1
|
Xu Z, Xu H, Shi J, Liu R, Li X, Liu S, Wei W. Inhibitor of Growth Proteins: Epigenetic Regulators Shaping Neurobiology. Biomolecules 2025; 15:281. [PMID: 40001584 PMCID: PMC11852745 DOI: 10.3390/biom15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025] Open
Abstract
The inhibitor of growth (ING) family of proteins is emerging as a pivotal regulator of epigenetic modifications within the nervous system. These proteins are involved in various cellular processes, including apoptosis, cell cycle control, and DNA repair, through interactions with chromatin-modifying complexes. Recent studies underscore the dual role of ING proteins in both tumor suppression and neuronal differentiation, development, and neuroprotection. This review summarizes the epigenetic functions of ING proteins in neurobiology, with a focus on their involvement in neural development and their relevance to neuro-oncological diseases. We explore the mechanisms by which ING proteins influence chromatin state and gene expression, highlighting their interactions with histone acetyltransferases, deacetylases, histone methyltransferases, DNA modification enzymes, and non-coding RNAs. A deeper understanding of the role of ING proteins in epigenetic regulation in the nervous system may pave the way for novel therapeutic strategies targeting neurological disorders.
Collapse
Affiliation(s)
- Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jichun Shi
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Runming Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Z.X.); (H.X.); (J.S.); (R.L.); (X.L.)
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Taheri M, Hussen BM, Najafi S, Abak A, Ghafouri-Fard S, Samsami M, Baniahmad A. Molecular mechanisms of inhibitor of growth (ING) family members in health and malignancy. Cancer Cell Int 2022; 22:272. [PMID: 36056353 PMCID: PMC9438315 DOI: 10.1186/s12935-022-02693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
ING genes belong to family of tumor suppressor genes with regulatory functions on cell proliferation, apoptosis, and cellular senescence. These include a family of proteins with 5 members (ING1-5), which are downregulated in human malignancies and/or affected by pathogenic mutations. ING proteins are highly evolutionarily conserved proteins containing several domains through which bind to chromatin structures by exerting their effects as readers of histone modification marks, and also binding to proteins like p53 involved in biological processes such as cell cycle regulation. Further, they are known as subunits of histone acetylation as well as deacetylation complexes and so exert their regulatory roles through epigenetic mechanisms. Playing role in restriction of proliferative but also invasive potentials of normal cells, INGs are particularly involved in cancer development and progression. However, additional studies and experimental confirmation are required for these models. This paper highlights the potential impact that INGs may have on the development of human cancer and explores what new information has recently arise on the functions of ING genes.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
3
|
Zheng HC, Xue H, Wu X, Xu HL, Zhao EH, Cui ZG. Transcriptional Regulation of ING5 and its Suppressive Effects on Gastric Cancer. Front Oncol 2022; 12:918954. [PMID: 35747809 PMCID: PMC9209732 DOI: 10.3389/fonc.2022.918954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
ING5 targets histone acetyltransferase or histone deacetylase complexes for local chromatin remodeling. Its transcriptional regulation and suppressive effects on gastric cancer remain elusive. Luciferase assay, EMSA, and ChIP were used to identify the cis-acting elements and trans-acting factors of the ING5 gene. We analyzed the effects of SAHA on the aggressive phenotypes of ING5 transfectants, and the effects of different ING5 mutants on aggressive phenotypes in SGC-7901 cells. Finally, we observed the effects of ING5 abrogation on gastric carcinogenesis. EMSA and ChIP showed that both SRF (−717 to −678 bp) and YY1 (−48 to 25bp) interacted with the promoter of ING5 and up-regulated ING5 expression in gastric cancer via SRF-YY1-ING5-p53 complex formation. ING5, SRF, and YY1 were overexpressed in gastric cancer, (P<0.05), and associated with worse prognosis of gastric cancer patients (P<0.05). ING5 had positive relationships with SRF and YY1 expression in gastric cancer (P<0.05). SAHA treatment caused early arrest at S phase in ING5 transfectants of SGC-7901 (P<0.05), and either 0.5 or 1.0 μM SAHA enhanced their migration and invasion (P<0.05). The wild-type and mutant ING5 transfectants showed lower viability and invasion than the control (P<0.05) with low CDC25, VEGF, and MMP-9 expression. Gastric spontaneous adenocarcinoma was observed in Atp4b-cre; ING5f/f, Pdx1-cre; ING5f/f, and K19-cre; ING5f/f mice. ING5 deletion increased the sensitivity of MNU-induced gastric carcinogenesis. ING5 mRNA might be a good marker of gastric carcinogenesis, and poor prognosis. ING5 expression was positively regulated by the interaction of SRF-YY1-ING5-p53 complex within the ING5 promoter from −50 bp upstream to the transcription start site. ING5 deletion might contribute to the tumorigenesis and histogenesis of gastric cancer.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xin Wu
- Department of Pathology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Hai-lan Xu
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - En-hong Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| |
Collapse
|
4
|
Melekhova A, Baniahmad A. ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells 2021; 10:cells10102599. [PMID: 34685579 PMCID: PMC8533759 DOI: 10.3390/cells10102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Prevention and overcoming castration resistance of prostate cancer (PC) remains one of the main unsolved problems in modern oncology. Hence, many studies are focused on the investigation of novel androgen receptor (AR) regulators that could serve as potential drug targets in disease therapy. Among such factors, inhibitor of growth (ING) proteins were identified. Some ING proteins act as AR transcriptional coregulators, indicating their relevance for PC research. The ING family consists of five protein-coding genes from ING1 to ING5 and pseudogene INGX. The ING genes were revealed through their sequence homology to the first identified ING1 from an in vivo screen. ING factors are a part of histone modification complexes. With the help of the conserved plant homeodomain (PHD) motif, ING factors bind to Histone 3 Lysine 4 (H3K4) methylation mark with a stronger affinity to the highest methylation grade H3K4me3 and recruit histone acetyltransferases (HAT) and histone deacetylases (HDAC) to chromatin. ING1 and ING2 are core subunits of mSIN3a-HDAC corepressor complexes, whereas ING3–5 interact with different HAT complexes that serve as coactivators. ING members belong to type II tumour suppressors and are frequently downregulated in many types of malignancies, including PC. As the family name indicates, ING proteins are able to inhibit cell growth and tumour development via regulation of cell cycle and cancer-relevant pathways such as apoptosis, cellular senescence, DNA repair, cell migration, invasion, and angiogenesis. Many ING splice variants that enhance the diversity of ING activity were discovered. However, it seems that the existence of multiple ING splice variants is underestimated, since alternative splice variants, such as the AR coregulators ING1 and ING3, counteract full-length ING and thus play an opposite functional role. These results open a novel prospective investigation direction in understanding ING factors biology in PC and other malignancies.
