1
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
2
|
Groth A, Ahlmann S, Werner A, Pöggeler S. The vacuolar morphology protein VAC14 plays an important role in sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 2022; 68:407-427. [PMID: 35776170 PMCID: PMC9279277 DOI: 10.1007/s00294-022-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
The multiprotein Fab1p/PIKfyve-complex regulating the abundance of the phospholipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is highly conserved among eukaryotes. In yeast/mammals, it is composed of the phosphatidylinositol 3-phosphate 5-kinase Fab1p/PIKfyve, the PtdIns(3,5)P2 phosphatase Fig4p/Sac3 and the scaffolding subunit Vac14p/ArPIKfyve. The complex is located to vacuolar membranes in yeast and to endosomal membranes in mammals, where it controls the synthesis and turnover of PtdIns(3,5)P2. In this study, we analyzed the role and function of the Fab1p/PIKfyve-complex scaffold protein SmVAC14 in the filamentous ascomycete Sordaria macrospora (Sm). We generated the Smvac14 deletion strain ∆vac14 and performed phenotypic analysis of the mutant. Furthermore, we conducted fluorescence microscopic localization studies of fluorescently labeled SmVAC14 with vacuolar and late endosomal marker proteins. Our results revealed that SmVAC14 is important for maintaining vacuolar size and appearance as well as proper sexual development in S. macrospora. In addition, SmVAC14 plays an important role in starvation stress response. Accordingly, our results propose that the turnover of PtdIns(3,5)P2 is of great significance for developmental processes in filamentous fungi.
Collapse
Affiliation(s)
- Anika Groth
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Svenja Ahlmann
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Antonia Werner
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell 2021; 184:106-119.e14. [PMID: 33333024 PMCID: PMC7723770 DOI: 10.1016/j.cell.2020.12.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Collapse
|
4
|
Saini R, Azam Z, Sapra L, Srivastava RK. Neuronal Nitric Oxide Synthase (nNOS) in Neutrophils: An Insight. Rev Physiol Biochem Pharmacol 2021; 180:49-83. [PMID: 34115206 DOI: 10.1007/112_2021_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NO (nitric oxide) is an important regulator of neutrophil functions and has a key role in diverse pathophysiological conditions. NO production by nitric oxide synthases (NOS) is under tight control at transcriptional, translational, and post-translational levels including interactions with heterologous proteins owing to its potent chemical reactivity and high diffusibility; this limits toxicity to other cellular components and promotes signaling specificity. The protein-protein interactions govern the activity and spatial distribution of NOS isoform to regulatory proteins and to their intended targets. In comparison with the vast literature available for endothelial, macrophages, and neuronal cells, demonstrating neuronal NOS (nNOS) interaction with other proteins through the PDZ domain, neutrophil nNOS, however, remains unexplored. Neutrophil's key role in both physiological and pathological conditions necessitates the need for further studies in delineating the NOS mediated NO modulations in signaling pathways operational in them. nNOS has been linked to depression, schizophrenia, and Parkinson's disease, suggesting the importance of exploring nNOS/NO-mediated neutrophil physiology in relation to such neuronal disorders. The review thus presents the scenario of neutrophil nNOS from the genetics to the functional level, including protein-protein interactions governing its intracellular sequestration in diverse cell types, besides speculating possible regulation in neutrophils and also addressing their clinical implications.
Collapse
Affiliation(s)
- Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India.
| | - Zaffar Azam
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, MP, India
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
5
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs. Cell Death Differ 2018. [PMID: 29523874 PMCID: PMC6219483 DOI: 10.1038/s41418-018-0092-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE–Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE–Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE–Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.
