhibitory effect of MGO on the gp130/STAT3 signaling was prevented by the pre-treatment with an advanced glycation endproduct scavenger aminoguanidine. Finally, these deleterious effects of MGO on STAT3 signaling led to down-regulation of a STAT3 target gene, Bcl-2, and sensitized cellular toxicity induced by H(2)O(2) and etoposide. Our data indicate that MGO affects cell viability via desensitization of gp130/STAT3 signaling, which is the key signaling pathway for cell survival, and thereby promotes cytotoxicity.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research, Institute, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | |
Collapse
|
18
|
Lee HK, Seo IA, Shin YK, Lee SH, Seo SY, Suh DJ, Park HT. Netrin-1 specifically enhances cell spreading on fibronectin in human glioblastoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:225-30. [PMID: 19967060 DOI: 10.4196/kjpp.2008.12.5.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Netrins are secreted molecules and involved in axon guidance, cell migration and tumor development. Recent studies revealed that netrins perform novel functions in such processes as epithelial development and angiogenesis without operating through the classical netrin receptors, DCC (Deleted in Colorectal Cancer) and Unc5h. In the present study, we investigated the roles of netrin-1 and its receptors in cell spreading of human glioblastoma cells, and found that netrin-1 haptotactically enhanced fibronectin-induced cell spreading and focal adhesion formation in U373 glioblastoma cells. Netrin-1 binding to the U373 cell membrane was blocked by an antibody against alphav integrin subunit, but not by an anti-DCC or anti-Unc5h antibody. In addition, enhancement of the fibronectin response by netrin-1 was abrogated by a function blocking antibody against integrin alphavbeta3. Since the alphav subunit of the integrin family plays an important role in the pathophysiological aspects of cell migration, including tumor angiogenesis and metastasis, our data provide important insight into the molecular mechanism of netrin function.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee HK, Seo IA, Lee SH, Seo SY, Kim KS, Park HT. Tyrphostin ErbB2 Inhibitors AG825 and AG879 Have Non-specific Suppressive Effects on gp130/ STAT3 Signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:281-6. [PMID: 19967068 DOI: 10.4196/kjpp.2008.12.5.281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although the interaction between gp130 and the ErbB family has frequently been shown in cancer cells, the mechanism of this interaction remains unclear and controversial. In the present study, we found that specific tyrphostin inhibitors of ErbB2 (AG825 and AG879), but not ErbB1 inhibitor (AG1478), suppressed IL-6-induced tyrosine phosphorylation of STAT3 in schwannoma cells. However, biochemical evidence for transactivation of ErbB2 by IL-6 was not observed. Additionally, the inhibition of ErbB2 expression, with either a specific RNAi or transfection of an ErbB2 mutant lacking the intracellular domain did not inhibit the IL-6-induced tyrosine phosphorylation of STAT3. Thus, it seems that tyrphostins, which are known as specific inhibitors of the ErbB2 kinase, may have non-specific suppressive effects on the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Ho MSP, Böse K, Mokkapati S, Nischt R, Smyth N. Nidogens-Extracellular matrix linker molecules. Microsc Res Tech 2008; 71:387-95. [PMID: 18219668 DOI: 10.1002/jemt.20567] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nidogens/entactins are a family of highly conserved, sulfated glycoproteins. Biochemical studies have implicated them as having a major structural role in the basement membrane. However despite being ubiquitous components of this specialized extracellular matrix and having a wide spectrum of binding partners, genetic analysis has shown that they are not required for the overall architecture of the basement membrane. Rather in development they play an important role in its stabilization especially in tissues undergoing rapid growth or turnover. Nidogen breakdown has been implicated as a key event in the basement membrane degradation occurring in mammary gland involution. A number of studies, most compellingly those in C. elegans, demonstrated that nidogens may have other nonstructural roles and be involved in axonal pathfinding and synaptic transmission.
