1
|
Bendtsen MK, Nowak JS, Paiva P, López Hernández M, Ferreira P, Pedersen JS, Bekker NS, Viezzi E, Bisiak F, Brodersen DE, Pedersen LH, Zervas A, Fernandes PA, Ramos MJ, Stougaard P, Thøgersen MS, Otzen DE. Cold-Active Starch-Degrading Enzymes from a Cold and Alkaline Greenland Environment: Role of Ca 2+ Ions and Conformational Dynamics in Psychrophilicity. Biomolecules 2025; 15:415. [PMID: 40149951 PMCID: PMC11940188 DOI: 10.3390/biom15030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Cold-active enzymes hold promise for energy-efficient processes. Amylases are widely used in household and industrial applications, but only a few are cold-active. Here we describe three novel secreted amylases, Rho13, Ika2 and I3C6, all from bacteria growing in the cold and alkaline ikaite columns in Greenland. They all hydrolyzed starch to smaller malto-oligomers, but only Rho13 and Ika2 hydrolyzed cyclodextrins, and only Ika2 displayed transglycosylation activity. Ika2 forms a stable dimer, while both Rho13 and I3C6 are mainly monomeric. They all have optimal active temperatures around 30-35 °C and significant enzymatic activity below 20 °C, but Rho13 and I3C6 had an alkaline optimal pH, while Ika2 was markedly acidophilic. They showed complex dependence on Ca2+ concentration, with the activity of Rho13 and I3C6 following a bell-shaped curve and Ika2 being unaffected; however, removal of Ca2+ reduced the stability of all three enzymes. Loss of structure occurred well above the temperature of optimal activity, showing the characteristic psychrophilic divorce between activity and stability. MD simulations showed that Ika2 did not have a well-defined Ca2+ binding site, while Rho13 and I3C6 both maintained one stably bound Ca2+ ion. We identified psychrophilic features as higher levels of backbone fluctuations compared to mesophilic counterparts, based on a lower number of internal hydrogen bonds and salt bridges. This increased fluctuation was also found in regions outside the active site and may provide easier substrate access and accommodation, as well as faster barrier transitions. Our work sheds further light on the many ways in which psychrophilic enzymes adapt to increased catalysis at lower temperatures.
Collapse
Affiliation(s)
- Malthe Kjær Bendtsen
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
| | - Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
| | - Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Marcos López Hernández
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
- Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
- Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Nicolai Sundgaard Bekker
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (N.S.B.); (L.H.P.)
| | - Elia Viezzi
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
| | - Francesco Bisiak
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark; (F.B.); (D.E.B.)
| | - Ditlev E. Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark; (F.B.); (D.E.B.)
| | - Lars Haastrup Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (N.S.B.); (L.H.P.)
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (P.S.); (M.S.T.)
| | - Pedro A. Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Maria Joao Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (P.P.); (P.F.); (P.A.F.); (M.J.R.)
| | - Peter Stougaard
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (P.S.); (M.S.T.)
| | - Mariane Schmidt Thøgersen
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark; (A.Z.); (P.S.); (M.S.T.)
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (M.K.B.); (J.S.N.); (M.L.H.); (J.S.P.); (E.V.)
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark; (F.B.); (D.E.B.)
| |
Collapse
|
2
|
Zhou S, Pan B, Kuang X, Chen S, Liu L, Song Y, Zhao Y, Xu X, Cheng X, Yang J. Characterization and mechanism investigation of salt-activated methionine sulfoxide reductase A from halophiles. iScience 2024; 27:110806. [PMID: 39297162 PMCID: PMC11408995 DOI: 10.1016/j.isci.2024.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Halophiles, thriving in harsh saline environments, capture scientific interest due to their remarkable ability to prosper under extreme salinity. This study unveils the distinct salt-induced activation of methionine sulfoxide reductases (MsrA) from Halobacterium hubeiense, showcasing a significant enhancement in enzymatic activity across various salt concentrations ranging from 0.5 to 3.5 M. This contrasts sharply with the activity profiles of non-halophilic counterparts. Through comprehensive molecular dynamics simulations, we demonstrate that salt ions stabilize and compact the enzyme's structure, notably enhancing its substrate affinity. Mutagenesis analysis further confirms the essential role of salt bridges formed by the basic Arg168 residue in salt-induced activation. Mutating Arg168 to an acidic or neutral residue disrupts salt-induced activation, substantially reducing the enzyme activity under salt conditions. Our research provides evidence of salt-activated MsrA activity in halophiles, elucidating the molecular basis of halophilic enzyme activity in response to salts.
Collapse
Affiliation(s)
- Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoxue Kuang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuhong Chen
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Lianghui Liu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yawen Song
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yuyan Zhao
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
3
|
Gaonkar SK, Alvares JJ, Furtado IJ. Recent advances in the production, properties and applications of haloextremozymes protease and lipase from haloarchaea. World J Microbiol Biotechnol 2023; 39:322. [PMID: 37755613 DOI: 10.1007/s11274-023-03779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Proteases and lipases are significant groups of enzymes for commercialization at the global level. Earlier, the industries depended on mesophilic proteases and lipases, which remain nonfunctional under extreme conditions. The discovery of extremophilic microorganisms, especially those belonging to haloarchaea, paved a new reserve of industrially competent extremozymes. Haloarchaea or halophilic archaea are polyextremophiles of domain Archaea that grow at high salinity, elevated temperature, pH range (pH 6-12), and low aw. Interestingly, haloarchaeal proteolytic and lipolytic enzymes also perform their catalytic function in the presence of 4-5 M NaCl in vivo and in vitro. Also, they are of great interest to study due to their capacity to function and are active at elevated temperatures, tolerance to pH extremes, and in non-aqueous media. In recent years, advances have been achieved in various aspects of genomic/molecular expression methods involving homologous and heterologous processes for the overproduction of these extremozymes and their characterization from haloarchaea. A few protease and lipase extremozymes have been successfully expressed in prokaryotic systems, especially E.coli, and enzyme modification techniques have improved the catalytic properties of the recombinant enzymes. Further, in-silico methods are currently applied to elucidate the structural and functional features of salt-stable protease and lipase in haloarchaea. In this review, the production and purification methods, catalytic and biochemical properties and biotechnological applications of haloextremozymes proteases and lipases are summarized along with recent advancements in overproduction and characterization of these enzymes, concluding with the directions for further in-depth research on proteases and lipases from haloarchaea.