Collapse
|
7
|
Costas-Insua C, Merino-Gracia J, Aicart-Ramos C, Rodríguez-Crespo I. Subcellular Targeting of Nitric Oxide Synthases Mediated by Their N-Terminal Motifs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:165-195. [PMID: 29459031 DOI: 10.1016/bs.apcsb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From a catalytic point of view, the three mammalian nitric oxide synthases (NOSs) function in an almost identical way. The N-terminal oxygenase domain catalyzes the conversion of l-arginine to l-citrulline plus ·NO in two sequential oxidation steps. Once l-arginine binds to the active site positioned above the heme moiety, two consecutive monooxygenation reactions take place. In the first step, l-arginine is hydroxylated to make Nω-hydroxy-l-arginine in a process that requires 1 molecule of NADPH and 1 molecule of O2 per mol of l-arginine reacted. In the second step, Nω-hydroxy-l-arginine, never leaving the active site, is oxidized to ·NO plus l-citrulline and 1 molecule of O2 and 0.5 molecules of NADPH are consumed. Since nitric oxide is an important signaling molecule that participates in a number of biological processes, including neurotransmission, vasodilation, and immune response, synthesis and release of ·NO in vivo must be exquisitely regulated both in time and in space. Hence, NOSs have evolved introducing in their amino acid sequences subcellular targeting motifs, most of them located at their N-termini. Deletion studies performed on recombinant, purified NOSs have revealed that part of the N-terminus of all three NOS can be eliminated with the resulting mutant enzymes still being catalytically active. Likewise, NOS isoforms lacking part of their N-terminus when transfected in cells render mislocalized, active proteins. In this review we will comment on the current knowledge of these subcellular targeting signals present in nNOS, iNOS, and eNOS.
Collapse
|
8
|
Sharma N, LaRusch J, Sosnay PR, Gottschalk LB, Lopez AP, Pellicore MJ, Evans T, Davis E, Atalar M, Na CH, Rosson GD, Belchis D, Milewski M, Pandey A, Cutting GR. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1170-L1182. [PMID: 27793802 PMCID: PMC5206395 DOI: 10.1152/ajplung.00363.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023] Open
Abstract
The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence 1417EENKVR1422 and the terminal 1478TRL1480 (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica LaRusch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- ARIEL Precision Medicine, Pittsburgh, Pennsylvania
| | - Patrick R Sosnay
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura B Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea P Lopez
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taylor Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melis Atalar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chan-Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gedge D Rosson
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah Belchis
- Department of Surgical Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Michal Milewski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
9
|
Merino-Gracia J, Costas-Insua C, Canales MÁ, Rodríguez-Crespo I. Insights into the C-terminal Peptide Binding Specificity of the PDZ Domain of Neuronal Nitric-oxide Synthase: CHARACTERIZATION OF THE INTERACTION WITH THE TIGHT JUNCTION PROTEIN CLAUDIN-3. J Biol Chem 2016; 291:11581-95. [PMID: 27030110 DOI: 10.1074/jbc.m116.724427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase, unlike its endothelial and inducible counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subcellular targeting. The C termini of various cellular proteins insert within the binding groove of this PDZ domain and determine the subcellular distribution of neuronal NOS (nNOS). The molecular mechanisms underlying these interactions are poorly understood because the PDZ domain of nNOS can apparently exhibit class I, class II, and class III binding specificity. In addition, it has been recently suggested that the PDZ domain of nNOS binds with very low affinity to the C termini of target proteins, and a necessary simultaneous lateral interaction must take place for binding to occur. We describe herein that the PDZ domain of nNOS can behave as a bona fide class III PDZ domain and bind to C-terminal sequences with acidic residues at the P-2 position with low micromolar binding constants. Binding to C-terminal sequences with a hydrophobic residue at the P-2 position plus an acidic residue at the P-3 position (class II) can also occur, although interactions involving residues extending up to the P-7 position mediate this type of binding. This promiscuous behavior also extends to its association to class I sequences, which must display a Glu residue at P-3 and a Thr residue at P-2 By means of site-directed mutagenesis and NMR spectroscopy, we have been able to identify the residues involved in each specific type of binding and rationalize the mechanisms used to recognize binding partners. Finally, we have analyzed the high affinity association of the PDZ domain of nNOS to claudin-3 and claudin-14, two tight junction tetraspan membrane proteins that are essential components of the paracellular barrier.
