1
|
Inhibitory Effects of a Novel PPAR- γ Agonist MEKT1 on Pomc Expression/ACTH Secretion in AtT20 Cells. PPAR Res 2018; 2018:5346272. [PMID: 29849538 PMCID: PMC5937427 DOI: 10.1155/2018/5346272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/06/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023] Open
Abstract
Although therapeutic effects of the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists rosiglitazone and pioglitazone against Cushing's disease have been reported, their effects are still controversial and inconsistent. We therefore examined the effects of a novel PPAR-γ agonist, MEKT1, on Pomc expression/ACTH secretion using murine corticotroph-derived AtT20 cells and compared its effects with those of rosiglitazone and pioglitazone. AtT20 cells were treated with either 1 nM~10 μM MEKT1, rosiglitazone, or pioglitazone for 24 hours. Thereafter, their effects on proopiomelanocortin gene (Pomc) mRNA expression were studied by qPCR and the Pomc promoter (−703/+58) activity was demonstrated by luciferase assay. Pomc mRNA expression and promoter activity were significantly inhibited by MEKT1 at 10 μM compared to rosiglitazone and pioglitazone. SiRNA-mediated PPAR-γ knockdown significantly abrogated MEKT1-mediated Pomc mRNA suppression. ACTH secretion from AtT20 cells was also significantly inhibited by MEKT1. Deletion/point mutant analyses of Pomc promoter indicated that the MEKT1-mediated suppression was mediated via NurRE, TpitRE, and NBRE at −404/−383, −316/−309, and −69/−63, respectively. Moreover, MEKT1 significantly suppressed Nur77, Nurr1, and Tpit mRNA expression. MEKT1 also was demonstrated to inhibit the protein-DNA interaction of Nur77/Nurr1-NurRE, Tpit-TpitRE, and Nur77-NBRE by ChIP assay. Taken together, it is suggested that MEKT1 could be a novel therapeutic medication for Cushing's disease.
Collapse
|
2
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
3
|
Perrucci GL, Zanobini M, Gripari P, Songia P, Alshaikh B, Tremoli E, Poggio P. Pathophysiology of Aortic Stenosis and Mitral Regurgitation. Compr Physiol 2017. [PMID: 28640443 DOI: 10.1002/cphy.c160020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global impact of the spectrum of valve diseases is a crucial, fast-growing, and underrecognized health problem. The most prevalent valve diseases, requiring surgical intervention, are represented by calcific and degenerative processes occurring in heart valves, in particular, aortic and mitral valve. Due to the increasing elderly population, these pathologies will gain weight in the global health burden. The two most common valve diseases are aortic valve stenosis (AVS) and mitral valve regurgitation (MR). AVS is the most commonly encountered valve disease nowadays and affects almost 5% of elderly population. In particular, AVS poses a great challenge due to the multiple comorbidities and frailty of this patient subset. MR is also a common valve pathology and has an estimated prevalence of 3% in the general population, affecting more than 176 million people worldwide. This review will focus on pathophysiological changes in both these valve diseases, starting from the description of the anatomical aspects of normal valve, highlighting all the main cellular and molecular features involved in the pathological progression and cardiac consequences. This review also evaluates the main approaches in clinical management of these valve diseases, taking into account of the main published clinical guidelines. © 2017 American Physiological Society. Compr Physiol 7:799-818, 2017.