Collapse
Affiliation(s)
- Sanket K Gaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
- Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda-Goa, 403401, India.
| | - Jyothi Judith Alvares
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Irene J Furtado
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
4
|
Rationally tailoring the halophilicity of an amylolytic enzyme for application in dehydrating conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
l-Fucose Synthesis Using a Halo- and Thermophilic l-Fucose Isomerase from Polyextremophilic Halothermothrix orenii. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
l-Fucose isomerase (l-FucI)-mediated isomerization is a promising biotechnological approach for synthesizing various rare sugars of industrial significance, including l-fucose. Extremozymes that can retain their functional conformation under extreme conditions, such as high temperature and salinity, offer favorable applications in bioprocesses that accompany harsh conditions. To date, only one thermophilic l-FucI has been characterized for l-fucose synthesis. Here, we report l-FucI from Halothermothrix orenii (HoFucI) which exhibits both halophilic and thermophilic properties. When evaluated under various biochemical conditions, HoFucI exhibited optimal activities at 50–60 °C and pH 7 with 0.5–1 M NaCl in the presence of 1 mM Mn2+ as a cofactor. The results obtained here show a unique feature of HoFucI as a polyextremozyme, which facilitates the biotechnological production of l-fucose using this enzyme.
Collapse
|
6
|
Wang D, Li Y, Han L, Yin C, Fu Y, Zhang Q, Zhao X, Li G, Han F, Yu W. Biochemical Properties of a New Polysaccharide Lyase Family 25 Ulvan Lyase TsUly25B from Marine Bacterium Thalassomonas sp. LD5. Mar Drugs 2022; 20:168. [PMID: 35323467 PMCID: PMC8955879 DOI: 10.3390/md20030168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023] Open
Abstract
Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the β-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.
Collapse
Affiliation(s)
- Danni Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Yujiao Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Lu Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Chengying Yin
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Yongqing Fu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Qi Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Xia Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Guoyun Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
7
|
Ahmad A, Rahamtullah, Mishra R. Structural and functional adaptation in extremophilic microbial α-amylases. Biophys Rev 2022; 14:499-515. [PMID: 35528036 PMCID: PMC9043155 DOI: 10.1007/s12551-022-00931-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining stable native conformation of a protein under a given ecological condition is the prerequisite for survival of organisms. Extremophilic bacteria and archaea have evolved to adapt under extreme conditions of temperature, pH, salt, and pressure. Molecular adaptations of proteins under these conditions are essential for their survival. These organisms have the capability to maintain stable, native conformations of proteins under extreme conditions. The enzymes produced by the extremophiles are also known as extremozyme, which are used in several industries. Stability and functionality of extremozymes under varying temperature, pH, and solvent conditions are the most desirable requirement of industry. α-Amylase is one of the most important enzymes used in food, pharmaceutical, textile, and detergent industries. This enzyme is produced by diverse microorganisms including various extremophiles. Therefore, understanding its stability is important from fundamental as well as an applied point of view. Each class of extremophiles has a distinctive set of dominant non-covalent interactions which are important for their stability. Static information obtained by comparative analysis of amino acid sequence and atomic resolution structure provides information on the prevalence of particular amino acids or a group of non-covalent interactions. Protein folding studies give the information about thermodynamic and kinetic stability in order to understand dynamic aspect of molecular adaptations. In this review, we have summarized information on amino acid sequence, structure, stability, and adaptability of α-amylases from different classes of extremophiles.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| |
Collapse
|
8
|
A novel acidic and SDS tolerant halophilic lipase from moderate halophile Nesterenkonia sp. strain F: molecular cloning, structure analysis and biochemical characterization. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-01005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ni G, Zhong L, Xia C, Zhang L, Dai L, Chen R, Zhao Y, Wang F. Phenylalanine 314 is essential for the activity of maltogenic amylase from Corallococcus sp. EGB. Biotechnol Appl Biochem 2021; 69:2240-2248. [PMID: 34775631 DOI: 10.1002/bab.2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the hydrolysis and transglycosylation of maltooligosaccharides and soluble starch into maltose, the sole hydrolysate. This process yields pure maltose with potentially wide applications. Here, we identified and evaluated the role of phenylalanine 314 (F314), a key amino acid located near the active center, in the catalytic activities of the CoMA. Site-directed mutagenesis analysis showed that the activity of a F314L mutant on potato starch substrate decreased to 26% of that of wild-type protein. Compared with the wild-type, F314L exhibited similar substrate specificity, hydrolysis pattern, pH, and temperature requirements. Circular dichroism spectrum data showed that the F314L mutation did not affect the structure of the folded protein. In addition, kinetic analysis demonstrated that F314L exhibited an increased Km value with lower substrate affinity. Homology modeling showed that the benzene ring structure of F314L was involved in π-π conjugation, which might potentially affect the affinity of CoMA toward starch. Taken together, these data demonstrated that F314 is essential for the hydrolytic activity of the CoMA from Corallococcus sp. strain EGB.
Collapse
Affiliation(s)
- Guorong Ni
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Lixia Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Longhua Dai
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Ruyi Chen
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China.,Institute of Botany Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
10
|
Nagaoka S, Sugiyama N, Yatsunami R, Nakamura S. Characterization of 3-isopropylmalate dehydrogenase from extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem 2021; 85:1986-1994. [PMID: 34215877 DOI: 10.1093/bbb/zbab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
3-Isopropylmalate dehydrogenase (IPMDH) catalyzes oxidative decarboxylation of (2R, 3S)-3-isopropylmalate to 2-oxoisocaproate in leucine biosynthesis. In this study, recombinant IPMDH (HjIPMDH) from an extremely halophilic archaeon, Haloarcula japonica TR-1, was characterized. Activity of HjIPMDH increased as KCl concentration increased, and the maximum activity was observed at 3.0 m KCl. Analytical ultracentrifugation revealed that HjIPMDH formed a homotetramer at high KCl concentrations, and it dissociated to a monomer at low KCl concentrations. Additionally, HjIPMDH was thermally stabilized by higher KCl concentrations. This is the first report on haloarchaeal IPMDH.
