1
|
Nikerova KM, Galibina NA, Sinkevich SM, Sofronova IN, Borodina MN, Moshchenskaya YL, Tarelkina TV, Klimova AV. Biochemical Aspects of the Spiral Grain Formation in Scots Pine ( Pinus Sylvestris L.) Wood. Some Differences and Similarities with Biochemical Indicators of Abnormal Xylogenesis in Karelian Birch ( Betula Pendula Roth Var. Carelica (Mercl.) Hämet-Ahti). Protein Pept Lett 2023; 30:763-776. [PMID: 37622712 DOI: 10.2174/0929866530666230824101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AOS enzymes can be biochemical indicators of abnormal xylogenesis in Scots pine, and this mechanism has similar features with the metabolic base of abnormal xylogenesis in Karelian birch. OBJECTIVE AOS enzymes' activity in 150-300-year-old Pinus sylvestris L. wood with straight-- grained wood and right-twisted spiral-grained wood, expressed in varying degrees (5-20 angle), grew in three sample plots in lingonberry and blueberry pine forest stands of different ages (100-300 years) in the middle taiga subzone in the Republic of Karelia. METHODS Plant tissues were ground in liquid nitrogen in a uniform mass and homogenized at 4°C in the buffer containing 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 3 mM DTT, 5 mM MgCl2 and 0.5 mM PMSF. After 20 min extraction, the homogenate was centrifuged at 10000 g for 20 min (MPW-351R, Poland). The sediment was washed in the buffer thrice. The pooled supernatant and sediment were dialyzed at 4°C for 18-20 h against a tenfold diluted homogenization buffer. The enzymes' activity was determined spectrophotometrically (Spectrophotometer SF-2000, OKB Spectr, Russia). Proteins in the extracts were quantified by the method of Bradford. RESULTS The study showed that the activity of SS, ApInv, CAT, POD and PPO in xylem and PPO in phloem were biochemical indicators for abnormal wood of P. sylvestris. We noticed an increase in sucrose metabolism in the apoplast and the activity of POD and PPO under spiral-grain wood formation like under figured wood formation earlier. We assume that the alternative pathway of sucrose metabolism (an indicator of abnormal xylogenesis in B. pendula var. carelica plants) that lead to restructuring of AOS enzymes have the same biochemical regularities in the spiral-grain wood formation in P. sylvestris. CONCLUSION The study showed that the differences in the AOS enzyme's activity in P. sylvestris during the formation of straight-grained and spiral-grained wood were revealed for the first time. The increased CAT, POD and PPO activities in xylem with a decrease in SS and an increase in Ap- Inv during spiral-grained wood formation can be biochemical markers of these structural anomalies. Metabolic regularities found in the AOS enzyme complex during spiral-grained wood formation do not contradict those found earlier during figured wood formation in B. pendula var. carelica. The identified patterns can form the base for diagnostics of P. sylvestris wood quality in forest seed plantations and in their natural growth, which is necessary both for fundamental science and in various industry areas while high-quality material harvesting.
Collapse
Affiliation(s)
- Kseniya Mihajlovna Nikerova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Natalia Alekseevna Galibina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Sergey Mihajlovich Sinkevich
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Irina Nikolaevna Sofronova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Marina Nikolaevna Borodina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Yuliya Leonidovna Moshchenskaya
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Tatiana Vladimirovna Tarelkina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Anna Vladimirovna Klimova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| |
Collapse
|
2
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
3
|
García-Ulloa A, Sanjurjo L, Cimini S, Encina A, Martínez-Rubio R, Bouza R, Barral L, Estévez-Pérez G, Novo-Uzal E, De Gara L, Pomar F. Overexpression of ZePrx in Nicotiana tabacum Affects Lignin Biosynthesis Without Altering Redox Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:900. [PMID: 32676088 PMCID: PMC7333733 DOI: 10.3389/fpls.2020.00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 05/30/2023]
Abstract
Class III plant peroxidases (Prxs) are involved in the oxidative polymerization of lignins. Zinnia elegans Jacq. Basic peroxidase (ZePrx) has been previously characterized as capable of catalyzing this reaction in vitro and the role in lignin biosynthesis of several of its Arabidopsis thaliana homologous has been previously confirmed. In the present work, ZePrx was overexpressed in Nicotiana tabacum to further characterize its function in planta with particular attention to its involvement in lignin biosynthesis. Since Prxs are known to alter ROS levels by using them as electron acceptor or producing them in their catalytic activity, the impact of this overexpression in redox homeostasis was studied by analyzing the metabolites and enzymes of the ascorbate-glutathione cycle. In relation to the modification induced by ZePrx overexpression in lignin composition and cellular metabolism, the carbohydrate composition of the cell wall as well as overall gene expression through RNA-Seq were analyzed. The obtained results indicate that the overexpression of ZePrx caused an increase in syringyl lignin in cell wall stems, suggesting that ZePrx is relevant for the oxidation of sinapyl alcohol during lignin biosynthesis, coherently with its S-peroxidase nature. The increase in the glucose content of the cell wall and the reduction of the expression of several genes involved in secondary cell wall biosynthesis suggests the occurrence of a possible compensatory response to maintain cell wall properties. The perturbation of cellular redox homeostasis occurring as a consequence of ZePrx overexpression was kept under control by an increase in APX activity and a reduction in ascorbate redox state. In conclusion, our results confirm the role of ZePrx in lignin biosynthesis and highlight that its activity alters cellular pathways putatively aimed at maintaining redox homeostasis.