Collapse
Affiliation(s)
| | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396-820; Fax: +49-3641-9396-822
| |
Collapse
|
5
|
A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells. Biomolecules 2021; 11:biom11081152. [PMID: 34439818 PMCID: PMC8392754 DOI: 10.3390/biom11081152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibitor of growth 3 (ING3) is one of five members of the ING tumour suppressor family, characterized by a highly conserved plant homeodomain (PHD) as a reader of the histone mark H3K4me3. ING3 was reported to act as a tumour suppressor in many different cancer types to regulate apoptosis. On the other hand, ING3 levels positively correlate with poor survival prognosis of prostate cancer (PCa) patients. In PCa cells, ING3 acts rather as an androgen receptor (AR) co-activator and harbours oncogenic properties in PCa. Here, we show the identification of a novel ING3 splice variant in both the human PCa cell line LNCaP and in human PCa patient specimen. The novel ING3 splice variant lacks exon 11, ING3∆ex11, which results in deletion of the PHD, providing a unique opportunity to analyse functionally the PHD of ING3 by a natural splice variant. Functionally, overexpression of ING3Δex11 induced morphological changes of LNCaP-derived 3D spheroids with generation of lumen and pore-like structures within spheroids. Since these structures are an indicator of epithelial-mesenchymal transition (EMT), key regulatory factors and markers for EMT were analysed. The data suggest that in contrast to ING3, ING3Δex11 specifically modulates the expression of key EMT-regulating upstream transcription factors and induces the expression of EMT markers, indicating that the PHD of ING3 inhibits EMT. In line with this, ING3 knockdown also induced the expression of EMT markers, confirming the impact of ING3 on EMT regulation. Further, ING3 knockdown induced cellular senescence via a pathway leading to cell cycle arrest, indicating an oncogenic role for ING3 in PCa. Thus, the data suggest that the ING3Δex11 splice variant lacking functional PHD exhibits oncogenic characteristics through triggering EMT in PCa cells.
Collapse
|
6
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci Rep 2019; 39:BSR20180773. [PMID: 30643005 PMCID: PMC6356015 DOI: 10.1042/bsr20180773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of growth 4 (ING4), a member of the ING family discovered in 2003, has been shown to act as a tumor suppressor and is frequently down-regulated in various human cancers. Numerous published in vivo and in vitro studies have shown that ING4 is responsible for important cancer hallmarks such as pathologic cell cycle arrest, apoptosis, autophagy, contact inhibition, and hypoxic adaptation, and also affects tumor angiogenesis, invasion, and metastasis. These characteristics are typically associated with regulation through chromatin acetylation by binding histone H3 trimethylated at lysine 4 (H3K4me3) and through transcriptional activity of transcription factor P53 and NF-κB. In addition, emerging evidence has indicated that abnormalities in ING4 expression and function play key roles in non-neoplastic disorders. Here, we provide an overview of ING4-modulated chromosome remodeling and transcriptional function, as well as the functional consequences of different genetic variants. We also present the current understanding concerning the role of ING4 in the development of neoplastic and non-neoplastic diseases. These studies offer inspiration for pursuing novel therapeutics for various cancers.
Collapse
|
8
|
Yang XF, Shen DF, Zhao S, Ren TR, Gao Y, Shi S, Wu JC, Sun HZ, Zheng HC. Expression pattern and level of ING5 protein in normal and cancer tissues. Oncol Lett 2018; 17:63-68. [PMID: 30655738 PMCID: PMC6313139 DOI: 10.3892/ol.2018.9581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/13/2017] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of growth family 5 (ING5) functions as a type-II tumor suppressor gene and exerts an important role in DNA repair, apoptotic induction, proliferative inhibition, chromatin remodeling and the invasion process. In the present study, immunohistochemistry was performed to characterize the expression profile of ING5 protein on a tissue microarray containing mouse and human normal tissues, and human cancer tissues, including hepatocellular (n=62), renal clear cell (n=62), pancreatic (n=62), esophageal squamous cell (n=45), cervical squamous cell (n=31), breast (n=144), gastric (n=196), colorectal (n=96), endometrial (n=96) and lung carcinoma (n=192). In the mouse tissues, ING5 expression was detected in the cytoplasm of neurons, the nephric tubule and glomerulus, alveolar epithelium, gastrointestinal glands, squamous epithelium of the skin and skeletal muscles. By contrast, ING5 was localized to the cell nucleus in breast tissues. In human tissues, ING5 protein was primarily localized in the cytoplasm. However, ING5 was detected in the cytoplasm and nucleus in various types of normal tissues, including the tongue, stomach, intestine, lung and breast. In total, ING5 expression was detected in 400/986 cancer tissues (40.6%). In the majority of cases, ING5 expression was observed to be restricted to the cytoplasm. However, ING5 was also detected in the nucleus in a number of cancer tissues, including gastric, colorectal and lung carcinoma. Notably, ING5 was more frequently expressed in breast (79.9%), colorectal (56.3%) and endometrial carcinoma (50.0%). The incidence of ING5 expression in hepatocellular carcinoma (14.5%) and pancreatic carcinoma (22.6%) was low. These findings indicate that ING5 may be involved in cell regeneration and be associated with colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shuang Zhao
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tian-Ren Ren
- Jilin Province Forestry Bureau, Linjiang, Jilin 134600, P.R. China
| | - Yang Gao
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shuai Shi
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ji-Cheng Wu
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Cancer Center and Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Institute of Life Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
9
|
Zhao S, Yang XF, Shen DF, Gao Y, Shi S, Wu JC, Liu HX, Sun HZ, Su RJ, Zheng HC. The down-regulated ING5 expression in lung cancer: a potential target of gene therapy. Oncotarget 2018; 7:54596-54615. [PMID: 27409347 PMCID: PMC5342367 DOI: 10.18632/oncotarget.10519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022] Open
Abstract
ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. We found that ING5 overexpression not only inhibited proliferation, migration, and invasion, but also induced G2 arrest, differentiation, autophagy, apoptosis, glycolysis and mitochondrial respiration in lung cancer cells. ING5 transfection up-regulated the expression of Cdc2, ATG13, ATG14, Beclin-1, LC-3B, AIF, cytochrome c, Akt1/2/3, ADFP, PFK-1 and PDPc, while down-regulated the expression of Bcl-2, XIAP, survivin,β-catenin and HXK1. ING5 transfection desensitized cells to the chemotherapy of MG132, paclitaxel, and SAHA, which paralleled with apoptotic alteration. ING5 overexpression suppressed the xenograft tumor growth by inhibiting proliferation and inducing apoptosis. ING5 expression level was significantly higher in normal tissue than that in lung cancer at both protein and mRNA levels. Nuclear ING5 expression was positively correlated with ki-67 expression and cytoplasmic ING5 expression. Cytoplasmic ING5 expression was positively associated with lymph node metastasis, and negatively with age, lymphatic invasion or CPP32 expression. ING5 expression was different in histological classification: squamous cell carcinoma > adenocarcinoma > large cell carcinoma > small cell carcinoma. Taken together, our data suggested that ING5 downregulation might involved in carcinogenesis, growth, and invasion of lung cancer and could be considered as a promising marker to gauge the aggressiveness of lung cancer. It might be employed as a potential target for gene therapy of lung cancer.