Collapse
Affiliation(s)
- Gianluca L Perrucci
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Paola Songia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Paolo Poggio
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
4
|
Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis. Mol Med Rep 2016; 14:2289-96. [DOI: 10.3892/mmr.2016.5515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/07/2016] [Indexed: 11/05/2022] Open
|
5
|
Bosetti M, Sabbatini M, Calarco A, Borrone A, Peluso G, Cannas M. Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging. J Bone Miner Metab 2016; 34:65-78. [PMID: 25691285 DOI: 10.1007/s00774-014-0642-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/24/2014] [Indexed: 02/04/2023]
Abstract
Several studies have evidenced that in aging, osteoblast functional activity is impaired: osteoblast proliferation is slower and matrix deposition is less efficient. Because peroxisome-proliferator-activated receptor γ2 (PPARγ2) and fatty acids are important inhibitory signals in osteoblast development, we have investigated in human primary osteoblasts obtained from patients of different ages, the influence of retinoic acid and calcitriol on enzymes involved in differentiative (PPARγ2, β-catenin, and insulin-like growth factor 1) and metabolic (carnitine palmitoyltransferase 1) intracellular pathways, and on transglutaminase 2, as enzyme fundamental for stabilizing the newly deposited extracellular matrix in bone. Retinoic acid and calcitriol influenced, respectively, proliferation and differentiation of osteoblasts, and an increase in PPARγ2 expression was observed following retinoic acid administration, whereas a decrease was observed following calcitriol administration. Aging widely influenced all parameters analyzed (the proliferation, differentiation, and new matrix deposition are significantly reduced in aged osteoblasts), with the exception of PPARγ2, which we found to be constitutively overexpressed and not modulated by retinoic acid or calcitriol administration. Our findings show the impaired ability of aged osteoblasts to perform adequate functional response and draw attention to the therapeutic approaches for bone healing in elderly patients.
Collapse
Affiliation(s)
- Michela Bosetti
- Pharmacy Science Department, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy
| | - Maurizio Sabbatini
- Department of Health Sciences, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy.
- Dipartmento Scienze della Salute, Università del Piemonte Orientale "Amedeo Avogadro", via Solaroli 17, 28100, Novara, Italy.
| | - Anna Calarco
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Alessia Borrone
- Department of Health Sciences, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy
| | | | - Mario Cannas
- Department of Health Sciences, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy
| |
Collapse
|
6
|
Qian G, Fan W, Ahlemeyer B, Karnati S, Baumgart-Vogt E. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors. PLoS One 2015; 10:e0143439. [PMID: 26630504 PMCID: PMC4668026 DOI: 10.1371/journal.pone.0143439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023] Open
Abstract
Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression and accelerated osteoblast differentiation. Taken together, our results suggest that PPARß regulates the numerical abundance and metabolic function of peroxisomes via Pex11ß in parallel to osteoblast differentiation.
Collapse
Affiliation(s)
- Guofeng Qian
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Wei Fan
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
- * E-mail:
| |
Collapse
|
7
|
Yu Y, Al-Mansoori L, Opas M. Optimized osteogenic differentiation protocol from R1 mouse embryonic stem cells in vitro. Differentiation 2015; 89:1-10. [PMID: 25613029 DOI: 10.1016/j.diff.2014.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/11/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022]
Abstract
Embryonic stem cells (ESCs) are a unique model that allows the study of molecular pathways underlying commitment and differentiation. One such lineage is osteoblasts, which are responsible for forming bone tissue in the body. There are many osteogenic differentiation protocols in the literature utilizing different soluble factors. The goal of the present study was to increase the efficacy of our osteogenic differentiation protocol from R1 cells. We have studied the effects of the addition of the following factors: dexamethasone, retinoic acid, and peroxisome-proliferator-activated receptor-gamma inhibitor, which have been reported to enhance osteogenesis. We found that among the 6 different protocols that were tested, the addition of retinoic acid with later addition of dexamethasone gives the most enrichment of osteogenic lineage cells. Thus, our findings provide valuable guidelines for culture condition to differentiate mouse R1 ESCs to osteoblastic cells in vitro.
Collapse
Affiliation(s)
- Yanhong Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | - Layla Al-Mansoori
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada; Department of Chemistry & Earth Sciences, College of Arts and Science, University of Qatar, P.O. Box 2713, Doha, Qatar
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada.