Collapse
Affiliation(s)
- Shintaro Nagaoka
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Noriko Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Rie Yatsunami
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.,National Institute of Technology (KOSEN), Numazu College, Numazu, Shizuoka, Japan
| |
Collapse
|
11
|
Gómez-Villegas P, Vigara J, Romero L, Gotor C, Raposo S, Gonçalves B, Léon R. Biochemical Characterization of the Amylase Activity from the New Haloarchaeal Strain Haloarcula sp. HS Isolated in the Odiel Marshlands. BIOLOGY 2021; 10:biology10040337. [PMID: 33923574 PMCID: PMC8073556 DOI: 10.3390/biology10040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Alpha-amylases are a large family of α,1-4-endo-glycosyl hydrolases distributed in all kingdoms of life. The need for poly-extremotolerant amylases encouraged their search in extreme environments, where archaea become ideal candidates to provide new enzymes that are able to work in the harsh conditions demanded in many industrial applications. In this study, a collection of haloarchaea isolated from Odiel saltern ponds in the southwest of Spain was screened for their amylase activity. The strain that exhibited the highest activity was selected and identified as Haloarcula sp. HS. We demonstrated the existence in both, cellular and extracellular extracts of the new strain, of functional α-amylase activities, which showed to be moderately thermotolerant (optimum around 60 °C), extremely halotolerant (optimum over 25% NaCl), and calcium-dependent. The tryptic digestion followed by HPLC-MS/MS analysis of the partially purified cellular and extracellular extracts allowed to identify the sequence of three alpha-amylases, which despite sharing a low sequence identity, exhibited high three-dimensional structure homology, conserving the typical domains and most of the key consensus residues of α-amylases. Moreover, we proved the potential of the extracellular α-amylase from Haloarcula sp. HS to treat bakery wastes under high salinity conditions.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
| | - Javier Vigara
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
| | - Luis Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain; (L.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain; (L.R.); (C.G.)
| | - Sara Raposo
- CIMA—Centre for Marine and Environmental Research, FCT, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (B.G.)
| | - Brígida Gonçalves
- CIMA—Centre for Marine and Environmental Research, FCT, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (S.R.); (B.G.)
| | - Rosa Léon
- Laboratory of Biochemistry, Department of Chemistry, Marine International Campus of Excellence (CEIMAR), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.)
- Correspondence: ; Tel.: +34-959-219-951
| |
Collapse
|
12
|
A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity. Genes (Basel) 2021; 12:genes12010122. [PMID: 33478024 PMCID: PMC7835964 DOI: 10.3390/genes12010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.
Collapse
|
13
|
Cockburn DW, Cerqueira FM, Bahr C, Koropatkin NM. The structures of the GH13_36 amylases from Eubacterium rectale and Ruminococcus bromii reveal subsite architectures that favor maltose production. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/amylase-2020-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBacteria in the human gut including Ruminococcus bromii and Eubacterium rectale encode starch-active enzymes that dictate how these bacteria interact with starch to initiate a metabolic cascade that leads to increased butyrate. Here, we determined the structures of two predicted secreted glycoside hydrolase 13 subfamily 36 (GH13_36) enzymes: ErAmy13B complexed with maltotetraose from E. rectale and RbAmy5 from R. bromii. The structures show a limited binding pocket extending from –2 through +2 subsites with limited possibilities for substrate interaction beyond this, which contributes to the propensity for members of this family to produce maltose as their main product. The enzyme structures reveal subtle differences in the +1/+2 subsites that may restrict the recognition of larger starch polymers by ErAmy13B. Our bioinformatic analysis of the biochemically characterized members of the GH13_36 subfamily, which includes the cell-surface GH13 SusG from Bacteroides thetaiotaomicron, suggests that these maltogenic amylases (EC 3.2.1.133) are usually localized to the outside of the cell, display a range of substrate preferences, and most likely contribute to maltose liberation at the cell surface during growth on starch. A broader comparison between GH13_36 and other maltogenic amylase subfamilies explain how the activity profiles of these enzymes are influenced by their structures.
Collapse
Affiliation(s)
- Darrell W. Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Filipe M. Cerqueira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Constance Bahr
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Verma DK, Vasudeva G, Sidhu C, Pinnaka AK, Prasad SE, Thakur KG. Biochemical and Taxonomic Characterization of Novel Haloarchaeal Strains and Purification of the Recombinant Halotolerant α-Amylase Discovered in the Isolate. Front Microbiol 2020; 11:2082. [PMID: 32983058 PMCID: PMC7490331 DOI: 10.3389/fmicb.2020.02082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Haloarchaea are salt-loving archaea and potential source of industrially relevant halotolerant enzymes. In the present study, three reddish-pink, extremely halophilic archaeal strains, namely wsp1 (wsp-water sample Pondicherry), wsp3, and wsp4, were isolated from the Indian Solar saltern. The phylogenetic analysis based on 16S rRNA gene sequences suggests that both wsp3 and wsp4 strains belong to Halogeometricum borinquense while wsp1 is closely related to Haloferax volcanii species. The comparative genomics revealed an open pangenome for both genera investigated here. Whole-genome sequence analysis revealed that these isolates have multiple copies of industrially/biotechnologically important unique genes and enzymes. Among these unique enzymes, for recombinant expression and purification, we selected four putative α-amylases identified in these three isolates. We successfully purified functional halotolerant recombinant Amy2, from wsp1 using pelB signal sequence-based secretion strategy using Escherichia coli as an expression host. This method may prove useful to produce functional haloarchaeal secretory recombinant proteins suitable for commercial or research applications. Biochemical analysis of Amy2 suggests the halotolerant nature of the enzyme having maximum enzymatic activity observed at 1 M NaCl. We also report the isolation and characterization of carotenoids purified from these isolates. This study highlights the presence of several industrially important enzymes in the haloarchaeal strains which may potentially have improved features like stability and salt tolerance suitable for industrial applications.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- G. N. Ramachandran Protein Centre, Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Gunjan Vasudeva
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anil K Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Senthil E Prasad
- Biochemical Engineering Research and Process Development Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- G. N. Ramachandran Protein Centre, Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
15
|
Arai S, Shibazaki C, Shimizu R, Adachi M, Ishibashi M, Tokunaga H, Tokunaga M. Catalytic mechanism and evolutionary characteristics of thioredoxin from Halobacterium salinarum NRC-1. Acta Crystallogr D Struct Biol 2020; 76:73-84. [PMID: 31909745 DOI: 10.1107/s2059798319015894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Thioredoxin (TRX) is an important antioxidant against oxidative stress. TRX from the extremely halophilic archaeon Halobacterium salinarum NRC-1 (HsTRX-A), which has the highest acidic residue content [(Asp + Glu)/(Arg + Lys + His) = 9.0] among known TRXs, was chosen to elucidate the catalytic mechanism and evolutionary characteristics associated with haloadaptation. X-ray crystallographic analysis revealed that the main-chain structure of HsTRX-A is similar to those of homologous TRXs; for example, the root-mean-square deviations on Cα atoms were <2.3 Å for extant archaeal TRXs and <1.5 Å for resurrected Precambrian TRXs. A unique water network was located near the active-site residues (Cys45 and Cys48) in HsTRX-A, which may enhance the proton transfer required for the reduction of substrates under a high-salt environment. The high density of negative charges on the molecular surface (3.6 × 10-3 e Å-2) should improve the solubility and haloadaptivity. Moreover, circular-dichroism measurements and enzymatic assays using a mutant HsTRX-A with deletion of the long flexible N-terminal region (Ala2-Pro17) revealed that Ala2-Pro17 improves the structural stability and the enzymatic activity of HsTRX-A under high-salt environments (>2 M NaCl). The elongation of the N-terminal region in HsTRX-A accompanies the increased hydrophilicity and acidic residue content but does not affect the structure of the active site. These observations offer insights into molecular evolution for haloadaptation and potential applications in halophilic protein-related biotechnology.