Collapse
Affiliation(s)
- Shuang Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xue-Feng Yang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Dao-Fu Shen
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yang Gao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shuai Shi
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Ji-Cheng Wu
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hong-Zhi Sun
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Rong-Jian Su
- Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, China
| | - Hua-Chuan Zheng
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.,Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
10
|
Zhang R, Jin J, Shi J, Hou Y. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 2017; 143:189-197. [PMID: 27544390 DOI: 10.1007/s00432-016-2219-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression. METHODS The literatures of INGs regulating tumor progression were searched and assayed. RESULTS The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed. CONCLUSIONS This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.
Collapse
Affiliation(s)
- Runyun Zhang
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
11
|
A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. J Mol Med (Berl) 2016; 94:1167-1179. [DOI: 10.1007/s00109-016-1440-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 01/27/2023]
|
12
|
ZHAO SHUANG, YANG XUEFENG, GOU WENFENG, LU HANG, LI HUA, ZHU ZHITU, SUN HONGZHI, ZHENG HUACHUAN. Expression profiles of inhibitor of growth protein 2 in normal and cancer tissues: An immunohistochemical screening analysis. Mol Med Rep 2015; 13:1881-7. [DOI: 10.3892/mmr.2015.4723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
|
13
|
Abstract
ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
Collapse
|
14
|
Rotte A, Li G, Bhandaru M. Tumor suppressor Ing1b facilitates DNA repair and prevents oxidative stress induced cell death. Apoptosis 2014; 19:518-26. [PMID: 24242916 DOI: 10.1007/s10495-013-0940-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inhibitor of growth (ING) family of proteins are known to coordinate with histone acetyltransferases and regulate the key events of cell cycle and DNA repair. Previous work from our lab showed that Ing1b regulated the nucleotide excision repair by facilitating histone acetylation and subsequent chromatin relaxation. Further, it was also shown that Ing1b protected the cells from genomic instability induced cell death by promoting ubiquitination of proliferating cell nuclear antigen (PCNA). In the present study we explored the role of Ing1b in the repair of oxidized DNA and prevention of oxidative stress induced genotoxic cell death. Using HCT116 cells we show that Ing1b protein expression is induced by treatment with H2O2. Ing1b lacking cells showed decreased ability to repair the oxidized DNA. PCNA monoubiquitination, a critical event of DNA repair was blunted in Ing1b knock down cells and augmented in Ing1b over expressing cells. Moreover, oxidative stress induced cell death was higher in cells lacking Ing1b whereas it was lower in Ing1b over expressing cells. Finally we show that inhibition of histone deacetylases, rescued the Ing1b knock down cells from cytotoxic effects of H2O2 treatment.
Collapse
Affiliation(s)
- Anand Rotte
- Department of Dermatology and Skin Science, University of British Columbia, Research Pavilion, 828 West, 10th Avenue, Vancouver, BC, V5Z 1L8, Canada,
| | | | | |
Collapse
|
15
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
16
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
17
|
Zhang R, Misra V. Effects of cyclic AMP response element binding protein-Zhangfei (CREBZF) on the unfolded protein response and cell growth are exerted through the tumor suppressor p53. Cell Cycle 2013; 13:279-92. [PMID: 24200963 DOI: 10.4161/cc.27053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zhangfei/CREBZF, a basic region-leucine zipper (bLZip) transcription factor, is a potent suppressor of growth and the unfolded protein response (UPR) in some cancer cell lines, including the canine osteosarcoma cell line, D-17. However, the effects of Zhangfei are not universal, and it has no obvious effects on untransformed cells and some cancer cell lines, suggesting that Zhangfei may act through an intermediary that is either not induced or is defective in cells that it does not affect. Here we identify the tumor suppressor protein p53 as this intermediary. We show the following: in cells ectopically expressing Zhangfei, the protein stabilizes p53 and co-localizes with it in cellular nuclei; the bLZip domain of Zhangfei is required for its profound effects on cell growth and interaction with p53. Suppression of p53 by siRNA at least partially inhibits the effects of Zhangfei on the UPR and cell growth. The effects of Zhangfei on D-17 cells is mirrored by its effects on the p53-expressing human osteosarcoma cell line U2OS, while Zhangfei has no effect on the p53-null osteosarcoma cell line MG63. In U2OS cells, Zhangfei displaces the E3 ubiquitin ligase mouse double minute homolog 2 (Mdm2) from its association with p53, suggesting a mechanism for the effects of Zhangfei on p53.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| | - Vikram Misra
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| |
Collapse
|
18
|
Guérillon C, Larrieu D, Pedeux R. ING1 and ING2: multifaceted tumor suppressor genes. Cell Mol Life Sci 2013; 70:3753-72. [PMID: 23412501 PMCID: PMC11113716 DOI: 10.1007/s00018-013-1270-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/27/2023]
Abstract
Inhibitor of Growth 1 (ING1) was identified and characterized as a "candidate" tumor suppressor gene in 1996. Subsequently, four more genes, also characterized as "candidate" tumor suppressor genes, were identified by homology search: ING2, ING3, ING4, and ING5. The ING proteins are characterized by a high homology in their C-terminal domain, which contains a Nuclear Localization Sequence and a Plant HomeoDomain (PHD), which has a high affinity to Histone 3 tri-methylated on lysine 4 (H3K4Me3). The ING proteins have been involved in the control of cell growth, senescence, apoptosis, chromatin remodeling, and DNA repair. Within the ING family, ING1 and ING2 form a subgroup since they are evolutionarily and functionally close. In yeast, only one gene, Pho23, is related to ING1 and ING2 and possesses also a PHD. Recently, the ING1 and ING2 tumor suppressor status has been fully established since several studies have described the loss of ING1 and ING2 protein expression in human tumors and both ING1 and ING2 knockout mice were reported to have spontaneously developed tumors, B cell lymphomas, and soft tissue sarcomas, respectively. In this review, we will describe for the first time what is known about the ING1 and ING2 genes, proteins, their regulations in both human and mice, and their status in human tumors. Furthermore, we explore the current knowledge about identified functions involving ING1 and ING2 in tumor suppression pathways especially in the control of cell cycle and in genome stability.