Collapse
Affiliation(s)
- Alba García-Ulloa
- Departamento de Biología, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| | - Laura Sanjurjo
- Departamento de Biología, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University, Rome, Italy
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
| | - Romina Martínez-Rubio
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
| | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Ferrol, Spain
| | - Luis Barral
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Ferrol, Spain
| | | | | | - Laura De Gara
- Unit of Food Science and Human Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University, Rome, Italy
| | - Federico Pomar
- Departamento de Biología, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
4
|
Cosio C, Ranocha P, Francoz E, Burlat V, Zheng Y, Perry SE, Ripoll JJ, Yanofsky M, Dunand C. The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation. THE NEW PHYTOLOGIST 2017; 213:250-263. [PMID: 27513887 DOI: 10.1111/nph.14127] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/03/2016] [Indexed: 05/22/2023]
Abstract
Several physiological functions have been attributed to class III peroxidases (PRXs) in plants, but the in planta role of most members of this family still remains undetermined. Here, we report the first functional characterization of PRX17 (At2g22420), one of the 73 members of this family in Arabidopsis thaliana. Localization of PRX17 was examined by transient expression in Nicotiana benthamiana. Loss- and gain-of-function mutants in A. thaliana were studied. Regulation at the gene and protein levels was analyzed using β-glucuronidase (GUS) activity, quantitative reverse transcriptase (qRT)-PCR, zymography, and chromatin immunoprecipitation. Phenotypes were characterized including lignin and xylan contents. PRX17 was expressed in various tissues, including vascular tissues, and PRX17 was localized to the cell wall. In prx17, the lignin content was reduced in the stem and siliques and bolting was delayed, while the opposite phenotype was observed in 35S:PRX17 plants, together with a significant increase of lignin and xylan immunofluorescence signal. Finally, we demonstrated that the transcription factor AGAMOUS-LIKE15 (AGL15) binds to the PRX17 promoter and regulates PRX17 expression level. This converging set of structural, transcriptomic and physiological data suggests that PRX17, under the control of AGL15, contributes to developmental programs by playing an essential role in regulating age-dependent lignified tissue formation, including changes in cell wall properties.
Collapse
Affiliation(s)
- Claudia Cosio
- Division of Biological Sciences, Section Cell & Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 24 chemin de Borde Rouge, Auzeville, BP42617, Castanet Tolosan, 31326, France
| | - Edith Francoz
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 24 chemin de Borde Rouge, Auzeville, BP42617, Castanet Tolosan, 31326, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 24 chemin de Borde Rouge, Auzeville, BP42617, Castanet Tolosan, 31326, France
| | - Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Sharyn E Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Juan-Jose Ripoll
- Division of Biological Sciences, Section Cell & Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Martin Yanofsky
- Division of Biological Sciences, Section Cell & Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 24 chemin de Borde Rouge, Auzeville, BP42617, Castanet Tolosan, 31326, France
| |
Collapse
|
5
|
Fan G, Xu E, Deng M, Zhao Z, Niu S. Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0321-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Didi V, Jackson P, Hejátko J. Hormonal regulation of secondary cell wall formation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5015-27. [PMID: 26002972 DOI: 10.1093/jxb/erv222] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secondary cell walls (SCWs) have critical functional importance but also constitute a high proportion of the plant biomass and have high application potential. This is true mainly for the lignocellulosic constituents of the SCWs in xylem vessels and fibres, which form a structured layer between the plasma membrane and the primary cell wall (PCW). Specific patterning of the SCW thickenings contributes to the mechanical properties of the different xylem cell types, providing the plant with mechanical support and facilitating the transport of solutes via vessels. In the last decade, our knowledge of the basic molecular mechanisms controlling SCW formation has increased substantially. Several members of the multi-layered regulatory cascade participating in the initiation and transcriptional regulation of SCW formation have been described, and the first cellular components determining the pattern of SCW at the subcellular resolution are being uncovered. The essential regulatory role of phytohormones in xylem development is well known and the molecular mechanisms that link hormonal signals to SCW formation are emerging. Here, we review recent knowledge about the role of individual plant hormones and hormonal crosstalk in the control over the regulatory cascades guiding SCW formation and patterning. Based on the analogy between many of the mechanisms operating during PCW and SCW formation, recently identified mechanisms underlying the hormonal control of PCW remodelling are discussed as potentially novel mechanisms mediating hormonal regulatory inputs in SCW formation.