Collapse
Affiliation(s)
- Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Chie Shibazaki
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
16
|
Qin HM, Gao D, Zhu M, Li C, Zhu Z, Wang H, Liu W, Tanokura M, Lu F. Biochemical characterization and structural analysis of ulvan lyase from marine Alteromonas sp. reveals the basis for its salt tolerance. Int J Biol Macromol 2019; 147:1309-1317. [PMID: 31751708 DOI: 10.1016/j.ijbiomac.2019.10.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023]
Abstract
Marine macroalgae have gained considerable attention as renewable biomass sources. Ulvan is a water-soluble anionic polysaccharide, and its depolymerization into fermentable monosaccharides has great potential for the production of bioethanol or high-value food additives. Ulvan lyase from Alteromonas sp. (AsPL) utilizes a β-elimination mechanism to cleave the glycosidic bond between rhamnose 3-sulfate and glucuronic acid, forming an unsaturated uronic acid at the non-reducing end. AsPL was active in the temperature range of 30-50 °C and pH values ranging from 7.5 to 9.5. Furthermore, AsPL was found to be halophilic, showing high activity and stability in the presence of up to 2.5 M NaCl. The apparent Km and kcat values of AsPL are 3.19 ± 0.37 mg mL-1 and 4.19 ± 0.21 s-1, respectively. Crystal structure analysis revealed that AsPL adopts a β-propeller fold with four anti-parallel β-strands in each of the seven propeller blades. The acid residues at the protein surface and two Ca2+ coordination sites contribute to its salt tolerance. The research on ulvan lyase has potential commercial value in the utilization of algal resources for biofuel production to relieve the environmental burden of petrochemicals.
Collapse
Affiliation(s)
- Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Dengke Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Masaru Tanokura
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China; Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
17
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Bandyopadhyay AK, Islam RNU, Mitra D, Banerjee S, Yasmeen S, Goswami A. Insights from the salt bridge analysis of malate dehydrogenase from H. salinarum and E.coli. Bioinformation 2019; 15:95-103. [PMID: 31435155 PMCID: PMC6677910 DOI: 10.6026/97320630015095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 11/23/2022] Open
Abstract
Halophilic proteins have greater abundance of acidic over basic residues in sequence. In structure, the surface is decorated by negative charges, with lower content of Lysine. Using sequence BLOCKs and 3D model of malate dehydrogenase from halophilic archaea (Halobacterium salinarum; hsMDH) and X-ray structure from mesophilic bacteria (E. coli; ecMDH), we show that not only acidic and basic residues have higher mean relative abundance (MRA) and thus, impart higher polarity to the sequences, but also show their presence in the surface of the structure of hsMDH relative to its mesophilic counterpart. These observations may indicate that both the acidic and the basic residues have a concerted role in the stability of hsMDH. Analysis on salt bridges from hsMDH and ecMDH show that in the former, salt bridges are highly intricate, newly engineered and global in nature. Although, these salt bridges are abundant in hsMDH, in the active site the design remains unperturbed. In high salt where hydrophobic force is weak, these salt bridges seem to play a major role in the haloadaptation of the tertiary structure of hsMDH. This is the first report of such an observation.
Collapse
Affiliation(s)
| | | | - Debanjan Mitra
- Department of Biotechnology,The University of Burdwan,Burdwan, West Bengal,India
| | - Sahini Banerjee
- Department of Biological Sciences,ISI,Kolkata,West Bengal,India
| | - Saba Yasmeen
- Department of Botany and Microbiology,Acharya Nagarjun University,Nagarjun Nagar,Andra Pradesh,India
| | - Arunava Goswami
- Department of Biological Sciences,ISI,Kolkata,West Bengal,India
| |
Collapse
|
19
|
Peng H, Zhai L, Xu S, Xu P, He C, Xiao Y, Gao Y. Efficient Hydrolysis of Raw Microalgae Starch by an α-Amylase (AmyP) of Glycoside Hydrolase Subfamily GH13_37. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12748-12755. [PMID: 30441891 DOI: 10.1021/acs.jafc.8b03524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microalgae starch is receiving increasing attention as a renewable feedstock for biofuel production. Raw microalgae starch from Tetraselmis subcordiformis was proven to be very efficiently hydrolyzed by an α-amylase (AmyP) of glycoside hydrolase subfamily GH13_37 below the temperature of gelatinization (40 °C). The hydrolysis degree reached 74.4 ± 2.2% for 4% raw microalgae starch and 53.2 ± 1.7% for 8% raw microalgae starch after only 2 h. The hydrolysis efficiency was significantly stimulated by calcium ions. The enzyme catalysis of AmyP and its mutants (Q306A and E347A) suggested that calcium ions contributed to the hydrolysis of cyclic structures in raw microalgae starch by a distinctive calcium-binding site Ca2 of AmyP. The study explored raw microalgae starch as a new resource for cold enzymatic hydrolysis and extended our knowledge on the function of calcium in amylolytic enzyme.