Collapse
Affiliation(s)
- Matthew S P Ho
- Center for Biochemistry and Center for Molecular Medicine, Medical Faculty, University of Cologne, D-50924 Cologne, Germany
| | | | | | | | | |
Collapse
|
21
|
Tumor Endothelial Markers. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Lee HK, Seo IA, Park HK, Park YM, Ahn KJ, Yoo YH, Park HT. Nidogen is a prosurvival and promigratory factor for adult Schwann cells. J Neurochem 2007; 102:686-98. [PMID: 17437540 DOI: 10.1111/j.1471-4159.2007.04580.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schwann cells provide a favorable microenvironment for successful regeneration of the injured peripheral nerve. Even though the roles of extracellular matrix proteins in the Schwann cell physiology have long been studied, the precise function of nidogen, a ubiquitous component of the basal lamina, in Schwann cells is unknown. In this study, we show that the protein and mRNA messages for nidogens are up-regulated in the sciatic nerve after sciatic nerve transection. We demonstrate that recombinant nidogen-1 increased the process formation of Schwann cells cultured from adult rat sciatic nerves and that nidogen-1 prevented Schwann cells from serum-deprivation-induced death. In addition, nidogen-1 promoted spontaneous migration of Schwann cells in two-independent migration assays. The Schwann cell responses to the recombinant nidogen-1 were specific because the nidogen-binding ectodomain of tumor endothelial marker 7 inhibited the nidogen responses without affecting Schwann cell response to laminin. Finally, we found that beta1 subunit-containing integrins play a key role in the nidogen-induced process formation, survival, and migration of Schwann cells. Altogether, these results indicate that nidogen has a prosurvival and promigratory activity on Schwann cells in the peripheral nerve.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Beaty RM, Edwards JB, Boon K, Siu IM, Conway JE, Riggins GJ. PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium. J Neurooncol 2006; 81:241-8. [PMID: 17031559 DOI: 10.1007/s11060-006-9227-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/24/2006] [Indexed: 01/03/2023]
Abstract
Glioblastomas are a highly aggressive brain tumor, with one of the highest rates of new blood vessel formation. In this study we used a combined experimental and bioinformatics strategy to determine which genes were highly expressed and specific for glioblastoma endothelial cells (GBM-ECs), compared to gene expression in normal tissue and endothelium. Starting from fresh glioblastomas, several rounds of negative and positive selection were used to isolate GBM-ECs and extract total RNA. Using Serial Analysis of Gene Expression (SAGE), 116,259 transcript tags (35,833 unique tags) were sequenced. From this expression analysis, we found 87 tags that were not expressed in normal brain. Further subtraction of normal endothelium, bone marrow, white blood cell and other normal tissue transcripts resulted in just three gene transcripts, ANAPC10, PLXDC1(TEM7), and CYP27B1, that are highly specific to GBM-ECs. Immunohistochemistry with an antibody for PLXDC1 showed protein expression in GBM microvasculature, but not in the normal brain endothelium tested. Our results suggest that this study succeeded in identifying GBM-EC specific genes. The entire gene expression profile for the GBM-ECs and other tissues used in this study are available at SAGE Genie (http://cgap.nci.nih.gov/SAGE). Functionally, the protein products of the three tags most specific to GBM-ECs have been implicated in processes critical to endothelial cell proliferation and differentiation, and are potential targets for anti-angiogenesis based therapy.
Collapse
Affiliation(s)
- Robert M Beaty
- Department of Neurosurgery, Johns Hopkins University Medical School, CRB II Rm. 257 , 1550 Orleans Street, Baltimore, MD, 21231, USA
| | | | | | | | | | | |
Collapse
|
24
|
Vallon M, Essler M. Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin alpha(v)beta3 to glycosaminoglycans. J Biol Chem 2006; 281:34179-88. [PMID: 16982628 DOI: 10.1074/jbc.m605291200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor endothelial marker (TEM) 5 is a member of the adhesion family of G-protein-coupled receptors and up-regulated in endothelial cells during tumor and physiologic angiogenesis. Here, we report that TEM5 is expressed on the surface of endothelial cells. A soluble TEM5 (sTEM5) fragment is shed by endothelial cells during capillary-like network formation and upon growth factor stimulation. We found that sTEM5 binds to several glycosaminoglycans. Furthermore, sequence analysis and functional and biochemical studies revealed that sTEM5 contains a cryptic RGD-binding site for integrin alpha(v)beta3. Matrix metalloprotease 9-processed, but not full-length, sTEM5 mediated endothelial cell adhesion by direct interaction with integrin alpha(v)beta3. Adhesion to proteolytically processed sTEM5 (ppsTEM5) or glycosaminoglycan-bound ppsTEM5 promoted survival of growth factor deprived endothelial cells. ppsTEM5-mediated cell survival was inhibited by a function blocking integrin alpha(v)beta3 antibody. Based on our results we conclude that sTEM5 is shed by endothelial cells during angiogenesis and binds to glycosaminoglycans present on extracellular matrix and cell surface proteoglycans. Further proteolytic processing of sTEM5 leads to exposure of its RGD motif mediating endothelial cell survival by linking integrin alpha(v)beta3 to glycosaminoglycans.
Collapse
Affiliation(s)
- Mario Vallon
- Technical University of Munich, Department of Nuclear Medicine, Ismaninger Strasse 22, Munich 81675, Germany
| | | |
Collapse
|