Collapse
Affiliation(s)
- Vojtěch Didi
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Phil Jackson
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Fernández-Pérez F, Pomar F, Pedreño MA, Novo-Uzal E. The suppression of AtPrx52affects fibers but not xylem lignification in Arabidopsisby altering the proportion of syringyl units. PHYSIOLOGIA PLANTARUM 2015; 154:395-406. [PMID: 25410139 DOI: 10.1111/ppl.12310] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/28/2014] [Accepted: 11/17/2014] [Indexed: 05/23/2023]
Affiliation(s)
| | - Federico Pomar
- Department of Animal Biology; Plant Biology and Ecology, 15071, University of A Coruña; A Coruña Spain
| | - María A. Pedreño
- Department of Plant Biology; University of Murcia; Murcia 30100 Spain
| | - Esther Novo-Uzal
- Department of Plant Biology; University of Murcia; Murcia 30100 Spain
| |
Collapse
|
8
|
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsisirregular xylemmutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 2014; 49:212-41. [DOI: 10.3109/10409238.2014.889651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Novo-Uzal E, Fernández-Pérez F, Herrero J, Gutiérrez J, Gómez-Ros LV, Bernal MÁ, Díaz J, Cuello J, Pomar F, Pedreño MÁ. From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3499-518. [PMID: 23956408 DOI: 10.1093/jxb/ert221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Zinnia elegans constitutes one of the most useful model systems for studying xylem differentiation, which simultaneously involves secondary cell wall synthesis, cell wall lignification, and programmed cell death. Likewise, the in vitro culture system of Z. elegans has been the best characterized as the differentiation of mesophyll cells into tracheary elements allows study of the biochemistry and physiology of xylogenesis free from the complexity that heterogeneous plant tissues impose. Moreover, Z. elegans has emerged as an excellent plant model to study the involvement of peroxidases in cell wall lignification. This is due to the simplicity and duality of the lignification pattern shown by the stems and hypocotyls, and to the basic nature of the peroxidase isoenzyme. This protein is expressed not only in hypocotyls and stems but also in mesophyll cells transdifferentiating into tracheary elements. Therefore, not only does this peroxidase fulfil all the catalytic requirements to be involved in lignification overcoming all restrictions imposed by the polymerization step, but also its expression is inherent in lignification. In fact, its basic nature is not exceptional since basic peroxidases are differentially expressed during lignification in other model systems, showing unusual and unique biochemical properties such as oxidation of syringyl moieties. This review focuses on the experiments which led to a better understanding of the lignification process in Zinnia, starting with the basic knowledge about the lignin pattern in this plant, how lignification takes place, and how a sole basic peroxidase with unusual catalytic properties is involved and regulated by hormones, H2O2, and nitric oxide.
Collapse
Affiliation(s)
- Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Herrero J, Esteban-Carrasco A, Zapata JM. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:77-86. [PMID: 23545205 DOI: 10.1016/j.plaphy.2013.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/19/2013] [Indexed: 05/20/2023]
Abstract
Monolignol polymerization into lignin is catalyzed by peroxidases or laccases. Recently, a Zinnia elegans peroxidase (ZePrx) that is considered responsible for monolignol polymerization in this plant has been molecularly and functionally characterized. Nevertheless, Arabidopsis thaliana has become an alternative model plant for studies of lignification, filling the gaps that may occur with Z. elegans. The arabidopsis genome offers the possibility of performing bioinformatic analyses and data mining that are not yet feasible with other plant species, in order to obtain preliminary evidence on the role of genes and proteins. In our search for arabidopsis homologs to the ZePrx, we performed an exhaustive in silico characterization of everything from the protein to the transcript of Arabidopsis thaliana peroxidases (AtPrxs) homologous to ZePrx, with the aim of identifying one or more peroxidases that may be involved in monolignol polymerization. Nine peroxidases (AtPrx 4, 5, 52, 68, 67, 36, 14, 49 and 72) with an E-value greater than 1e-80 with ZePrx were selected for this study. The results demonstrate that a high level of 1D, 2D and 3D homology between these AtPrxs and ZePrx are not always accompanied by the presence of the same electrostatic and mRNA properties that indicate a peroxidase is involved in lignin biosynthesis. In summary, we can confirm that the peroxidases involved in lignification are among AtPrx 4, 52, 49 and 72. Their structural and mRNA features indicate that exert their action in the cell wall similar to ZePrx.