Collapse
Affiliation(s)
- Claire Guérillon
- INSERM U917, Faculté de Médecine de Rennes, Microenvironnement et Cancer, Building 2, Room 117, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
- Université de Rennes 1, Rennes, France
| | - Delphine Larrieu
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Rémy Pedeux
- INSERM U917, Faculté de Médecine de Rennes, Microenvironnement et Cancer, Building 2, Room 117, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
- Université de Rennes 1, Rennes, France
- Etablissement Français du Sang, Rennes, France
| |
Collapse
|
19
|
Jafarnejad SM, Li G. Regulation of p53 by ING family members in suppression of tumor initiation and progression. Cancer Metastasis Rev 2012; 31:55-73. [PMID: 22095030 DOI: 10.1007/s10555-011-9329-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The INhibitor of Growth (ING) family is an evolutionarily conserved set of proteins, implicated in suppression of initiation and progression of cancers in various tissues. They promote cell cycle arrest, cellular senescence and apoptosis, participate in stress responses, regulate DNA replication and DNA damage responses, and inhibit cancer cell migration, invasion, and angiogenesis of the tumors. At the molecular level, ING proteins are believed to participate in chromatin remodeling and transcriptional regulation of their target genes. However, the best known function of ING proteins is their cooperation with p53 tumor suppressor protein in tumor suppression. All major isoforms of ING family members can promote the transactivition of p53 and the majority of them are shown to directly interact with p53. In addition, ING proteins are thought to interact with and modulate the function of auxiliary members of p53 pathway, such as MDM2, ARF , p300, and p21, indicating their widespread involvement in the regulation and function of this prominent tumor suppressor pathway. It seems that p53 pathway is the main mechanism by which ING proteins exert their functions. Nevertheless, regulation of other pathways which are not relevant to p53, yet important for tumorigenesis such as TGF-β and NF-κB, by ING proteins is also observed. This review summarizes the current understanding of the mutual interactions and cooperation between different members of ING family with p53 pathway and implications of this cooperation in the suppression of cancer initiation and progression.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
20
|
Eapen SA, Netherton SJ, Sarker KP, Deng L, Chan A, Riabowol K, Bonni S. Identification of a novel function for the chromatin remodeling protein ING2 in muscle differentiation. PLoS One 2012; 7:e40684. [PMID: 22808232 PMCID: PMC3395697 DOI: 10.1371/journal.pone.0040684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
The inhibitor of growth (ING) family of zinc-finger plant homeodomain (PHD)-containing chromatin remodeling protein controls gene expression and has been implicated in the regulation of cell proliferation and death. However, the role of ING proteins in cell differentiation remains largely unexplored. Here, we identify an essential function for ING2 in muscle differentiation. We find that knockdown of ING2 by RNA interference (RNAi) blocks the differentiation of C2C12 cells into myotubes, suggesting that ING2 regulates the myogenic differentiation program. We also characterize a mechanism by which ING2 drives muscle differentiation. In structure-function analyses, we find that the leucine zipper motif of ING2 contributes to ING2-dependent muscle differentiation. By contrast, the PHD domain, which recognizes the histone H3K4me3 epigenetic mark, inhibits the ability of ING2 to induce muscle differentiation. We also find that the Sin3A-HDAC1 chromatin remodeling complex, which interacts with ING2, plays a critical role in ING2-dependent muscle differentiation. These findings define a novel function for ING2 in muscle differentiation and bear significant implications for our understanding of the role of the ING protein family in cell differentiation and tumor suppression.
Collapse
Affiliation(s)
- Shawn A. Eapen
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stuart J. Netherton
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Krishna P. Sarker
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lili Deng
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Chan
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karl Riabowol
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shirin Bonni
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Kitagawa M, Takebe A, Ono Y, Imai T, Nakao K, Nishikawa SI, Era T. Phf14, a novel regulator of mesenchyme growth via platelet-derived growth factor (PDGF) receptor-α. J Biol Chem 2012; 287:27983-96. [PMID: 22730381 DOI: 10.1074/jbc.m112.350074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The regulation of mesenchymal cell growth by signaling molecules plays an important role in maintaining tissue functions. Aberrant mesenchymal cell proliferation caused by disruption of this regulatory process leads to pathogenetic events such as fibrosis. In the current study we have identified a novel nuclear factor, Phf14, which controls the proliferation of mesenchymal cells by regulating PDGFRα expression. Phf14-null mice died just after birth due to respiratory failure. Histological analyses of the lungs of these mice showed interstitial hyperplasia with an increased number of PDGFRα(+) mesenchymal cells. PDGFRα expression was elevated in Phf14-null mesenchymal fibroblasts, resulting in increased proliferation. We demonstrated that Phf14 acts as a transcription factor that directly represses PDGFRα expression. Based on these results, we used an antibody against PDGFRα to successfully treat mouse lung fibrosis. This study shows that Phf14 acts as a negative regulator of PDGFRα expression in mesenchymal cells undergoing normal and abnormal proliferation, and is a potential target for new treatments of lung fibrosis.