Collapse
Affiliation(s)
| | | | - María Ángeles Canales
- Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | |
Collapse
|
10
|
Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc Natl Acad Sci U S A 2014; 111:E4896-905. [PMID: 25355904 DOI: 10.1073/pnas.1411117111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for diverse cellular functions, and, in neurons, PIPs regulate membrane trafficking events that control synapse function. Neurons are particularly sensitive to the levels of the low abundant PIP, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because mutations in PI(3,5)P2-related genes are implicated in multiple neurological disorders, including epilepsy, severe neuropathy, and neurodegeneration. Despite the importance of PI(3,5)P2 for neural function, surprisingly little is known about this signaling lipid in neurons, or any cell type. Notably, the mammalian homolog of yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2 synthesis complex, is concentrated at excitatory synapses, suggesting a potential role for PI(3,5)P2 in controlling synapse function and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol 3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here, we present methods to measure and control PI(3,5)P2 synthesis in hippocampal neurons and show that changes in neural activity dynamically regulate the levels of multiple PIPs, with PI(3,5)P2 being among the most dynamic. The levels of PI(3,5)P2 in neurons increased during two distinct forms of synaptic depression, and inhibition of PIKfyve activity prevented or reversed induction of synaptic weakening. Moreover, altering neuronal PI(3,5)P2 levels was sufficient to regulate synaptic strength bidirectionally, with enhanced synaptic function accompanying loss of PI(3,5)P2 and reduced synaptic strength following increased PI(3,5)P2 levels. Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2 dynamics in AMPAR trafficking. Together, these data identify PI(3,5)P2-dependent signaling as a regulatory pathway that is critical for activity-dependent changes in synapse strength.
Collapse
|
11
|
Schulze U, Vollenbröker B, Braun DA, Van Le T, Granado D, Kremerskothen J, Fränzel B, Klosowski R, Barth J, Fufezan C, Wolters DA, Pavenstädt H, Weide T. The Vac14-interaction network is linked to regulators of the endolysosomal and autophagic pathway. Mol Cell Proteomics 2014; 13:1397-411. [PMID: 24578385 DOI: 10.1074/mcp.m113.034108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffold protein Vac14 acts in a complex with the lipid kinase PIKfyve and its counteracting phosphatase FIG4, regulating the interconversion of phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate. Dysfunctional Vac14 mutants, a deficiency of one of the Vac14 complex components, or inhibition of PIKfyve enzymatic activity results in the formation of large vacuoles in cells. How these vacuoles are generated and which processes are involved are only poorly understood. Here we show that ectopic overexpression of wild-type Vac14 as well as of the PIKfyve-binding deficient Vac14 L156R mutant causes vacuoles. Vac14-dependent vacuoles and PIKfyve inhibitor-dependent vacuoles resulted in elevated levels of late endosomal, lysosomal, and autophagy-associated proteins. However, only late endosomal marker proteins were bound to the membranes of these enlarged vacuoles. In order to decipher the linkage between the Vac14 complex and regulators of the endolysosomal pathway, a protein affinity approach combined with multidimensional protein identification technology was conducted, and novel molecular links were unraveled. We found and verified the interaction of Rab9 and the Rab7 GAP TBC1D15 with Vac14. The identified Rab-related interaction partners support the theory that the regulation of vesicular transport processes and phosphatidylinositol-modifying enzymes are tightly interconnected.
Collapse
Affiliation(s)
- Ulf Schulze
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Beate Vollenbröker
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniela A Braun
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Truc Van Le
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniel Granado
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Joachim Kremerskothen
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Benjamin Fränzel
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Rafael Klosowski
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Johannes Barth
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Christian Fufezan
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Dirk A Wolters
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Hermann Pavenstädt
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| | - Thomas Weide
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| |
Collapse
|
12
|
Mu Y, Cai P, Hu S, Ma S, Gao Y. Characterization of diverse internal binding specificities of PDZ domains by yeast two-hybrid screening of a special peptide library. PLoS One 2014; 9:e88286. [PMID: 24505465 PMCID: PMC3913781 DOI: 10.1371/journal.pone.0088286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are essential events to play important roles in a series of biological processes. There are probably more ways of PPIs than we currently realized. Structural and functional investigations of weak PPIs have lagged behind those of strong PPIs due to technical difficulties. Weak PPIs are often short-lived, which may result in more dynamic signals with important biological roles within and/or between cells. For example, the characteristics of PSD-95/Dlg/ZO-1 (PDZ) domain binding to internal sequences, which are primarily weak interactions, have not yet been systematically explored. In the present study, we constructed a nearly random octapeptide yeast two-hybrid library. A total of 24 PDZ domains were used as baits for screening the library. Fourteen of these domains were able to bind internal PDZ-domain binding motifs (PBMs), and PBMs screened for nine PDZ domains exhibited strong preferences. Among 11 PDZ domains that have not been reported their internal PBM binding ability, six were confirmed to bind internal PBMs. The first PDZ domain of LNX2, which has not been reported to bind C-terminal PBMs, was found to bind internal PBMs. These results suggest that the internal PBMs binding ability of PDZ domains may have been underestimated. The data provided diverse internal binding properties for several PDZ domains that may help identify their novel binding partners.