Collapse
Affiliation(s)
- Joaquín Herrero
- Department of Plant Biology, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | - José Miguel Zapata
- Department of Plant Biology, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
11
|
Herrero J, Fernández-Pérez F, Yebra T, Novo-Uzal E, Pomar F, Pedreño MÁ, Cuello J, Guéra A, Esteban-Carrasco A, Zapata JM. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. PLANTA 2013; 237:1599-612. [PMID: 23508663 DOI: 10.1007/s00425-013-1865-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/21/2013] [Indexed: 05/21/2023]
Abstract
Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl, and sinapyl) alcohols in a reaction mediated by peroxidases. The most important of these is the cationic peroxidase from Zinnia elegans (ZePrx), an enzyme considered to be responsible for the last step of lignification in this plant. Bibliographical evidence indicates that the arabidopsis peroxidase 72 (AtPrx72), which is homolog to ZePrx, could have an important role in lignification. For this reason, we performed a bioinformatic, histochemical, photosynthetic, and phenotypical and lignin composition analysis of an arabidopsis knock-out mutant of AtPrx72 with the aim of characterizing the effects that occurred due to the absence of expression of this peroxidase from the aspects of plant physiology such as vascular development, lignification, and photosynthesis. In silico analyses indicated a high homology between AtPrx72 and ZePrx, cell wall localization and probably optimal levels of translation of AtPrx72. The histochemical study revealed a low content in syringyl units and a decrease in the amount of lignin in the atprx72 mutant plants compared to WT. The atprx72 mutant plants grew more slowly than WT plants, with both smaller rosette and principal stem, and with fewer branches and siliques than the WT plants. Lastly, chlorophyll a fluorescence revealed a significant decrease in ΦPSII and q L in atprx72 mutant plants that could be related to changes in carbon partitioning and/or utilization of redox equivalents in arabidopsis metabolism. The results suggest an important role of AtPrx72 in lignin biosynthesis. In addition, knock-out plants were able to respond and adapt to an insufficiency of lignification.
Collapse
Affiliation(s)
- Joaquín Herrero
- Department of Plant Biology, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Novo-Uzal E, Taboada A, Rivera A, Flores G, Barceló AR, Masa A, Pomar F. Relationship between hydroxycinnamic acid content, lignin composition and digestibility of maize silages in sheep. Arch Anim Nutr 2011; 65:108-22. [DOI: 10.1080/1745039x.2010.511520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. MOLECULAR PLANT PATHOLOGY 2010; 11:829-46. [PMID: 21029326 PMCID: PMC6640277 DOI: 10.1111/j.1364-3703.2010.00648.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phenylpropanoids can function as preformed and inducible antimicrobial compounds, as well as signal molecules, in plant-microbe interactions. Since we last reviewed the field 8 years ago, there has been a huge increase in our understanding of the genes of phenylpropanoid biosynthesis and their regulation, brought about largely by advances in genome technology, from whole-genome sequencing to massively parallel gene expression profiling. Here, we present an overview of the biosynthesis and roles of phenylpropanoids in plant defence, together with an analysis of confirmed and predicted phenylpropanoid pathway genes in the sequenced genomes of 11 plant species. Examples are provided of phylogenetic and expression clustering analyses, and the large body of underlying genomic data is provided through a website accessible from the article.
Collapse
Affiliation(s)
- Marina A Naoumkina
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Lignin, a phenolic polymer derived mainly from hydroxycinnamyl alcohols, is ubiquitously present in tracheophytes. The development of lignin biosynthesis has been considered to be one of the key factors that allowed land plants to flourish in terrestrial ecosystems. Lignin provides structural rigidity for tracheophytes to stand upright, and strengthens the cell wall of their water-conducting tracheary elements to withstand the negative pressure generated during transpiration. In this review, we discuss a number of aspects regarding the origin and evolution of lignin biosynthesis during land plant evolution, including the establishment of its monomer biosynthetic scaffold, potential precursors to the lignin polymer, as well as the emergence of the polymerization machinery and regulatory system. The accumulated knowledge on the topic, as summarized here, provides us with an evolutionary view on how this complex metabolic system emerged and developed.