| |
Collapse
|
8
|
Lee MJ, Chen HT, Ho ML, Chen CH, Chuang SC, Huang SC, Fu YC, Wang GJ, Kang L, Chang JK. PPARγ silencing enhances osteogenic differentiation of human adipose-derived mesenchymal stem cells. J Cell Mol Med 2013; 17:1188-93. [PMID: 23937351 PMCID: PMC4118177 DOI: 10.1111/jcmm.12098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/15/2013] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is the master regulator of adipogenesis, and has been indicated as a potential therapeutic target to promote osteoblast differentiation. However, recent studies suggest that suppression of PPARγ inhibits adipogenesis, but does not promote osteogenic differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs). It was reasoned that the osteogenic effect of PPARγ suppression may be masked by the strong osteogenesis-inducing condition commonly used, resulting in a high degree of matrix mineralization in both control and experimental groups. This study investigates the role of PPARγ in the lineage commitment of human adipose-derived mesenchymal stem cells (hADSCs) by interfering with the function of PPARγ mRNA through small interfering RNAs (siRNAs) specific for PPARγ2. By applying an osteogenic induction condition less potent than that used conventionally, we found that PPARγ silencing led to retardation of adipogenesis and stimulated a higher level of matrix mineralization. The mRNA level of PPARγ decreased to 47% of control 2 days after treatment with 50 nmol/l PPARγ2 siRNA, while its protein expression was 60% of mock control. In the meantime, osteogenic marker genes, including bone morphogenic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin (OC), were up-regulated under PPARγ silencing. Our results suggest that transient suppression of PPARγ promotes the onset of osteogenesis, and may be considered a new strategy to stimulate bone formation in bone tissue engineering using hADSCs.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kingham E, White K, Gadegaard N, Dalby MJ, Oreffo ROC. Nanotopographical cues augment mesenchymal differentiation of human embryonic stem cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2140-2151. [PMID: 23362187 DOI: 10.1002/smll.201202340] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Indexed: 06/01/2023]
Abstract
The production of bone-forming osteogenic cells for research purposes or transplantation therapies remains a significant challenge. Using planar polycarbonate substrates lacking in topographical cues and substrates displaying a nanotopographical pattern, mesenchymal differentiation of human embryonic stem cells is directed in the absence of chemical factors and without induction of differentiation by embryoid body formation. Cells incubated on nanotopographical substrates show enhanced expression of mesenchymal or stromal markers and expression of early osteogenic progenitors at levels above those detected in cells on planar substrates in the same basal media. Evidence of epithelial-to-mesenchymal transition during substrate differentiation and DNA methylation changes akin to chemical induction are also observed. These studies provide a suitable approach to overcome regenerative medical challenges and describe a defined, reproducible platform for human embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Emmajayne Kingham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | | |
Collapse
|
10
|
Chu Y, Lund DD, Weiss RM, Brooks RM, Doshi H, Hajj GP, Sigmund CD, Heistad DD. Pioglitazone attenuates valvular calcification induced by hypercholesterolemia. Arterioscler Thromb Vasc Biol 2013; 33:523-32. [PMID: 23288158 DOI: 10.1161/atvbaha.112.300794] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Development of calcific aortic valve stenosis involves multiple signaling pathways, which may be modulated by peroxisome proliferator-activated receptor-γ). This study tested the hypothesis that pioglitazone (Pio), a ligand for peroxisome proliferator-activated receptor-γ, inhibits calcification of the aortic valve in hypercholesteremic mice. METHODS AND RESULTS Low density lipoprotein receptor(-/-)/apolipoprotein B(100/100) mice were fed a Western-type diet with or without Pio (20 mg/kg per day) for 6 months. Pio attenuated lipid deposition and calcification in the aortic valve, but not aorta. In the aortic valve, Pio reduced levels of active caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Valve function (echocardiography) was significantly improved by Pio. To determine whether changes in gene expression are associated with differential effects of Pio on aortic valves versus aorta, Reversa mice were fed Western diet with or without Pio for 2 months. Several procalcific genes were increased by Western diet, and the increase was attenuated by Pio, in aortic valve, but not aorta. CONCLUSIONS Pio attenuates lipid deposition, calcification, and apoptosis in aortic valves of hypercholesterolemic mice, improves aortic valve function, and exhibits preferential effects on aortic valves versus aorta. We suggest that Pio protects against calcific aortic valve stenosis, and Pio or other peroxisome proliferator-activated receptor-γ ligands may be useful for early intervention to prevent or slow stenosis of aortic valves.