Collapse
Affiliation(s)
- Yi Mu
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Sucan Ma
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Youhe Gao
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
13
|
McCartney AJ, Zhang Y, Weisman LS. Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 2013; 36:52-64. [PMID: 24323921 DOI: 10.1002/bies.201300012] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies of the low abundant signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2 ), reveal an intriguingly diverse list of downstream pathways, the intertwined relationship between PI(3,5)P2 and PI5P, as well as links to neurodegenerative diseases. Derived from the structural lipid phosphatidylinositol, PI(3,5)P2 is dynamically generated on multiple cellular compartments where interactions with an increasing list of effectors regulate many cellular pathways. A complex of proteins that includes Fab1/PIKfyve, Vac14, and Fig4/Sac3 mediates the biosynthesis of PI(3,5)P2 , and mutations that disrupt complex function and/or formation cause profound consequences in cells. Surprisingly, mutations in this pathway are linked with neurological diseases, including Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis. Future studies of PI(3,5)P2 and PI5P are likely to expand the roles of these lipids in regulation of cellular functions, as well as provide new approaches for treatment of some neurological diseases.
Collapse
Affiliation(s)
- Amber J McCartney
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
14
|
White EA, Kramer RE, Tan MJA, Hayes SD, Harper JW, Howley PM. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol 2012; 86:13174-86. [PMID: 23015706 PMCID: PMC3503137 DOI: 10.1128/jvi.02172-12] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022] Open
Abstract
We have begun to define the human papillomavirus (HPV)-associated proteome for a subset of the more than 120 HPV types that have been identified to date. Our approach uses a mass spectrometry-based platform for the systematic identification of interactions between human papillomavirus and host cellular proteins, and here we report a proteomic analysis of the E6 proteins from 16 different HPV types. The viruses included represent high-risk, low-risk, and non-cancer-associated types from genus alpha as well as viruses from four different species in genus beta. The E6 interaction data set consists of 153 cellular proteins, including several previously reported HPV E6 interactors such as p53, E6AP, MAML1, and p300/CBP and proteins containing PDZ domains. We report the genus-specific binding of E6s to either E6AP or MAML1, define the specific HPV E6s that bind to p300, and demonstrate several new features of interactions involving beta HPV E6s. In particular, we report that several beta HPV E6s bind to proteins containing PDZ domains and that at least two beta HPV E6s bind to p53. Finally, we report the newly discovered interaction of proteins of E6 of beta genus, species 2, with the Ccr4-Not complex, the first report of a viral protein binding to this complex. This data set represents a comprehensive survey of E6 binding partners that provides a resource for the HPV field and will allow continued studies on the diverse biology of the human papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A. White
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca E. Kramer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Jie Alvin Tan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian D. Hayes
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter M. Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Mack NA, Porter AP, Whalley HJ, Schwarz JP, Jones RC, Khaja ASS, Bjartell A, Anderson KI, Malliri A. β2-syntrophin and Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by differentially regulating Tiam1 activity. Nat Cell Biol 2012; 14:1169-80. [PMID: 23103911 PMCID: PMC3498067 DOI: 10.1038/ncb2608] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Although Rac and its activator Tiam1 are known to stimulate cell-cell adhesion, the mechanisms regulating their activity in cell-cell junction formation are poorly understood. Here, we identify β2-syntrophin as a Tiam1 interactor required for optimal cell-cell adhesion. We show that during tight-junction (TJ) assembly β2-syntrophin promotes Tiam1-Rac activity, in contrast to the function of the apical determinant Par-3 whose inhibition of Tiam1-Rac activity is necessary for TJ assembly. We further demonstrate that β2-syntrophin localizes more basally than Par-3 at cell-cell junctions, thus generating an apicobasal Rac activity gradient at developing cell-cell junctions. Targeting active Rac to TJs shows that this gradient is required for optimal TJ assembly and apical lumen formation. Consistently, β2-syntrophin depletion perturbs Tiam1 and Rac localization at cell-cell junctions and causes defects in apical lumen formation. We conclude that β2-syntrophin and Par-3 fine-tune Rac activity along cell-cell junctions controlling TJ assembly and the establishment of apicobasal polarity.