Collapse
Affiliation(s)
- Jing-Ke Weng
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Taboada C, Millán R, Míguez I. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1155-62. [PMID: 20355066 DOI: 10.1002/jsfa.3933] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND Algae are commonly consumed in Asia and have also gained popularity in Europe. However, data on the bioavailability of their components are limited. The present study was designed to determine the composition of Ulva rigida and the effects of inclusion of 10% of the algae in a standard diet for 4 weeks on nutritive value and serum parameters in order to consider the usefulness of Ulva as a dietary supplement. RESULTS Ulva rigida is rich in protein, carbohydrates, fibre, vitamins and minerals and has a low lipid content. Analysis of the amino acid composition revealed good-quality protein. The algae were well accepted by experimental animals and did not significantly change nutritional parameters but reduced LDL cholesterol. CONCLUSIONS Ulva rigida is an excellent source of nutrients and could improve a balanced diet. Further studies are required to research the potential of the seaweed as a natural source of bioactive compounds.
Collapse
Affiliation(s)
- Cristina Taboada
- Department of Physiology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
16
|
Fagerstedt KV, Kukkola EM, Koistinen VVT, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:186-94. [PMID: 20377680 DOI: 10.1111/j.1744-7909.2010.00928.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Class III secretable plant peroxidases occur as a large family of genes in plants with many functions and probable redundancy. In this review we are concentrating on the evidence we have on the catalysis of lignin polymerization by class III plant peroxidases present in the apoplastic space in the xylem of trees. Some evidence exists on the specificity of peroxidase isozymes in lignin polymerization through substrate specificity studies, from antisense mutants in tobacco and poplar and from tissue and cell culture lines of Norway spruce (Picea abies) and Zinnia elegans. In addition, real time (RT-)PCR results have pointed out that many peroxidases have tissue specific expression patterns in Norway spruce. Through combining information on catalytic properties of the enzymes, on the expression patterns of the corresponding genes, and on the presence of monolignols and hydrogen peroxide in the apoplastic space, we can show that specific peroxidases catalyze lignin polymerization in the apoplastic space of Norway spruce xylem.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Department of Biological and Environmental Sciences, Plant Biology, Helsinki University, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
17
|
Núñez-Flores MJL, Gutiérrez J, Gómez-Ros LV, Uzal EN, Sottomayor M, Barceló AR. Downregulation of the basic peroxidase isoenzyme from Zinnia elegans by gibberellic acid. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:244-51. [PMID: 20377685 DOI: 10.1111/j.1744-7909.2010.00888.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hypocotyl formation during the epigeal germination of seedlings is under strict hormonal regulation. In a 3 d old Zinnia elegans seedling system, gibberellic acid (GA(3)) exerts an opposite effect to that exerted by light on hypocotyl photomorphogenesis because GA(3) promotes an etiolated-like growth with an inhibition of radial (secondary) growth. For this reason, the effect of GA(3) on the basic peroxidase isoenzyme from Z. elegans (ZePrx), an enzyme involved in hypocotyl lignin biosynthesis, was studied. The results showed that GA(3) reduces ZePrx activity, similarly to the way in which it reduces seedling secondary growth. This hormonal response is supported by the analysis of the ZePrx promoter, which contains four types of GA(3)-responsive cis-elements: the W Box/O2S; the Pyr Box; the GARE; and the Amy Box. Taken together, these results suggest that ZePrx is directly regulated by GA(3), with this effect matching the inhibitory effect of GA on the hypocotyl secondary growth.
Collapse
|
18
|
Gutiérrez J, López Núñez-Flores MJ, Gómez-Ros LV, Novo Uzal E, Esteban Carrasco A, Díaz J, Sottomayor M, Cuello J, Ros Barceló A. Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans. PLANTA 2009; 230:767-78. [PMID: 19626339 DOI: 10.1007/s00425-009-0982-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 05/08/2023]
Abstract
Xylem differentiation in plants is under strict hormonal regulation. Auxins and cytokinins, together with brassinosteroids (BRs), appear to be the main hormones controlling vascular differentiation. In this report, we study the effect of these hormones on the basic peroxidase isoenzyme from Zinnia elegans (ZePrx), an enzyme involved in lignin biosynthesis. Results showed that auxins and cytokinins induce ZePrx, similarly to the way in which they induce seedling secondary growth (in particular, metaxylem differentiation). Likewise, the exogenous application of BR reduces the levels of ZePrx, in a similar way to their capacity to inhibit seedling secondary growth. Consistent with this notion, the exogenous application of BR reverses the auxin/cytokinin-induced ZePrx expression, but has no effect on the auxin/cytokinin-induced secondary growth. This differential hormonal response is supported by the analysis of the ZePrx promoter, which contains (a) cis-elements directly responsive to these hormones and (b) cis-elements targets of the plethora of transcription factors, such as NAC, MYB, AP2, MADS and class III HD Zip, which are up-regulated during the auxin- and cytokinin-induced secondary growth. Taken together, these results suggest that ZePrx is directly and indirectly regulated by the plethora of hormones that control xylem differentiation, supporting the role of ZePrx in xylem lignification.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Department of Plant Biology, University of La Coruña, 15071 La Coruña, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Uzal EN, Gómez-Ros LV, Hernández JA, Pedreño MA, Cuello J, Ros Barceló A. Analysis of the soluble cell wall proteome of gymnosperms. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:831-843. [PMID: 19157640 DOI: 10.1016/j.jplph.2008.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/10/2008] [Accepted: 11/10/2008] [Indexed: 05/27/2023]