Collapse
Affiliation(s)
- Yi Chu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang S, Kaplan FS, Shore EM. Different roles of GNAS and cAMP signaling during early and late stages of osteogenic differentiation. Horm Metab Res 2012; 44:724-31. [PMID: 22903279 PMCID: PMC3557937 DOI: 10.1055/s-0032-1321845] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progressive osseous heteroplasia (POH) and fibrous dysplasia (FD) are genetic diseases of bone formation at opposite ends of the osteogenic spectrum: imperfect osteogenesis of the skeleton occurs in FD, while heterotopic ossification in skin, subcutaneous fat, and skeletal muscle forms in POH. POH is caused by heterozygous inactivating germline mutations in GNAS, which encodes G-protein subunits regulating the cAMP pathway, while FD is caused by GNAS somatic activating mutations. We used pluripotent mouse ES cells to examine the effects of Gnas dysregulation on osteoblast differentiation. At the earliest stages of osteogenesis, Gnas transcripts Gsα, XLαs and 1A are expressed at low levels and cAMP levels are also low. Inhibition of cAMP signaling (as in POH) by 2',5'-dideoxyadenosine enhanced osteoblast differentiation while conversely, increased cAMP signaling (as in FD), induced by forskolin, inhibited osteoblast differentiation. Notably, increased cAMP was inhibitory for osteogenesis only at early stages after osteogenic induction. Expression of osteogenic and adipogenic markers showed that increased cAMP enhanced adipogenesis and impaired osteoblast differentiation even in the presence of osteogenic factors, supporting cAMP as a critical regulator of osteoblast and adipocyte lineage commitment. Furthermore, increased cAMP signaling decreased BMP pathway signaling, indicating that G protein-cAMP pathway activation (as in FD) inhibits osteoblast differentiation, at least in part by blocking the BMP-Smad pathway, and suggesting that GNAS inactivation as occurs in POH enhances osteoblast differentiation, at least in part by stimulating BMP signaling. These data support that differences in cAMP levels during early stages of cell differentiation regulate cell fate decisions. Supporting information available online at http:/www.thieme-connect.de/ejournals/toc/hmr.
Collapse
Affiliation(s)
- S. Zhang
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - F. S. Kaplan
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - E. M. Shore
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Yu WH, Li FG, Chen XY, Li JT, Wu YH, Huang LH, Wang Z, Li P, Wang T, Lahn BT, Xiang AP. PPARγ suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells. Int J Biochem Cell Biol 2011; 44:377-84. [PMID: 22120652 DOI: 10.1016/j.biocel.2011.11.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 01/10/2023]
Abstract
Mesenchymal stem cells (MSCs) are the common progenitors of osteoblasts and adipocytes. A reciprocal relationship exists between osteogenesis and adipogenesis in the bone marrow, and the identification of signaling pathways that stimulate MSC osteogenesis at the expense of adipogenesis is of great importance from the viewpoint of developing new therapeutic treatments for bone loss. The adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ) has been reported to play a vital role in modulating mesenchymal lineage allocation within the bone marrow compartment, stimulating adipocyte development at the expense of osteoblast differentiation. Hence, PPARγ may be a valuable target for drugs intended to enhance bone mass. However, little direct evidence is available for the role played by PPARγ in human mesenchymal lineage allocation. In this study, using human MSCs as an in vitro model, we showed that the two isoforms of PPARγ, PPARγ1 and PPARγ2, were differentially induced during hMSC adipogenesis, whereas only PPARγ1 was detected during osteogenesis. BADGE and GW9662, two potential antagonists of PPARγ, as well as lentivirus-mediated knockdown of PPARγ, inhibited hMSC adipogenesis but did not significantly affect osteogenesis. PPARγ knockdown did not significantly influence the expression level of the osteogenic transcription factor Runx2. Together, these results suggest that PPARγ is not the master factor regulating mesenchymal lineage determination in human bone marrow.
Collapse
Affiliation(s)
- Wei-Hua Yu
- Center for Stem Cell Biology and Tissue Engineering, The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 74# Zhongshan Road 2, Guangzhou, Guangdong 510080, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Calcific aortic valve stenosis (CAVS) is a major health problem facing aging societies. The identification of osteoblast-like and osteoclast-like cells in human tissue has led to a major paradigm shift in the field. CAVS was thought to be a passive, degenerative process, whereas now the progression of calcification in CAVS is considered to be actively regulated. Mechanistic studies examining the contributions of true ectopic osteogenesis, nonosseous calcification, and ectopic osteoblast-like cells (that appear to function differently from skeletal osteoblasts) to valvular dysfunction have been facilitated by the development of mouse models of CAVS. Recent studies also suggest that valvular fibrosis, as well as calcification, may play an important role in restricting cusp movement, and CAVS may be more appropriately viewed as a fibrocalcific disease. High-resolution echocardiography and magnetic resonance imaging have emerged as useful tools for testing the efficacy of pharmacological and genetic interventions in vivo. Key studies in humans and animals are reviewed that have shaped current paradigms in the field of CAVS, and suggest promising future areas for research.