Collapse
Affiliation(s)
- Hui Peng
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Lu Zhai
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Suo Xu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Peng Xu
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Yazhong Xiao
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| | - Yi Gao
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, School of Resources and Environmental Engineering , Anhui University , Hefei 230601 , Anhui P.R. China
| |
Collapse
|
20
|
Mokashe N, Chaudhari B, Patil U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int J Biol Macromol 2018; 117:493-522. [DOI: 10.1016/j.ijbiomac.2018.05.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 09/30/2022]
|
21
|
Zhou J, Li Z, Zhang H, Wu J, Ye X, Dong W, Jiang M, Huang Y, Cui Z. Novel Maltogenic Amylase CoMA from Corallococcus sp. Strain EGB Catalyzes the Conversion of Maltooligosaccharides and Soluble Starch to Maltose. Appl Environ Microbiol 2018; 84:e00152-18. [PMID: 29752267 PMCID: PMC6029087 DOI: 10.1128/aem.00152-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/27/2018] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the novel amylolytic enzyme designated CoMA was cloned from Corallococcus sp. strain EGB. The deduced amino acid sequence contained a predicted lipoprotein signal peptide (residues 1 to 18) and a conserved glycoside hydrolase family 13 (GH13) module. The amino acid sequence of CoMA exhibits low sequence identity (10 to 19%) with cyclodextrin-hydrolyzing enzymes (GH13_20) and is assigned to GH13_36. The most outstanding feature of CoMA is its ability to catalyze the conversion of maltooligosaccharides (≥G3) and soluble starch to maltose as the sole hydrolysate. Moreover, it can hydrolyze γ-cyclodextrin and starch to maltose and hydrolyze pullulan exclusively to panose with relative activities of 0.2, 1, and 0.14, respectively. CoMA showed both hydrolysis and transglycosylation activities toward α-1,4-glycosidic bonds but not to α-1,6-linkages. Moreover, glucosyl transfer was postulated to be the major transglycosidation reaction for producing a high level of maltose without the attendant production of glucose. These results indicated that CoMA possesses some unusual properties that distinguish it from maltogenic amylases and typical α-amylases. Its physicochemical properties suggested that it has potential for commercial development.IMPORTANCE The α-amylase from Corallococcus sp. EGB, which was classified to the GH13_36 subfamily, can catalyze the conversion of maltooligosaccharides (≥G3) and soluble starch to maltose as the sole hydrolysate. An action mechanism for producing a high level of maltose without the attendant production of glucose has been proposed. Moreover, it also can hydrolyze γ-cyclodextrin and pullulan. Its biochemical characterization suggested that CoMA may be involved the accumulation of maltose in Corallococcus media.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Han Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jiale Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Arnal G, Cockburn DW, Brumer H, Koropatkin NM. Structural basis for the flexible recognition of α-glucan substrates by Bacteroides thetaiotaomicron SusG. Protein Sci 2018; 27:1093-1101. [PMID: 29603462 PMCID: PMC5980535 DOI: 10.1002/pro.3410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
Bacteria that reside in the mammalian intestinal tract efficiently hydrolyze dietary carbohydrates, including starch, that escape digestion in the small intestine. Starch is an abundant dietary carbohydrate comprised of α1,4 and α1,6 linked glucose, yet mammalian intestinal glucoamylases cannot effectively hydrolyze starch that has frequent α1,6 branching as these structures hinder recognition and processing by α1,4-specific amylases. Here we present the structure of the cell surface amylase SusG from Bacteroides thetaiotaomicron complexed with a mixed linkage amylosaccharide generated from transglycosylation during crystallization. Although SusG is specific for α1,4 glucosidic bonds, binding of this new oligosaccharide at the active site demonstrates that SusG can accommodate α1,6 branch points at subsite -3 to -2, and also at subsite+1 adjacent to the site of hydrolysis, explaining how this enzyme may be able to process a wide range of limit dextrins in the intestinal environment. These data suggest that B. thetaiotaomicron and related organisms may have a selective advantage for amylosaccharide scavenging in the gut.
Collapse
Affiliation(s)
- Gregory Arnal
- Michael Smith Laboratories, University of British Columbia, 2185 East MallVancouverBritish ColumbiaV6T 1Z4Canada
| | - Darrell W. Cockburn
- Department of Microbiology and ImmunologyUniversity of Michigan Medical School, 1150 W Medical Center DriveAnn ArborMichigan
- Present address:
Department of Food SciencePennsylvania State UniversityUniversity ParkPennsylvania
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East MallVancouverBritish ColumbiaV6T 1Z4Canada
- Department of ChemistryUniversity of British Columbia, 2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia, 2350 Health Sciences MallVancouverBritish ColumbiaV6T 1Z3Canada
| | - Nicole M. Koropatkin
- Department of Microbiology and ImmunologyUniversity of Michigan Medical School, 1150 W Medical Center DriveAnn ArborMichigan
| |
Collapse
|
23
|
Zhang W, Xu H, Wu Y, Zeng J, Guo Z, Wang L, Shen C, Qiao D, Cao Y. A new cold-adapted, alkali-stable and highly salt-tolerant esterase from Bacillus licheniformis. Int J Biol Macromol 2018; 111:1183-1193. [DOI: 10.1016/j.ijbiomac.2018.01.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
|
24
|
Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila , reveals high thermostability and an unusual form of dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [DOI: 10.1016/j.bbapap.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Crystal structure of a raw-starch-degrading bacterial α-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13. Sci Rep 2017; 7:44067. [PMID: 28303907 PMCID: PMC5355875 DOI: 10.1038/srep44067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/02/2017] [Indexed: 01/14/2023] Open
Abstract
Subfamily 37 of the glycoside hydrolase family GH13 was recently established on the basis of the discovery of a novel α-amylase, designated AmyP, from a marine metagenomic library. AmyP exhibits raw-starch-degrading activity and consists of an N-terminal catalytic domain and a C-terminal starch-binding domain. To understand this newest subfamily, we determined the crystal structure of the catalytic domain of AmyP, named AmyPΔSBD, complexed with maltose, and the crystal structure of the E221Q mutant AmyPΔSBD complexed with maltotriose. Glu221 is one of the three conserved catalytic residues, and AmyP is inactivated by the E221Q mutation. Domain B of AmyPΔSBD forms a loop that protrudes from domain A, stabilizes the conformation of the active site and increases the thermostability of the enzyme. A new calcium ion is situated adjacent to the -3 subsite binding loop and may be responsible for the increased thermostability of the enzyme after the addition of calcium. Moreover, Tyr36 participates in both stacking and hydrogen bonding interactions with the sugar motif at subsite -3. This work provides the first insights into the structure of α-amylases belonging to subfamily 37 of GH13 and may contribute to the rational design of α-amylase mutants with enhanced performance in biotechnological applications.