Collapse
Affiliation(s)
- Natalie A Mack
- Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, The University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P₂ and PI(5)P. EMBO J 2012; 31:3442-56. [PMID: 22842785 PMCID: PMC3419932 DOI: 10.1038/emboj.2012.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 06/28/2012] [Indexed: 01/17/2023] Open
Abstract
Mice deficient for VAC14, a scaffolding protein required for PIP2 biosynthesis and linked to human neuropathies, show increased postsynaptic function due to altered AMPA receptor trafficking. Normal steady-state levels of the signalling lipids PI(3,5)P2 and PI(5)P require the lipid kinase FAB1/PIKfyve and its regulators, VAC14 and FIG4. Mutations in the PIKfyve/VAC14/FIG4 pathway are associated with Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis in humans, and profound neurodegeneration in mice. Hence, tight regulation of this pathway is critical for neural function. Here, we examine the localization and physiological role of VAC14 in neurons. We report that endogenous VAC14 localizes to endocytic organelles in fibroblasts and neurons. Unexpectedly, VAC14 exhibits a pronounced synaptic localization in hippocampal neurons, suggesting a role in regulating synaptic function. Indeed, the amplitude of miniature excitatory postsynaptic currents is enhanced in both Vac14−/− and Fig4−/− neurons. Re-introduction of VAC14 in postsynaptic Vac14−/− cells reverses this effect. These changes in synaptic strength in Vac14−/− neurons are associated with enhanced surface levels of the AMPA-type glutamate receptor subunit GluA2, an effect that is due to diminished regulated endocytosis of AMPA receptors. Thus, VAC14, PI(3,5)P2 and/or PI(5)P play a role in controlling postsynaptic function via regulation of endocytic cycling of AMPA receptors.
Collapse
|
17
|
Zoetewey DL, Ovee M, Banerjee M, Bhaskaran R, Mohanty S. Promiscuous binding at the crossroads of numerous cancer pathways: insight from the binding of glutaminase interacting protein with glutaminase L. Biochemistry 2011; 50:3528-39. [PMID: 21417405 PMCID: PMC3082602 DOI: 10.1021/bi102055y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The glutaminase interacting protein (GIP) is composed of a single PDZ domain that interacts with a growing list of partner proteins, including glutaminase L, that are involved in a number of cell signaling and cancer pathways. Therefore, GIP makes a good target for structure-based drug design. Here, we report the solution structures of both free GIP and GIP bound to the C-terminal peptide analogue of glutaminase L. This is the first reported nuclear magnetic resonance structure of GIP in a complex with one of its binding partners. Our analysis of both free GIP and GIP in a complex with the glutaminase L peptide provides important insights into how a promiscuous binding domain can have affinity for multiple binding partners. Through a detailed chemical shift perturbation analysis and backbone dynamics studies, we demonstrate here that the binding of the glutaminase L peptide to GIP is an allosteric event. Taken together, the insights reported here lay the groundwork for the future development of a specific inhibitor for GIP.