Collapse
Affiliation(s)
- Michinori Kitagawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Culurgioni S, Muñoz IG, Moreno A, Palacios A, Villate M, Palmero I, Montoya G, Blanco FJ. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins. J Biol Chem 2012; 287:10876-84. [PMID: 22334692 DOI: 10.1074/jbc.m111.330001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.
Collapse
|
23
|
Aguissa-Touré AH, Wong RPC, Li G. The ING family tumor suppressors: from structure to function. Cell Mol Life Sci 2011; 68:45-54. [PMID: 20803232 PMCID: PMC11114739 DOI: 10.1007/s00018-010-0509-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/31/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
The Inhibitor of Growth (ING) proteins belong to a well-conserved family which presents in diverse organisms with several structural and functional domains for each protein. The ING family members are found in association with many cellular processes. Thus, the ING family proteins are involved in regulation of gene transcription, DNA repair, tumorigenesis, apoptosis, cellular senescence and cell cycle arrest. The ING proteins have multiple domains that are potentially capable of binding to many partners. It is conceivable, therefore, that such proteins could function similarly within protein complexes. In this case, within this family, each function could be attributed to a specific domain. However, the role of ING domains is not definitively clear. In this review, we summarize recent advances in structure-function relationships in ING proteins. For each domain, we describe the known biological functions and the approaches utilized to identify the functions associated with ING proteins.
Collapse
Affiliation(s)
- Almass-Houd Aguissa-Touré
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Ronald P. C. Wong
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
24
|
Palomera-Sanchez Z, Zurita M. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. DNA Repair (Amst) 2010; 10:119-25. [PMID: 21130713 DOI: 10.1016/j.dnarep.2010.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
Due to its link with human pathologies, including cancer, the mechanism of Nucleotide Excision Repair (NER) has been extensively studied. Most of the pathway and players have been defined using in vitro reconstitution experiments. However, in vivo, the NER machinery must deal with the presence of organized chromatin, which in some regions, such as heterochromatin, is highly condensed but still susceptible to DNA damage. A series of events involving different chromatin-remodeling factors and histone-modifying enzymes target chromatin regions that contain DNA lesions. CPDs change the structure of the nucleosome, allowing access to factors that can recognize the lesion. Next, DDB1-DDB2 protein complexes, which mono-ubiquitinate histones H2A, H3, and H4, recognize nucleosomes containing DNA lesions. The ubiquitinated nucleosome facilitates the recruitment of ATP-dependent chromatin-remodeling factors and the XPC-HR23B-Centrin 2 complex to the target region. Different ATP-dependent chromatin-remodeling factors, such as SWI/SNF and INO80, have been identified as having roles in the UV irradiation response prior to the action of the NER machinery. Subsequently, remodeling of the nucleosome allows enzymatic reactions by histone-modifying factors that may acetylate, methylate or demethylate specific histone residues. Intriguingly, some of these histone modifications are dependent on p53. These histone modifications and the remodeling of the nucleosome allow the entrance of TFIIH, XPC and other NER factors that remove the damaged strand; then, gap-filling DNA synthesis and ligation reactions are carried out after excision of the oligonucleotide with the lesion. Finally, after DNA repair, the initial chromatin structure has to be reestablished. Therefore, factors that modulate chromatin dynamics contribute to the NER mechanism, and they are significant in the future design of treatments for human pathologies related to genome instability and the appearance of drug-resistant tumors.
Collapse
Affiliation(s)
- Zoraya Palomera-Sanchez
- Department of Developmental Genetics, Instituo de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 22250, Mexico
| | | |
Collapse
|
25
|
The altered expression of ING5 protein is involved in gastric carcinogenesis and subsequent progression. Hum Pathol 2010; 42:25-35. [PMID: 21062663 DOI: 10.1016/j.humpath.2010.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/23/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022]
Abstract
ING5 can interact with p53, thereby inhibiting cell growth and inducing apoptosis. To clarify the roles of ING5 in gastric tumorigenesis and progression, its expression was examined by immunohistochemistry on a tissue microarray containing gastric nonneoplastic mucosa (n = 119), dysplasia (n = 50), and carcinomas (n = 429), with its comparison with clinicopathologic parameters of the carcinomas. ING5 expression was analyzed in gastric carcinoma tissues and cell lines (MKN28, MKN45, AGS, GT-3 TKB, and KATO-III) by Western blot and reverse transcriptase-polymerase chain reaction. ING5 protein was found to distribute to the nuclei of gastric carcinoma cells with similar messenger RNA levels. An increased expression of ING5 messenger RNA was observed in gastric carcinoma in comparison with paired mucosa (P < .05). Lower expression of nuclear ING5 was detected in gastric dysplasia and carcinoma than that in nonneoplastic mucosa (P < .05). Gastric nonneoplastic mucosa and metastatic carcinoma showed more expression of cytoplasmic ING5 than did gastric carcinoma and dysplasia (P < .05). Nuclear ING5 expression was negatively correlated with tumor size, depth of invasion, lymph node metastasis, and clinicopathologic staging (P < .05), whereas cytoplasmic ING5 was positively associated with depth of invasion, venous invasion, lymph node metastasis, and clinicopathologic staging (P < .05). Nuclear ING5 was more expressed in older than younger carcinoma patients (P < .05). There was a higher expression of nuclear ING5 in intestinal-type than diffuse-type carcinoma (P < .05), whereas it was the converse for cytoplasmic ING5 (P < .05). Survival analysis indicated that nuclear ING5 was closely linked to favorable prognosis of carcinoma patients (P < .05), albeit not independent. It was suggested that aberrant ING5 expression may contribute to pathogenesis, growth, and invasion of gastric carcinomas and could be considered as a promising marker to gauge aggressiveness and prognosis of gastric carcinoma.
Collapse
|
26
|
ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2010; 2011:963614. [PMID: 21052543 PMCID: PMC2968421 DOI: 10.1155/2011/963614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/01/2010] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING) family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.