Collapse
|
26
|
|
27
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
28
|
Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci 2016; 73:2603-17. [PMID: 27137179 PMCID: PMC4924478 DOI: 10.1007/s00018-016-2242-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-uptake system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex.
Collapse
Affiliation(s)
- Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Zaccai G. Hydration shells with a pinch of salt. Biopolymers 2016; 99:233-8. [PMID: 23348670 DOI: 10.1002/bip.22154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
Abstract
The discovery of extreme halophile microorganisms in the Dead Sea, which are specifically dependent on a multimolar salt environment to survive, stimulated major developments in biology and physical chemistry. The minireview focuses on the molecular level. After a brief introduction to the history of halophile studies, protein and nucleic acid solvent interactions and their influence on macromolecular structure stabilization and dynamics are discussed.
Collapse
Affiliation(s)
- Giuseppe Zaccai
- CNRS, Institut de Biologie Structurale, F-38027 Grenoble, France; Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France.
| |
Collapse
|
30
|
Xu Q, Cao Y, Li X, Liu L, Qin S, Wang Y, Cao Y, Xu H, Qiao D. Purification and characterization of a novel intracellular α-amylase with a wide variety of substrates hydrolysis and transglycosylation activity from Paenibacillus sp. SSG-1. Protein Expr Purif 2016; 144:62-70. [PMID: 27108054 DOI: 10.1016/j.pep.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022]
Abstract
Intracellular α-amylase was a special glycoside hydrolase in the cytoplasm. We cloned and expressed an intracellular α-amylase, Amy, from Paenibacillus sp. SSG-1. The recombinant enzyme was purified by metal-affinity chromatography, exhibited a molecular mass of 71.7 kDa. Amy exhibited unexpectedly sequence similarity and evolutionary relationships with alpha-glucanotransferase. The docked results of Amy with maltose showed it had similar catalytic residues with α-amylase and glucanotransferase. The substrate specificity experiment showed that Amy could hydrolyze typical substrates into glucose and maltose. It was noteworthy that Amy showed the catalytic capacity of cyclomaltodextrinase and pullulanase. Meanwhile, Amy could transfer sugar molecules and form maltotetraose upon the hydrolysis of substrates. These results indicated that Amy was a novel intracellular α-amylase with distinct catalytic ability characteristics of hydrolyzing glycogen/cyclodextrin/pullulan and transglycosylation. We deduced that Amy may play an important role in utilizing maltooligosaccharides that released from extracellular α-glucan or storage α-glucan (glycogen) in Paenibacillus sp. SSG-1.
Collapse
Affiliation(s)
- Qingrui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Lin Liu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Shishang Qin
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yuhao Wang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| |
Collapse
|
31
|
Zhou J, Liu Y, Lu Q, Zhang R, Wu Q, Li C, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2315-2324. [PMID: 26948050 DOI: 10.1021/acs.jafc.6b00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Lu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Chunyan Li
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
32
|
A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Kobayashi M, Saburi W, Nakatsuka D, Hondoh H, Kato K, Okuyama M, Mori H, Kimura A, Yao M. Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrate-binding site in GH13 dextran glucosidase. FEBS Lett 2015; 589:484-9. [PMID: 25595454 DOI: 10.1016/j.febslet.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/16/2022]
Abstract
Streptococcus mutans dextran glucosidase (SmDG) belongs to glycoside hydrolase family 13, and catalyzes both the hydrolysis of substrates such as isomaltooligosaccharides and subsequent transglucosylation to form α-(1→6)-glucosidic linkage at the substrate non-reducing ends. Here, we report the 2.4Å resolution crystal structure of glucosyl-enzyme intermediate of SmDG. In the obtained structure, the Trp238 side-chain that constitutes the substrate-binding site turned away from the active pocket, concurrently with conformational changes of the nucleophile and the acid/base residues. Different conformations of Trp238 in each reaction stage indicated its flexibility. Considering the results of kinetic analyses, such flexibility may reflect a requirement for the reaction mechanism of SmDG.
Collapse
Affiliation(s)
- Momoko Kobayashi
- Graduate School of Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Daichi Nakatsuka
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Hironori Hondoh
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan; Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
34
|
Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 2015; 95:209-30. [PMID: 25388295 PMCID: PMC4437465 DOI: 10.1111/mmi.12859] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 01/07/2023]
Abstract
Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute-binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, whereas the membrane-associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute-binding proteins display a range of glycan-binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6-branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch-degrading Clostridium cluster XIVa organisms in the human gut.
Collapse
Affiliation(s)
- Darrell W. Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Nicole I. Orlovsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kurt J. Kwiatkowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Constance M. Bahr
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mallory Maynard
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
35
|
An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment. Appl Microbiol Biotechnol 2014; 99:717-27. [PMID: 25038927 DOI: 10.1007/s00253-014-5931-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A cold-active α-amylase, AmyI3C6, identified by a functional metagenomics approach was expressed in Escherichia coli and purified to homogeneity. Sequence analysis showed that the AmyI3C6 amylase was similar to α-amylases from the class Clostridia and revealed classical characteristics of cold-adapted enzymes, as did comparison of the kinetic parameters K m and k cat to a mesophilic α-amylase. AmyI3C6 was shown to be heat-labile. Temperature optimum was at 10-15 °C, and more than 70 % of the relative activity was retained at 1 °C. The pH optimum of AmyI3C6 was at pH 8-9, and the enzyme displayed activity in two commercial detergents tested, suggesting that the AmyI3C6 α-amylase may be useful as a detergent enzyme in environmentally friendly, low-temperature laundry processes.