Collapse
Affiliation(s)
| | | | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | - Smita Mohanty
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Abstract
Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons, to some extent in astrocytes and neuronal stem cells. The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS, including nNOS-α, nNOS-β, nNOS-µ, nNOS-γ and nNOS-2. Monomer of nNOS is inactive, and dimer is the active form. Dimerization requires tetrahydrobiopterin (BH4), heme and L-arginine binding. Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity, and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70, calmodulin (CaM), phosphorylation and dephosphorylation at Ser847 and Ser1412, and the protein inhibitor of nNOS (PIN). There are primarily 9 nNOS-interacting proteins, including post-synaptic density protein 95 (PSD95), clathrin assembly lymphoid leukemia (CALM), calcium/calmodulin-dependent protein kinase II alpha (CAMKIIA), Disks large homolog 4 (DLG4), DLG2, 6-phosphofructokinase, muscle type (PFK-M), carboxy-terminal PDZ ligand of nNOS (CAPON) protein, syntrophin and dynein light chain (LC). Among them, PSD95, CAPON and PFK-M are important nNOS adapter proteins in neurons. The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death. nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states, and negatively regulates neurogenesis under physiological and pathological conditions.
Collapse
|
19
|
Lenfant N, Polanowska J, Bamps S, Omi S, Borg JP, Reboul J. A genome-wide study of PDZ-domain interactions in C. elegans reveals a high frequency of non-canonical binding. BMC Genomics 2010; 11:671. [PMID: 21110867 PMCID: PMC3091786 DOI: 10.1186/1471-2164-11-671] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/26/2010] [Indexed: 02/03/2023] Open
Abstract
Background Proteins may evolve through the recruitment and modification of discrete domains, and in many cases, protein action can be dissected at the domain level. PDZ domains are found in many important structural and signaling complexes, and are generally thought to interact with their protein partners through a C-terminal consensus sequence. We undertook a comprehensive search for protein partners of all individual PDZ domains in C. elegans to characterize their function and mode of interaction. Results Coupling high-throughput yeast two-hybrid screens with extensive validation by co-affinity purification, we defined a domain-orientated interactome map. This integrates PDZ domain proteins in numerous cell-signaling pathways and shows that PDZ domain proteins are implicated in an unexpectedly wide range of cellular processes. Importantly, we uncovered a high frequency of non-canonical interactions, not involving the C-terminus of the protein partner, which were directly confirmed in most cases. We completed our study with the generation of a yeast array representing the entire set of PDZ domains from C. elegans and provide a proof-of-principle for its application to the discovery of PDZ domain targets for any protein or peptide of interest. Conclusions We provide an extensive domain-centered dataset, together with a clone resource, that will help future functional study of PDZ domains. Through this unbiased approach, we revealed frequent non-canonical interactions between PDZ domains and their protein partners that will require a re-evaluation of this domain's molecular function. [The protein interactions from this publication have been submitted to the IMEx (http://www.imexconsortium.org) consortium through IntAct (PMID: 19850723) and assigned the identifier IM-14654]
Collapse
|
20
|
Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 2010; 8:8. [PMID: 20509869 PMCID: PMC2891790 DOI: 10.1186/1478-811x-8-8] [Citation(s) in RCA: 423] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/28/2010] [Indexed: 02/07/2023] Open
Abstract
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
21
|
Nitric oxide neurons and neurotransmission. Prog Neurobiol 2010; 90:246-55. [DOI: 10.1016/j.pneurobio.2009.10.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
22
|
Ikonomov OC, Sbrissa D, Fenner H, Shisheva A. PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 2010; 284:35794-806. [PMID: 19840946 DOI: 10.1074/jbc.m109.037515] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) metabolizing enzymes, the kinase PIKfyve and the phosphatase Sac3, constitute a single multiprotein complex organized by the PIKfyve regulator ArPIKfyve and its ability to homodimerize. We previously established that PIKfyve is activated within the triple PIKfyve-ArPIKfyve-Sac3 (PAS) core. These data assign an atypical function for the phosphatase in PtdIns(3,5)P(2) biosynthesis, thus raising the question of whether Sac3 retains its PtdIns(3,5)P(2) hydrolyzing activity within the PAS complex. Herein, we address the issue of Sac3 functionality by a combination of biochemical