Abstract
We analyzed the cell wall proteome of lignifying suspension cell cultures (SCCs) from four gymnosperms that differ in evolution degree. This analysis showed the presence of "peptide sequence tags" (PSTs) corresponding to glucan endo-1,3-beta-D-glucosidase, xyloglucan-endotrans-glucosylase/hydrolase, chitinases, thaumatin-like proteins and proteins involved in lignin/lignan biosynthesis, such as dirigent-like proteins and peroxidases. Surprisingly, and given the abundance of peroxidases in the cell wall proteome of these gymnosperms, PSTs corresponding to peroxidases were only detected in tryptic fragments of the cell wall proteome of Cycas revoluta. The current lack of knowledge regarding C. revoluta peroxidases led us to purify, characterize and partially sequence the peroxidases responsible for lignin biosynthesis in this species. This yielded three peroxidase-enriched fractions: CrPrx 1, CrPrx 2 and CrPrx 3. Analyses of tryptic peptides of CrPrx 2 (32kDa) and CrPrx 3 (26kDa) suggest that CrPrx 3 arises from CrPrx 2 by protein truncation, and that CrPrx 3 apparently constitutes a post-translational modification of CrPrx 2. That CrPrx 2 and CrPrx 3 are apparently the same enzyme was also deduced from the similarity between the k(cat) shown by both peroxidases for the three monolignols. These results emphasize the analogies between the cell wall proteome of gymnosperms and angiosperms, the complexity of the peroxidase proteome, and the difficulties involved in establishing fine structure-function relationships.
Collapse
Affiliation(s)
- Esther Novo Uzal
- Department of Plant Biology, University of La Coruña, E-15071 La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. PLANTA 2009; 229:823-36. [PMID: 19116728 DOI: 10.1007/s00425-008-0876-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/10/2008] [Indexed: 05/21/2023]
Abstract
The high number of peroxidase genes explains the description of numerous physiological functions and the fact that the in planta function of a single isoform has never been characterized yet. We analyzed in transgenic Arabidopsis thaliana the localization of a zucchini isoperoxidase (APRX), previously purified thanks to its pectin binding ability. We confirmed that the protein is localized near the cell wall, mainly produced in the elongation area of the hypocotyls and respond to exogenous auxin. In addition, the ectopic overexpression of APRX induced changes in growth pattern and a significant reduction of endogenous indole-3-acetic acid (IAA) level. In agreement with these observations APRX showed an elevated in vitro auxin oxidase activity. We propose that APRX participates in the negative feedback regulation of auxin level and consequently terminates the hypocotyl elongation process.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/pharmacology
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Blotting, Northern
- Cluster Analysis
- Cucurbita/enzymology
- Cucurbita/genetics
- Cucurbita/growth & development
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hypocotyl/enzymology
- Hypocotyl/genetics
- Hypocotyl/growth & development
- Indoleacetic Acids/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Oxidoreductases/metabolism
- Peroxidases/classification
- Peroxidases/genetics
- Peroxidases/metabolism
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Claudia Cosio
- Laboratoire of Plant Biochemistry and Physiology, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Uzal EN, Gómez Ros LV, Pomar F, Bernal MA, Paradela A, Albar JP, Ros Barceló A. The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. PHYSIOLOGIA PLANTARUM 2009; 135:196-213. [PMID: 19055540 DOI: 10.1111/j.1399-3054.2008.01185.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Suspension cell cultures (SCCs) from one of the oldest seed plants, Ginkgo biloba, show unpredictable alterations in the nature of the lignins, such as is the recruitment of sinapyl alcohol for lignin biosynthesis, compared with the woody tissues of the same species, which lack syringyl (S) lignins. These results show that, in this gymnosperm, the genes involved in sinapyl alcohol biosynthesis are latent and that their regulatory regions respond, by initiating gene expression, to the developmental signals and the environmental clues, which condition its in vitro culture. G. biloba SCCs not only synthesize S lignins but also their extracellular proteome contains both class III peroxidases capable of oxidizing sinapyl alcohol and enzymes involved in H2O2 production, observation which suggests that the peroxidase branch for the oxidative coupling of sinapyl alcohol units into lignins is operative. The incomplete knowledge of the G. biloba peroxidase-encoding genes led us to purify, characterize and partially sequence the peroxidase responsible for monolignol oxidation. When the major peroxidase from G. biloba SCCs (GbPrx) was purified to homogeneity, it showed absorption maxima in the visible region at 414 (Soret band), and at 543 and 570 nm, which calls to mind those shown by low-spin ferric peroxidases. However, the results also showed that the paraperoxidase-like character of GbPrx is not an obstacle for oxidizing the three monolignols compared with high-spin ferric peroxidases. Taken together, these results mean that the time at which the evolutionary gain of the segment of the route that leads to the biosynthesis of S lignins took place in seed plants needs to be revised.