Collapse
Affiliation(s)
- Jordan D Miller
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
14
|
Nuclear Receptors in Regulation of Mouse ES Cell Pluripotency and Differentiation. PPAR Res 2011; 2007:61563. [PMID: 18274628 PMCID: PMC2233893 DOI: 10.1155/2007/61563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/11/2007] [Indexed: 12/25/2022] Open
Abstract
Embryonic stem (ES) cells have great therapeutic potential because they are capable of indefinite self-renewal and have the potential to differentiate into over 200 different cell types that compose the human body. The switch from the pluripotent phenotype to a differentiated cell involves many complex signaling pathways including those involving LIF/Stat3 and the transcription factors Sox2, Nanog and Oct-4. Many nuclear receptors play an important role in the maintenance of pluripotence (ERRβ, SF-1, LRH-1, DAX-1) repression of the ES cell phenotype (RAR, RXR, GCNF) and also the differentiation of ES cells (PPARγ). Here we review the roles of the nuclear receptors involved in regulating these important processes in ES cells.
Collapse
|
15
|
Casteilla L, Cousin B, Carmona M. PPARs and Adipose Cell Plasticity. PPAR Res 2011; 2007:68202. [PMID: 17710234 PMCID: PMC1939923 DOI: 10.1155/2007/68202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/18/2007] [Indexed: 11/17/2022] Open
Abstract
Due to the importance of fat tissues in both energy balance and in the associated disorders arising when such balance is not maintained, adipocyte differentiation has been extensively investigated in order to control and inhibit the enlargement of white adipose tissue. The ability of a cell to undergo adipocyte differentiation is one particular feature of all mesenchymal cells. Up until now, the peroxysome proliferator-activated receptor (PPAR) subtypes appear to be the keys and essential players capable of inducing and controlling adipocyte differentiation. In addition, it is now accepted that adipose cells present a broad plasticity that allows them to differentiate towards various mesodermal phenotypes. The role of PPARs in such plasticity is reviewed here, although no definite conclusion can yet be drawn. Many questions thus remain open concerning the definition of preadipocytes and the relative importance of PPARs in comparison to other master factors involved in the other mesodermal phenotypes.
Collapse
Affiliation(s)
- Louis Casteilla
- IFR 31, Institut Louis Bugnard, CNRS/UPS UMR 5241, 31432 Toulouse Cedex 4, France
- *Louis Casteilla:
| | - Béatrice Cousin
- IFR 31, Institut Louis Bugnard, CNRS/UPS UMR 5241, 31432 Toulouse Cedex 4, France
| | - Mamen Carmona
- Laboratorio de Diabetes y Obesidad Experimentales, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Villarroel, 170, 08036 Barcelona, Spain
| |
Collapse
|
16
|
Lee KW, Yook JY, Son MY, Kim MJ, Koo DB, Han YM, Cho YS. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev 2010; 19:557-68. [PMID: 19642865 DOI: 10.1089/scd.2009.0147] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Studies revealed that PI3K/AKT/mTOR signaling is important in the regulation of human embryonic stem cell (hESC) self-renewal and differentiation. However, its action on osteogenic differentiation of hESCs is poorly understood. We tested the effects of pharmacological PI3K/AKT/mTOR inhibitors on their potential to induce osteogenic differentiation of hESCs. Under feeder-free culture conditions, rapamycin (an mTOR inhibitor) potently inhibited the activities of mTOR and p70S6K in undifferentiated hESCs; however, LY294002 (a PI3K inhibitor) and an AKT inhibitor had no effects. Treatment with any of these inhibitors down-regulated the hESC markers Oct4 and Nanog, but only rapamycin induced the up-regulation of the early osteogenic markers BMP2 and Runx2. We also observed that hESCs differentiated when treated with FK506, a structural analog of rapamycin, but did not exhibit an osteogenic phenotype. Increases in Smad1/5/8 phosphorylation and Id1-4 mRNA expression indicated that rapamycin significantly stimulated BMP/Smad signaling. After inducing both hESCs and human embryoid bodies (hEBs) for 2-3 weeks with rapamycin, osteoblastic differentiation was further characterized by the expression of osteoblastic marker mRNAs and/or proteins (osterix, osteocalcin, osteoprotegerin, osteonectin, and bone sialoprotein), alkaline phosphatase activity, and alizarin red S staining for mineralized bone nodule formation. No significant differences in the osteogenic phenotypes of rapamycin-differentiated hESCs and hEBs were detected. Our results suggest that, among these 3 inhibitors, only rapamycin functions as a potent stimulator of osteoblastic differentiation of hESCs, and it does so by modulating rapamycin-sensitive mTOR and BMP/Smad signaling.