Collapse
|
27
|
Cengiz B, Gunduz E, Gunduz M, Beder LB, Tamamura R, Bagci C, Yamanaka N, Shimizu K, Nagatsuka H. Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma. Int J Cancer 2010; 127:2088-94. [PMID: 20131318 DOI: 10.1002/ijc.25224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous study showed high frequency of allelic loss at chromosome 2q37 region in oral cancer. This location contains several candidate tumor suppressor genes such as PPP1R7, ILKAP, DTYMK and ING5. We previously showed 3 members of inhibitor of growth (ING) family, ING1, ING3 and ING4 as tumor suppressor gene in head and neck cancer. As ING5 shows high homology with other members of ING genes including highly conserved carboxy-terminal plant homeodomain and nuclear localization signal, we first picked up ING5 and examined it as a possible tumor suppressor in oral cancer. For this aim, mutation and mRNA expression status of ING5 in paired normal and oral squamous cell carcinoma samples were examined by reverse transcription polymerase chain reaction (RT-PCR) and sequencing. Three missense mutations located within leucine zipper like (LZL) finger and novel conserved region (NCR) domains in ING5 protein were detected, probably abrogating its normal function. We also found 5 different alternative splicing variants of ING5. Then, we examined mRNA level of ING5 by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) analysis, which demonstrated decreased expression of ING5 mRNA in 61% of the primary tumors as compared to the matched normal samples. In conclusion, tumor-specific mutation and downregulation of ING5 mRNA suggested it as a tumor suppressor gene in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Beyhan Cengiz
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikatacho 2-5-1, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ythier D, Brambilla E, Binet R, Nissou D, Vesin A, de Fraipont F, Moro-Sibilot D, Lantuejoul S, Brambilla C, Gazzeri S, Pedeux R. Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma. Lung Cancer 2010; 69:180-6. [DOI: 10.1016/j.lungcan.2009.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 01/16/2023]
|
29
|
Piche B, Li G. Inhibitor of growth tumor suppressors in cancer progression. Cell Mol Life Sci 2010; 67:1987-99. [PMID: 20195696 PMCID: PMC11115670 DOI: 10.1007/s00018-010-0312-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 01/29/2010] [Indexed: 12/27/2022]
Abstract
The inhibitor of growth (ING) family of tumor suppressors has five members and is implicated in the control of apoptosis, senescence, DNA repair, and cancer progression. However, little is known about ING activity in the regulation of cancer progression. ING members and splice variants seem to behave differently with respect to cancer invasion and metastasis. Interaction with histone trimethylated at lysine 4 (H3K4me3), hypoxia inducible factor-1 (HIF-1), p53, and nuclear factor kappa-B (NF-kappaB) are potential mechanisms by which ING members exert effects on invasion and metastasis. Subcellular mislocalization, rapid protein degradation, and to a lesser extent ING gene mutation are among the mechanisms responsible for inappropriate ING levels in cancer cells. The aim of this review is to summarize the different roles of ING family tumor suppressors in cancer progression and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Brad Piche
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
30
|
Nie J, Liu L, Wu M, Xing G, He S, Yin Y, Tian C, He F, Zhang L. HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett 2010; 584:3005-12. [DOI: 10.1016/j.febslet.2010.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 01/10/2023]
|
31
|
Sun G, Jin S, Baskaran R. MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N'-nitro-N-nitrosoguanidine. Exp Cell Res 2009; 315:3163-75. [PMID: 19766113 DOI: 10.1016/j.yexcr.2009.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 01/09/2023]
Abstract
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are cytotoxic and a deficiency in mismatch repair (MMR) results in lack of sensitivity to this genotoxin (termed alkylation tolerance). Here, we show that ING2, a member of the inhibitor of growth family, is required for cell death induced by MNNG. We further observe that MNNG treatment increases cellular protein levels of ING2 that is dependent on intact MMR function and that MNNG-induced ING2 localizes and associates with p73alpha in the nucleus. Suppression of ING2 by short hairpin RNA (shRNA) in MMR-proficient colorectal cancer cells decreased its sensitivity to MNNG and, in addition, abrogated MNNG-induced stabilization and acetylation of p73alpha. Interestingly, suppression of p73alpha had a greater impact on MNNG-induced cell death than ING2 leading us to conclude that ING2 regulates the cell death response, in part, through p73alpha. Inhibition of c-Abl by STI571 or suppression of c-Abl expression by shRNA blocked ING2 induction and p73alpha acetylation induced by this alkylator. Similarly, suppression of MMR (MLH1) by shRNA abrogated ING2 induction/p73alpha acetylation. Taken together, these results demonstrate that MLH1/c-Abl-dependent activation of ING2>p73alpha signaling regulates cell death triggered by MNNG and further suggests that dysregulation of this event may, in part, be responsible for alkylation tolerance observed in MMR compromised cells.
Collapse
Affiliation(s)
- Guoming Sun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, E1205 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
32
|
Unoki M, Kumamoto K, Takenoshita S, Harris CC. Reviewing the current classification of inhibitor of growth family proteins. Cancer Sci 2009; 100:1173-9. [PMID: 19432890 PMCID: PMC2790152 DOI: 10.1111/j.1349-7006.2009.01183.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 01/13/2023] Open
Abstract
Inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors for more than a decade. Recent emerging results using siRNA and knockout mice are expanding the previous understanding of this protein family. The results of ING1 knockout mouse experiments revealed that ING1 has a protective effect on apoptosis. Our recent results showed that ING2 is overexpressed in colorectal cancer, and induces colon cancer cell invasion through an MMP13-dependent pathway. Knockdown of ING2 by siRNA induces premature senescence in normal human fibroblast cells, and apoptosis or cell cycle arrest in various adherent cancer cells. Taken together, these results suggest that ING2 may also have roles in cancer progression and/or malignant transformation under some conditions. Additionally, knockdown of ING4 and ING5 by siRNA shows an inhibitory effect on the transition from G(2)/M to G(1) phase and DNA replication, respectively, suggesting that these proteins may play roles during cell proliferation in some context. ING family proteins may play dual roles, similar to transforming growth factor-beta, which has tumor suppressor-like functions in normal epithelium and also oncogenic functions in invasive metastatic cancers. In the present article, we briefly review ING history and propose a possible interpretation of discrepancies between past and recent data.
Collapse
Affiliation(s)
- Motoko Unoki
- Laboratory for Biomarker, The Institute of Physical and Chemical Research, RIKEN, Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Abstract
Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies.