Collapse
Affiliation(s)
- Esther Novo Uzal
- Department of Plant Biology, University of La Coruña, La Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Weng JK, Li X, Bonawitz ND, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 2008; 19:166-72. [PMID: 18403196 DOI: 10.1016/j.copbio.2008.02.014] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/19/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
Ethanol and other biofuels produced from lignocellulosic biomass represent a renewable, more carbon-balanced alternative to both fossil fuels and corn-derived or sugarcane-derived ethanol. Unfortunately, the presence of lignin in plant cell walls impedes the breakdown of cell wall polysaccharides to simple sugars and the subsequent conversion of these sugars to usable fuel. Recent advances in the understanding of lignin composition, polymerization, and regulation have revealed new opportunities for the rational manipulation of lignin in future bioenergy crops, augmenting the previous successful approach of manipulating lignin monomer biosynthesis. Furthermore, recent studies on lignin degradation in nature may provide novel resources for the delignification of dedicated bioenergy crops and other sources of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jing-Ke Weng
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| | | | | | | |
Collapse
|
23
|
Barceló AR, Ros LVG, Carrasco AE. Looking for syringyl peroxidases. TRENDS IN PLANT SCIENCE 2007; 12:486-491. [PMID: 17928259 DOI: 10.1016/j.tplants.2007.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 05/25/2023]
Abstract
Lignins are cell wall heteropolymers that arise from the peroxidase-mediated coupling of p-coumaryl, coniferyl and sinapyl alcohols. In gymnosperms, they are derived from coniferyl alcohol, whereas in angiosperms, lignins are derived from coniferyl and sinapyl alcohols. Thus, although it is frequently assumed that the chemical complexity of lignins has increased during plant evolution, it is frequently forgotten that pteridophytes have lignins that are derived from sinapyl alcohol. Until recently, most peroxidases characterized in flowering plants only oxidized coniferyl alcohol. However, recent reports have described the molecular characterization of peroxidases capable of oxidizing sinapyl alcohol (syringyl peroxidases). Current molecular studies propose that the structural motifs of syringyl peroxidases predate the radiation of tracheophytes, which suggests that syringyl peroxidases existed before the appearance of syringyl lignins.
Collapse
Affiliation(s)
| | - Laura V Gómez Ros
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain
| | - Alberto Esteban Carrasco
- Department of Plant Biology, University of Alcalá de Henares, E-28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
24
|
Gabaldón C, Gómez-Ros LV, Núñez-Flores MJL, Esteban-Carrasco A, Barceló AR. Post-translational modifications of the basic peroxidase isoenzyme from Zinnia elegans. PLANT MOLECULAR BIOLOGY 2007; 65:43-61. [PMID: 17588152 DOI: 10.1007/s11103-007-9197-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 05/24/2007] [Indexed: 05/12/2023]
Abstract
The major basic peroxidase (ZePrx) from Zinnia elegans suspension cell cultures was purified and cloned. The purification resolved ZePrxs in two isoforms (ZePrx33.44 and ZePrx34.70), whose co-translational and post-translational modifications are characterized. Based on the N-terminal sequence obtained by Edman degradation of mature ZePxs, it may be expected that the immature polypeptides of ZePrxs contain a signal peptide (N-terminal pro-peptide) of 30 amino acids, which directs the polypeptide chains to the ER membrane. These immature polypeptides are co-translationally processed by proteolytic cleavage, and modeling studies of digestions suggested that the processing of the N-terminal pro-peptide of ZePrxs is performed by a peptidase from the SB clan (S8 family, subfamily A) of serine-type proteases. When the post-translational modifications of ZePrxs were characterized by trypsin digestion, and tryptic peptides were analyzed by reverse phase nano liquid chromatography (RP-nanoLC) coupled to MALDI-TOF MS, it was seen that, despite the presence in the primary structure of the protein of several (disulphide bridges, N-glycosylation, phosphorylation and N-myristoylation) potential post-translational modification sites, ZePrxs are only post-translationated modified by the formation of N-terminal pyroglutamate residues, disulphide bridges and N-glycosylation. Glycans of ZePrxs belong to three main types and conduce to the existence of at least ten different molecular isoforms. The first glycans belong to both low and high mannose-type glycans, with the growing structure Man(3-9)(GlcNAc)(2). Low mannose-type glycans, Man(3-4)(GlcNAc)(2), coexist with the truncated (paucimannosidic-type) glycan, Man(3)Xyl(1)Fuc(1)(GlcNAc)(2), in the G(3) and G(4 )sub-isoforms of ZePrx33.44. In ZePrx34.70, on the other hand, the complex-type biantennary glycan, Man(3)Xyl(1)Fuc(3)(GlcNAc)(5), and the truncated (paucimannosidic-type) glycan, Man(3)Xyl(1)Fuc(1)(GlcNAc)(2), appear to fill the two putative sites for N-glycosylation. Since the two N-glycosylation sites in ZePrxs are located in an immediately upstream loop region of helix F'' (close to the proximal histidine) and in helix F'' itself, and are flanked by positive-charged amino acids that produce an unusual positive-net surface electrostatic charge pattern, it may be expected that glycans not only affect reaction dynamics but may well participate in protein/cell wall interactions. These results emphasize the complexity of the ZePrx proteome and the difficulties involved in establishing any fine structure-function relationship.