Collapse
|
36
|
Zorgani MA, Patron K, Desvaux M. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface. J Comput Aided Mol Des 2014; 28:721-34. [DOI: 10.1007/s10822-014-9754-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022]
|
37
|
Tamamura N, Saburi W, Mukai A, Morimoto N, Takehana T, Koike S, Matsui H, Mori H. Enhancement of hydrolytic activity of thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 through optimization of amino acid residues surrounding the substrate binding site. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Molecular bases of protein halotolerance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:850-8. [DOI: 10.1016/j.bbapap.2014.02.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 02/04/2023]
|
39
|
Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2014; 71:1149-70. [PMID: 23807207 PMCID: PMC11114072 DOI: 10.1007/s00018-013-1388-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia,
| | | | | |
Collapse
|
40
|
Ghollasi M, Ghanbari-Safari M, Khajeh K. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Enzyme Microb Technol 2013; 53:406-13. [DOI: 10.1016/j.enzmictec.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
41
|
Bhattacharya A, Pletschke BI. Review of the enzymatic machinery of Halothermothrix orenii with special reference to industrial applications. Enzyme Microb Technol 2013; 55:159-69. [PMID: 24411459 DOI: 10.1016/j.enzmictec.2013.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/20/2022]
Abstract
Over the past few decades the extremes at which life thrives has continued to challenge our understanding of physiology, biochemistry, microbial ecology and evolution. Innovative culturing approaches, environmental genome sequencing, and whole genome sequencing have provided new opportunities for the biotechnological exploration of extremophiles. The whole genome sequencing of H. orenii has provided valuable insights not only into the survival and adaptation strategies of thermohalophiles but has also led to the identification of genes encoding biotechnologically relevant enzymes. The present review focuses on the purified and characterized enzymes from H. orenii including amylases, β-glucosidase, fructokinase, and ribokinase--along with uncharacterized but industrially important enzymes encoded by the genes identified in the genome such as β-galactosidases, mannosidases, pullulanases, chitinases, α-L-arabinofuranosidases and other glycosyl hydrolases of commercial interest. This review highlights the importance of the enzymes and their applications in different sectors and why future research for exploring the enzymatic machinery of H. orenii should focus on the expression, purification, and characterization of the novel proteins in H. orenii and their feasible application to pertinent industrial sectors. H. orenii is an anaerobe; genome sequencing studies have also revealed the presence of enzymes for gluconeogenesis and fermentation to ethanol and acetate, making H. orenii an attractive strain for the conversion of starch into bioethanol.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Brett I Pletschke
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|
42
|
Roy R, Usha V, Kermani A, Scott DJ, Hyde EI, Besra GS, Alderwick LJ, Fütterer K. Synthesis of α-glucan in mycobacteria involves a hetero-octameric complex of trehalose synthase TreS and Maltokinase Pep2. ACS Chem Biol 2013; 8:2245-55. [PMID: 23901909 PMCID: PMC3805332 DOI: 10.1021/cb400508k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Recent evidence established that
the cell envelope of Mycobacterium
tuberculosis, the bacillus causing tuberculosis (TB), is
coated by an α-glucan-containing capsule that has been implicated
in persistence in a mouse infection model. As one of three known metabolic
routes to α-glucan in mycobacteria, the cytoplasmic GlgE-pathway
converts trehalose to α(1 → 4),α(1 → 6)-linked
glucan in 4 steps. Whether individual reaction steps, catalyzed by
trehalose synthase TreS, maltokinase Pep2, and glycosyltransferases
GlgE and GlgB, occur independently or in a coordinated fashion is
not known. Here, we report the crystal structure of M. tuberculosis TreS, and show by small-angle X-ray scattering and analytical ultracentrifugation
that TreS forms tetramers in solution. Together with Pep2, TreS forms
a hetero-octameric complex, and we demonstrate that complex formation
markedly accelerates maltokinase activity of Pep2. Thus, complex formation
may act as part of a regulatory mechanism of the GlgE pathway, which
overall must avoid accumulation of toxic pathway intermediates, such
as maltose-1-phosphate, and optimize the use of scarce nutrients.
Collapse
Affiliation(s)
- Rana Roy
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Ali Kermani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus,
Sutton Bonington LE12 5RD, U.K
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon OX11
0FA, U.K
| | - Eva I. Hyde
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|
43
|
Majzlová K, Pukajová Z, Janeček S. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 2012; 367:48-57. [PMID: 23313816 DOI: 10.1016/j.carres.2012.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/15/2022]
Abstract
Among the glycoside hydrolases (GHs) classified within the Carbohydrate-Active enZymes (CAZy) server, the α-amylase family GH13 belongs to the largest GH families. It has been divided into the official 36 subfamilies by the CAZy curators. Originally the subfamilies of oligo-1,6-glucosidase and neopullulanase were defined using the sequence of the fifth conserved sequence region (CSR) as a selection marker. It is localized outside the catalytic α-amylase (β/α)(8)-barrel in the domain B, that is, in a longer loop connecting the strand β3 with the helix α3 of the barrel. It is sequentially positioned 26-28 residues in front of the invariant aspartic acid residue in the β4-strand acting as the GH13 catalytic nucleophile. The CSR V is characteristic as QpDln and MpKln for the former and latter subfamilies, respectively. A group of intermediate sequences possessing the CSR V as a mix of the two above-mentioned subfamilies, that is, MpDln, was also proposed previously. The present bioinformatics analysis was done in an effort to reveal as many as possible GH13 members of this intermediary group, currently classified as the subfamily GH13_36, and to discuss their evolutionary relationships to known GH13 specificities as well as with regard to their taxonomic origin. Using the BLAST tool with the sequence of the α-amylase from Halothermothrix orenii AmyA exhibiting the intermediary features, 152 GH13 enzymes, and hypothetical proteins were retrieved covering defined specificities (GH13 subfamilies 4, 16, 17, 18, 20, 21, 23, 29, 30, 31, 34, and 35) and intermediary enzymes and proteins (GH13_36). In both evolutionary trees-based on the alignment of CSRs and complete sequences-most of the 'intermediary' proteins (i.e., those with MPDLN signature) were positioned in several closely related clusters forming, however, a single GH13_36 large part of the trees. A few novel GH13 subfamilies were proposed as well as the specificity implications were discussed based on the presented in silico analysis. The results may also be helpful in assigning any GH13-like amino acid sequence the subfamily GH13_36 affiliation without additional biochemical characterization.