Collapse
Affiliation(s)
- M. Unoki
- Laboratory for Biomarker, The Institute of Physical and Chemical Research, RIKEN, Tokyo 108-8639, Japan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - K. Kumamoto
- Second Department of Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - C.C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
COLES ANDREWH, JONES STEPHENN. The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol 2009; 218:45-57. [PMID: 18780289 PMCID: PMC2872195 DOI: 10.1002/jcp.21583] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The five members of the inhibitor of growth (ING) gene family have garnered significant interest due to their putative roles as tumor suppressors. However, the precise role(s) of these ING proteins in regulating cell growth and tumorigenesis remains uncertain. Biochemical and molecular biological analysis has revealed that all ING members encode a PHD finger motif proposed to bind methylated histones and phosphoinosital, and all ING proteins have been found as components of large chromatin remodeling complexes that also include histone acetyl transferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, the results of forced overexpression studies performed in tissue culture have indicated that several of the ING proteins can interact with the p53 tumor suppressor protein and/or the nuclear factor-kappa B (NF-kappaB) protein complex. As these ING-associated proteins play well-established roles in numerous cell processes, including DNA repair, cell growth and survival, inflammation, and tumor suppression, several models have been proposed that ING proteins act as key regulators of cell growth not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-kappaB activity. However, these models have yet to be substantiated by in vivo experimentation. This review summarizes what is currently known about the biological functions of the five ING genes based upon in vitro experiments and recent mouse modeling efforts, and will highlight the potential impact of INGs on the development of cancer.
Collapse
Affiliation(s)
- ANDREW H. COLES
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - STEPHEN N. JONES
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
35
|
Unoki M, Kumamoto K, Robles AI, Shen JC, Zheng ZM, Harris CC. A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis. FEBS Lett 2008; 582:3868-74. [PMID: 18951897 PMCID: PMC2613974 DOI: 10.1016/j.febslet.2008.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/10/2008] [Accepted: 10/15/2008] [Indexed: 11/16/2022]
Abstract
We identified a novel inhibitor of growth family member 2 (ING2) isoform, ING2b, which shares exon 2 with ING2a, but lacks the N-terminal p53 binding region. Contrary to ING2a, ING2b's promoter has no p53 binding sites. Consistently, activation of p53 led to suppression of ING2a, leaving ING2b unaffected. Through isoform-specific targeting, we showed that ING2a knockdown suppressed cell growth only in the presence of p53, ING2b knockdown had no effect on cell growth, and knockdown of both induced cell cycle arrest and apoptosis independently of p53. ING2a and ING2b have compensatory roles that protect cells from cell cycle arrest and apoptosis and may be involved in development of chemotherapeutic resistance.
Collapse
Affiliation(s)
- Motoko Unoki
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Dr., Bldg. 37, Rm. 3068, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
Borkosky SS, Gunduz M, Nagatsuka H, Beder LB, Gunduz E, Ali MALS, Rodriguez AP, Cilek MZ, Tominaga S, Yamanaka N, Shimizu K, Nagai N. Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2008; 135:703-13. [PMID: 18998165 DOI: 10.1007/s00432-008-0507-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Loss of heterozygosity (LOH) in the ING family members has been shown in head and neck squamous cell carcinoma (HNSCC) except for ING2. Like all the other members of ING family, ING2, which is located at chromosome 4q35.1, is a promising tumor suppressor gene (TSG). In this study, we performed LOH analysis of ING2 in HNSCC and compared it with clinicopathological variables. MATERIALS AND METHODS We performed LOH analysis in DNAs from 80 paired of normal and HNSCC tissues, using a specifically designed microsatellite marker on chromosome 4q35.1, which detects allelic loss of ING2. TP53 mutation analysis and its relationship with ING2 chromosomal deletion were also performed in available 68 of the samples. The correlation between LOH status and clinicopathological characteristics was evaluated by using statistical methods. The overall survival (OS) and disease free survival (DFS) were also determined. RESULTS LOH was detected in 54.6% (30/55) of the informative samples. Statistical significance was obtained between LOH and tumor (T) stage (P = 0.02), application of radiotherapy and chemotherapy. Positive node status (N) appeared to be the only independent prognostic factor for both OS (P = 0.031) and DFS (P = 0.044). CONCLUSIONS Our study showed allelic loss of 4q35.1 in HNSCC. The high percentage of LOH suggests ING2 as a candidate TSG in HNSCC. High LOH frequency was statistically associated with advanced T stage, suggesting that ING2 LOH might occur in late stages during HNSCC progression.
Collapse
Affiliation(s)
- Silvia S Borkosky
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ythier D, Larrieu D, Brambilla C, Brambilla E, Pedeux R. The new tumor suppressor genes ING: genomic structure and status in cancer. Int J Cancer 2008; 123:1483-90. [PMID: 18636562 DOI: 10.1002/ijc.23790] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Inhibitor of Growth 1 (ING1) gene has been identified and characterized as a Type-II tumor suppressor gene (TSG). Subsequently, 4 additional members of the family were identified by homology search. ING proteins contain a nuclear localization sequence (NLS) and a plant homeo domain (PHD) finger motif in their C-terminus. These proteins are involved in numerous signaling pathways especially in 2 tumor suppressor pathways: apoptosis and senescence. In human tumors, several studies have shown that the expression of ING1 is frequently lost or downregulated. It occurs most frequently at the RNA level, and thus epigenetics mechanism could be involved. We summarize the current knowledge on ING proteins functions and their involvement in various signaling pathways. We also review the studies that have investigated the ING protein status in human tumors. The interest of ING proteins as biomarkers and their role in tumor initiation and progression is discussed.