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Development and Differentiation Research Center, KRIBB, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Yamashita A, Nishikawa S, Rancourt DE. Identification of five developmental processes during chondrogenic differentiation of embryonic stem cells. PLoS One 2010; 5:e10998. [PMID: 20539759 PMCID: PMC2881868 DOI: 10.1371/journal.pone.0010998] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/13/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis. METHODOLOGY/PRINCIPAL FINDINGS ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place. CONCLUSIONS/SIGNIFICANCE We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration.
Collapse
Affiliation(s)
| | | | - Derrick E. Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Microenvironment modulates osteogenic cell lineage commitment in differentiated embryonic stem cells. PLoS One 2010; 5:e9663. [PMID: 20300192 PMCID: PMC2837348 DOI: 10.1371/journal.pone.0009663] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/09/2009] [Indexed: 01/29/2023] Open
Abstract
Background Due to their self-renewal, embryonic stem cells (ESCs) are attractive cells for applications in regenerative medicine and tissue engineering. Although ESC differentiation has been used as a platform for generating bone in vitro and in vivo, the results have been unsatisfactory at best. It is possible that the traditional culture methods, which have been used, are not optimal and that other approaches must be explored. Methodology/Principal Findings ESCs were differentiated into osteoblast lineage using a micro-mass approach. In response to osteogenic differentiation medium, many cells underwent apoptosis, while others left the micro-mass, forming small aggregates in suspension. These aggregates were cultured in three different culture conditions (adhesion, static suspension, and stirred suspension), then examined for osteogenic potential in vitro and in vivo. In adhesion culture, ESCs primed to become osteoblasts recommitted to the adipocyte lineage in vitro. In a static suspension culture, resulting porous aggregates expressed osteoblasts markers and formed bone in vivo via intermembranous ossification. In a stirred suspension culture, resulting non-porous aggregates suppressed osteoblast differentiation in favor of expanding progenitor cells. Conclusions/Significance We demonstrate that microenvironment modulates cell fate and subsequent tissue formation during ESC differentiation. For effective tissue engineering using ESCs, it is important to develop optimized cell culture/differentiation conditions based upon the influence of microenvironment.
Collapse
|
19
|
Giudice A, Trounson A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2009; 2:422-33. [PMID: 18462693 DOI: 10.1016/j.stem.2008.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Directed differentiation of human embryonic stem cells (hESCs) may yield models to study organogenesis, produce cells and tissues for therapies, and identify clinically relevant compounds for disease treatment. Optimal conditions for specific differentiation of hESCs are still being determined. Incorporation of fluorescent reporter genes will enable high-throughput screening to identify fate-specifying molecules. Ectopic expression, or silencing, of key developmental genes can also direct differentiation toward specific lineages. Here, we briefly overview various genetic modifications used to generate useful hESC lines. We identify strengths and limitations to each method and propose the most suitable approaches for different applications.