Collapse
Affiliation(s)
- Katarína Majzlová
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia
| | | | | |
Collapse
|
44
|
Distinct Characteristics of Single Starch-Binding Domain SBD1 Derived from Tandem Domains SBD1-SBD2 of Halophilic Kocuria varians Alpha-Amylase. Protein J 2012; 31:250-8. [DOI: 10.1007/s10930-012-9400-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Karan R, Capes MD, DasSarma S. Function and biotechnology of extremophilic enzymes in low water activity. AQUATIC BIOSYSTEMS 2012; 8:4. [PMID: 22480329 PMCID: PMC3310334 DOI: 10.1186/2046-9063-8-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Melinda D Capes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD, USA
| |
Collapse
|
46
|
Kori LD, Hofmann A, Patel BKC. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a ribokinase from the thermohalophile Halothermothrix orenii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:240-3. [PMID: 22298009 PMCID: PMC3274413 DOI: 10.1107/s1744309111041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/05/2011] [Indexed: 11/10/2022]
Abstract
A ribokinase gene (rbk) from the anaerobic halothermophilic bacterium Halothermothrix orenii was cloned and overexpressed in Escherichia coli. The recombinant protein (Ho-Rbk) was purified using immobilized metal-ion affinity chromatography and crystals were obtained using the sitting-drop method. Diffraction data were collected to a resolution of 3.1 Å using synchrotron radiation. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 45.6, b = 61.1, c = 220.2, and contained two molecules per asymmetric unit. A molecular-replacement solution has been found and attempts are currently under way to build a model of the ribokinase. Efforts to improve crystal quality so that higher resolution data can be obtained are also being considered.
Collapse
Affiliation(s)
- Lokesh D. Kori
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Andreas Hofmann
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Don Young Road, Brisbane Innovation Park, Nathan, Brisbane, QLD 4111, Australia
- Faculty of Veterinary Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Bharat K. C. Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
47
|
Yamaguchi R, Inoue Y, Tokunaga H, Ishibashi M, Arakawa T, Sumitani JI, Kawaguchi T, Tokunaga M. Halophilic characterization of starch-binding domain from Kocuria varians α-amylase. Int J Biol Macromol 2012; 50:95-102. [DOI: 10.1016/j.ijbiomac.2011.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/01/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
48
|
Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans. Biosci Biotechnol Biochem 2011; 75:1557-63. [PMID: 21821929 DOI: 10.1271/bbb.110256] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dextran glucosidase from Streptococcus mutans (SmDG), which belongs to glycoside hydrolase family 13 (GH13), hydrolyzes the non-reducing terminal glucosidic linkage of isomaltooligosaccharides and dextran. Thermal deactivation of SmDG did not follow the single exponential decay but rather the two-step irreversible deactivation model, which involves an active intermediate having 39% specific activity. The presence of a low concentration of CaCl2 increased the thermostability of SmDG, mainly due to a marked reduction in the rate constant of deactivation of the intermediate. The addition of MgCl2 also enhanced thermostability, while KCl and NaCl were not effective. Therefore, divalent cations, particularly Ca2+, were considered to stabilize SmDG. On the other hand, CaCl2 had no significant effect on catalytic reaction. The enhanced stability by Ca2+ was probably related to calcium binding in the β→α loop 1 of the (β/α)(8) barrel of SmDG. Because similar structures and sequences are widespread in GH13, these GH13 enzymes might have been stabilized by calcium ions.
Collapse
|
49
|
Liu F, Xiong J, Kumar S, Yang C, Ge S, Li S, Xia N, Swaminathan K. Structural and biophysical characterization of Mycobacterium tuberculosis dodecin Rv1498A. J Struct Biol 2011; 175:31-8. [PMID: 21539921 DOI: 10.1016/j.jsb.2011.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Dodecins (assembly of twelve monomers) are the smallest known flavoprotein with only 65-73 amino acids and are involved in binding and storage of flavins in archaea. Here we report the crystal structure of Rv1498A, a Mycobacterium tuberculosis dodecin. This bacterial dodecin structure is similar to that of other reported dodecins. Each monomer has a 3 stranded β-sheet and an α-helix perpendicular to it. This protein has polyextreme (halophilic and thermophilic) properties. Interestingly, positively and negatively charged residues aggregate separately and do not seem to contribute to thermophilic and halophilic stability. We have examined the interactions that stabilize the Rv1498A dodecamer by preparing selected point mutants that break salt bridges and hydrophobic contacts, thereby leading to collapse of the assembly.
Collapse
Affiliation(s)
- Fengxia Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kori LD, Hofmann A, Patel BKC. Expression, purification and preliminary crystallographic analysis of the recombinant β-glucosidase (BglA) from the halothermophile Halothermothrix orenii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:111-3. [PMID: 21206038 PMCID: PMC3079986 DOI: 10.1107/s1744309110046981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/12/2010] [Indexed: 11/10/2022]
Abstract
The β-glucosidase A gene (bglA) has been cloned from the halothermophilic bacterium Halothermothrix orenii and the recombinant enzyme (BglA; EC 3.2.1.21) was bacterially expressed, purified using metal ion-affinity chromatography and subsequently crystallized. Orthorhombic crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystal structure with two molecules in the asymmetric unit was solved by molecular replacement using a library of known glucosidase structures. Attempts to collect higher resolution diffraction data from crystals grown under different conditions and structure refinement are currently in progress.
Collapse
Affiliation(s)
- Lokesh D. Kori
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane QLD 4111, Australia
| | - Andreas Hofmann
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Don Young Road, Brisbane Innovation Park, Nathan, Brisbane QLD 4111, Australia
| | - Bharat K. C. Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane QLD 4111, Australia
| |
Collapse
|