Collapse
Affiliation(s)
- Damien Ythier
- Molecular Bases of Lung Cancer Progression, INSERM U823, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, 38706 Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Li J, Martinka M, Li G. Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis 2008; 29:1373-9. [PMID: 18375955 DOI: 10.1093/carcin/bgn086] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inhibitor of growth (ING) 4 has been reported as a tumor suppressor and shown to diminish colony-forming efficiency, induce p53-dependent apoptosis and arrest cell cycle at G(2)-M phase. In this study, we investigated the role of ING4 in human melanoma pathogenesis. Using the tissue microarray technology, we found that ING4 expression is significantly decreased in malignant melanoma compared with dysplastic nevi (P < 0.0001, chi(2) test) and reduced ING4 staining is associated with melanoma thickness, ulceration (P = 0.034 and 0.002, respectively, chi(2) test) as well as poor overall and disease-specific 5-year survival of primary melanoma patients (P = 0.0002 and 0.001, respectively, chi(2) test). Cox regression analysis revealed that reduced ING4 staining is an independent factor for the poor prognosis of patients with primary melanomas. Furthermore, we found that overexpression of ING4 suppressed cell migration by 63% and inhibited the activity of Ras homolog gene family member A (RhoA) small GTPase protein and Rho-associated kinase (ROCK)-mediated formation of stress fiber in melanoma cells. Moreover, our data showed that overexpression of ING4 inhibited melanoma cell invasion by 43% compared with the control (P = 0.006, t-test) and ING4-overexpressing melanoma cells showed significantly reduced activity of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, this study highlights the importance of ING4 in melanoma pathogenesis and ING4 may serve as a promising prognostic marker and a potential therapeutic target for human melanoma.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | | | | |
Collapse
|
39
|
Abstract
Chromatin structure plays a key role in most processes involving DNA metabolism. Chromatin modifications implicated in transcriptional regulation are relatively well characterized and are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, ubiquitylation, sumoylation, acetylation and methylation, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. Recent evidences suggest that such mechanisms are also involved in DNA damage detection and DNA repair. One of the most well-characterized modifications is caused by the formation of DNA double strand breaks (DSBs), resulting in phosphorylation of histone H2AX (the so-called gamma-H2AX) on the chromatin surrounding the DNA lesion. It is generally believed that histone H2AX phosphorylation is required for the concentration and stabilization of DNA repair proteins to the damaged chromatin. The phosphorylation of this histone seems to play a role in both non-homologous end-joining (NHEJ) and homologous recombination (HR) repair pathways. However, the choice of the repair pathway might depend on or induce additional post-translational modifications affecting other histone proteins necessary to the completion of the entire DNA repair process. Interestingly, even in the absence of DSBs, histone modifications occur. Indeed, following UV-exposure, histone acetylation takes place and is believed to facilitate the nucleotide excision repair (NER) process by promoting chromatin accessibility to the repair factors. This review focuses on recent data characterizing the function of histone modification in various repair processes and discusses if the combination of such modifications can be the trademark of a specific DNA repair pathway.
Collapse
|
40
|
Zhang HK, Pan K, Wang H, Weng DS, Song HF, Zhou J, Huang W, Li JJ, Chen MS, Xia JC. Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett 2007; 261:183-92. [PMID: 18160212 DOI: 10.1016/j.canlet.2007.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/17/2007] [Accepted: 11/10/2007] [Indexed: 12/13/2022]
Abstract
The inhibitor of growth (ING) family member 2 (ING2) is a newly discovered member of ING family that can regulate a wide range of cellular processes including cell growth arrest, apoptosis, and DNA repair. Researches have shown that ING2 can activate p53 and p53-mediated apoptotic pathway involved in the hepatocarcinogenesis. To investigate the role of ING2 in hepatocellular carcinoma (HCC) pathogenesis, we analyzed the correlations between the ING2 expression level and clinicopathologic factors and studied its prognostic role in primary HCC. Using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, ING2 transcription and post-transcription level was found to be downregulated in the majority of tumors compared with matched non-tumors liver tissues (p=0.004 and p=0.014, respectively). The immunohistochemistry data indicated significant reduction of ING2 expression level in 44 of 84 (52.4%) HCC cases. In addition, the expression level of ING2 correlated with tumor size, histopathologic classification, serum AFP (p<0.05). Kaplan-Meier curves demonstrated that patients with reduced ING2 expression were at significantly increased risk for shortened survival time (p=0.009). Using multivariate analysis, ING2 expression was found to be an independent prognostic factor. Our data suggest that ING2 is involved in the progression of HCC, therefore it is considered to be a candidate tumor suppressor gene and its significantly decreased expression in HCC may lead to an unfavorable prognosis.
Collapse
Affiliation(s)
- Hua-kun Zhang
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, Guangdong Province 510060, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Soliman MA, Riabowol K. After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 2007; 32:509-19. [PMID: 17949986 DOI: 10.1016/j.tibs.2007.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/03/2023]
Abstract
The INhibitor of Growth (ING) family of type II tumour suppressors are encoded by five genes in mammals (ING1-ING5), most of which encode multiple isoforms via splicing, and all of which contain a highly conserved plant homeodomain (PHD) finger motif. Since their discovery approximately ten years ago, significant progress has been made in understanding their subcellular targeting, their relationship to p53, their activation by bioactive phospholipids, and their key role in reading the histone code via PHD fingers, with subsequent effects on histone acetylation and transcriptional regulation. In the past year, we have begun to understand how ING proteins integrate stress signals with interpretation and modification of the histone epigenetic code to function as tumour suppressors.
Collapse
Affiliation(s)
- Mohamed A Soliman
- Department of Biochemistry University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
42
|
Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, Zhang X. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neurooncol 2007; 85:263-70. [PMID: 17594054 DOI: 10.1007/s11060-007-9421-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Gliomas are the most common and lethal primary tumors of the central nervous system (CNS). Despite current rigorous treatment protocols, effect of chemotherapy has failed to improve patient outcome significantly. Curcumin is a potent antioxidant that possesses both anti-inflammatory and anti-tumor activities, can suppress the initiation, promotion, and metastasis of different tumors. Its anti-tumor properties in various cancer models and negligible toxicity in normal cells make it a promising chemotherapeutic candidate. But the effect and the molecular mechanism of curcumin on gliomas are still recognized limitedly. The goal of the study is to elucidate the inhibitory effect and possible mechanisms of curcumin on glioma. After the treatment of curcumin, glioma cells U251 growth in vitro were significantly inhibited in a dose-dependent manner, and the low dose of curcumin induced G2/M cell cycle arrest. The high dose of curcumin not only enhanced G2/M cell cycle arrest, but also induced S phase of cell cycle arrest. But no obvious pre-G1 peak was observed at the different doses of curcumin. Genome DNA electrophoresis further confirmed that no DNA ladder was formed after the treatment of curcumin in U251 cells. Results of Western blot analysis demonstrated that ING4 expression was almost undetectable in U251 cells, but significantly up-regulated during cell cycle arrest induced by curcumin, and p53 expression was up-regulated followed by induction of p21 WAF-1/CIP-1 and ING4. The results demonstrate that curcumin exerts inhibitory action on glioma cell growth and proliferation via induction of cell cycle arrest instead of induction of apoptosis in a p53-dependent manner, and ING4 possibly is in part involved in the signal pathways.
Collapse
Affiliation(s)
- Enyu Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University (Neurosurgical Institute of Chinese PLA), Xian, PR China
| | | | | | | | | | | | | |
Collapse
|