Collapse
Affiliation(s)
- Antonietta Giudice
- Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
20
|
Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage. Cell Death Differ 2008; 16:278-86. [DOI: 10.1038/cdd.2008.149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
21
|
Gordeladze JO, Noël D, Bony C, Apparailly F, Louis-Plence P, Jorgensen C. Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Exp Cell Res 2008; 314:1495-506. [PMID: 18313048 DOI: 10.1016/j.yexcr.2007.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/06/2007] [Accepted: 12/15/2007] [Indexed: 11/16/2022]
Abstract
In order to ensure that MSCs designed for in vivo cartilage repair do not untowardly differentiate into osteoblasts and mineralize in situ, we tested whether siRNA-induced suppression of cbfa1/Runx2 affected the osteogenic and chondrogenic differentiation potential of the murine cell line C3H10T1/2. Anti-cbfa1/Runx2 siRNA decreased the levels of cbfa1/Runx2 mRNA and protein by 65-80%, and also markedly reduced the expression of osteoblast-related genes such as Dlx5, osterix, collagen type I, alkaline phosphatase (AP), osteocalcin, SPARC/osteonectin and osteopontin, leading to a temporal expression of AP enzyme activity and mineralization potential delayed by at least some 7-9 days. Furthermore, siRNA-transfected cells, grown under chondrogenic conditions did not display biologically significant changes in the expression of aggrecan, collagen type II or type X, or histology when grown in micropellets or monolayer cultures. Finally, when cells were propagated in osteogenic medium and injected into the tibial muscles of SCID mice, no overtly mineralized bone tissue emerged. These experiments indicate that a major transient reduction of cbfa1/Runx2 expression in MSCs is sufficient to delay osteoblastic differentiation, both in vitro and in vivo, while chondrogenesis seemed to be sustained.
Collapse
Affiliation(s)
- Jan O Gordeladze
- Institute of Basal Medical Sciences, Department of Biochemistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
22
|
Zhang L, Liu T, Hua YQ, Xing LJ, Zheng PY, Ji G. Role of adipocyte disdifferentiation in insulin resistance and nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2008; 16:1535. [DOI: 10.11569/wcjd.v16.i14.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Cotter EJ, Malizia AP, Chew N, Powderly WG, Doran PP. HIV proteins regulate bone marker secretion and transcription factor activity in cultured human osteoblasts with consequent potential implications for osteoblast function and development. AIDS Res Hum Retroviruses 2007; 23:1521-30. [PMID: 18160010 DOI: 10.1089/aid.2007.0112] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A high incidence of decreased bone mineral density (BMD) has increasingly been associated with HIV infection. In this study mesenchymal stem cell (MSC) and human osteoblast (hOB) cell lines were treated with HIV tat, HIV rev, HIV p55-gag, HIV gp120 and HTLV env (100 ng/ml, 24 h). Cells were then analyzed for calcium deposition, alkaline phosphatase (ALP) activity, and lipid levels using established methods. Real-time PCR with gene-specific primers was used to quantify the mRNA levels of the transcription factors RUNX-2 and PPARgamma, transcription factors known to be pro-osteogenic and pro-adipogenic, respectively. The levels of secreted bone markers and transcription factor activity were determined using commercial assays. In OBs, HIV p55-gag and gp120 were seen to reduce calcium deposition, ALP activity, levels of secreted BMP-2, -7, and RANK-L, and the expression and activity of RUNX-2. The levels of osteocalcin were also significantly reduced by p55-gag treatment, while gp120 also increased PPARgamma activity. Lipid levels were also increased by gp120 treatment. The ability of MSCs to develop into functioning OBs was also affected by the presence of HIV proteins, with p55-gag inducing a decrease in osteogenesis, while rev induced an increase. HIV proteins can potentially modulate OB development and function in vitro via modulation of bone maker secretion and RUNX-2 and PPARgamma transcription factor activity.
Collapse
Affiliation(s)
- Eoin J. Cotter
- General Clinical Research Unit, School of Medicine and Medical Sciences, University College Dublin, Ireland
| | - Andrea P. Malizia
- General Clinical Research Unit, School of Medicine and Medical Sciences, University College Dublin, Ireland
| | - Nicholas Chew
- Dublin Molecular Medicine Centre and National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - William G. Powderly
- General Clinical Research Unit, School of Medicine and Medical Sciences, University College Dublin, Ireland
| | - Peter P. Doran
- General Clinical Research Unit, School of Medicine and Medical Sciences, University College Dublin, Ireland
| |
Collapse
|