Collapse
Affiliation(s)
- Carlos Gabaldón
- Department of Plant Biology, University of Murcia, 30100, Murcia, Spain
| | | | | | | | | |
Collapse
|
25
|
Gómez Ros LV, Aznar-Asensio GJ, Hernandez JA, Bernal MA, Núñez-Flores MJL, Cuello J, Ros Barceló A. Structural motifs of syringyl peroxidases are conserved during angiosperm evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:4131-8. [PMID: 17439232 DOI: 10.1021/jf063164t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The most distinctive variation in the monomer composition of lignins in vascular land plants is that between the two main groups of seed plants. Thus, whereas gymnosperm (softwood) lignins are typically composed of guaiacyl (G) units, angiosperm (hardwood) lignins are largely composed of similar levels of G and syringyl (S) units. However, there are some studies that suggest that certain angiosperm peroxidases are unable to oxidize sinapyl alcohol, and a coniferyl alcohol shuttle has been proposed for oxidizing S units during the biosynthesis of lignins. With this in mind, a screening of the presence of S peroxidases in angiosperms (including woody species and forages) was performed. Contrarily to what might be expected, the intercellular washing fluids from lignifying tissues of 25 woody, herbaceous, and shrub species, belonging to both monocots and dicotyledons, all showed both S peroxidase activities and basic peroxidase isoenzymes analogous, with regard the isoelectric point, to the Zinnia elegans basic peroxidase isoenzyme, the only S peroxidase that has been fully characterized. These results led to the protein database in the search for homologies between angiosperm peroxidases and a true eudicot S peroxidase, the Z. elegans peroxidase. The findings showed that certain structural motifs of S peroxidases are conserved within the first 15 million years of angiosperm history, because they are found in peroxidases from the two major lineages of flowering plants, eumagnoliids and eudicotyledons, of note being the presence of these peroxidases in Amborella and Nymphaeales, which represent the first stages of angiosperm evolution. These phylogenetic studies also suggest that guaiacyl peroxidases apparently constitute the most "evolved state" of the plant peroxidase family evolution.
Collapse
Affiliation(s)
- Laura V Gómez Ros
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Gómez Ros LV, Gabaldón C, Pomar F, Merino F, Pedreño MA, Barceló AR. Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes. THE NEW PHYTOLOGIST 2007; 173:63-78. [PMID: 17176394 DOI: 10.1111/j.1469-8137.2006.01898.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
* The most distinctive variation in the monomer composition of lignins in vascular land plants is that found between the two main groups of seed plants. Thus, while gymnosperm lignins are typically composed of guaiacyl (G) units, angiosperm lignins are largely composed of similar levels of G and syringyl (S) units. * However, and contrary to what might be expected, peroxidases isolated from basal (Cycadales and Ginkgoales) and differentially evolved (Coniferales and Gnetales) gymnosperms are also able to oxidize S moieties, and this ability is independent of the presence or absence of S-type units in their lignins. * The results obtained led us to look at the protein database to search for homologies between gymnosperm peroxidases and true eudicot S-peroxidases, such as the Zinnia elegans peroxidase. * The findings showed that certain structural motifs characteristic of eudicot S-peroxidases (certain amino acid sequences and beta-sheet secondary structures) predate the gymnosperm-angiosperm divergence and the radiation of tracheophytes, since they are found not only in peroxidases from basal gymnosperms, ferns and lycopods, but also in peroxidases from the moss Physcomitrella patens (Bryopsida) and the liverwort Marchantia polymorpha (Marchantiopsida), which, as typical of bryophytes, do not have xylem tissue nor lignins.
Collapse
Affiliation(s)
- L V Gómez Ros
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|