and morphological assays in triple-transfected COS cells using a battery of truncated or point mutants of the three proteins. We identified the Cpn60_TCP1 domain of PIKfyve as a major determinant for associating the ArPIKfyve-Sac3 subcomplex. Neither Sac3 nor PIKfyve enzymatic activities affected the PAS complex formation or stability. Using the well established formation of aberrant cell vacuoles as a sensitive functional measure of localized PtdIns(3,5)P(2) reduction, we observed a mitigated vacuolar phenotype by kinase-deficient PIKfyve(K1831E) if its ArPIKfyve-Sac3 binding region was deleted, suggesting reduced Sac3 access to, and turnover of PtdIns(3,5)P(2). In contrast, PIKfyve(K1831E), which displays intact ArPIKfyve-Sac3 binding, triggered a more severe vacuolar phenotype if coexpressed with ArPIKfyve(WT)-Sac3(WT) but minimal defects when coexpressed with ArPIKfyve(WT) and phosphatase-deficient Sac3(D488A). These data indicate that Sac3 assembled in the PAS regulatory core complex is an active PtdIns(3,5)P(2) phosphatase. Based on these and other data, presented herein, we propose a model of domain interactions within the PAS core and their role in regulating the enzymatic activities.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
23
|
Katoh Y, Ritter B, Gaffry T, Blondeau F, Höning S, McPherson PS. The clavesin family, neuron-specific lipid- and clathrin-binding Sec14 proteins regulating lysosomal morphology. J Biol Chem 2009; 284:27646-54. [PMID: 19651769 PMCID: PMC2785693 DOI: 10.1074/jbc.m109.034884] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/20/2009] [Indexed: 11/06/2022] Open
Abstract
Clathrin-coated vesicles (CCVs) originating from the trans-Golgi network (TGN) provide a major transport pathway from the secretory system to endosomes/lysosomes. Herein we describe paralogous Sec14 domain-bearing proteins, clavesin 1/CRALBPL and clavesin 2, identified through a proteomic analysis of CCVs. Clavesins are enriched on CCVs and form a complex with clathrin heavy chain (CHC) and adaptor protein-1, major coat components of TGN-derived CCVs. The proteins co-localize with markers of endosomes and the TGN as well as with CHC and adaptor protein-1. A membrane mimic assay using the Sec14 domain of clavesin 1 reveals phosphatidylinositol 3,5-bisphosphate as a specific lipid partner. Phosphatidylinositol 3,5-bisphosphate is localized to late endosomes/lysosomes, and interestingly, isoform-specific knockdown of clavesins in neurons using lentiviral delivery of interfering RNA leads to enlargement of a lysosome-associated membrane protein 1-positive membrane compartment with no obvious influence on the CCV machinery at the TGN. Since clavesins are expressed exclusively in neurons, this new protein family appears to provide a unique neuron-specific regulation of late endosome/lysosome morphology.
Collapse
Affiliation(s)
- Yohei Katoh
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| | - Brigitte Ritter
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| | - Thomas Gaffry
- the Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Francois Blondeau
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| | - Stefan Höning
- the Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Peter S. McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada and
| |
Collapse
|
24
|
Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 2009; 419:1-13. [PMID: 19272020 DOI: 10.1042/bj20081950] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PtdIns(3,5)P(2) is one of the seven regulatory PPIn (polyphosphoinositides) that are ubiquitous in eukaryotes. It controls membrane trafficking at multiple points in the endosomal/lysosomal system and consequently regulates the size, shape and acidity of at least one endo-lysosomal compartment. PtdIns(3,5)P(2) appears to exert this control via multiple effector proteins, with each effector specific for a subset of the various PtdIns(3,5)P(2)-dependent processes. Some putative PtdIns(3,5)P(2) effectors have been identified, including Atg18p-related PROPPIN [beta-propeller(s) that bind PPIn] proteins and the epsin-like proteins Ent3p and Ent5p, whereas others remain to be defined. One of the principal functions of PtdIns(3,5)P(2) is to regulate the fission/fragmentation of endo-lysosomal sub-compartments. PtdIns(3,5)P(2) is required for vesicle formation during protein trafficking between endo-lysosomes and also for fragmentation of endo-lysosomes into smaller compartments. In yeast, hyperosmotic stress accelerates the latter process. In the present review we highlight and discuss recent studies that reveal the role of the HOPS-CORVET complex and the vacuolar H(+)-ATPase in the process of endo-lysosome fission, and speculate on connections between these machineries and the Fab1p pathway. We also discuss new evidence linking PtdIns(3,5)P(2) and PtdIns5P to the regulation of exocytosis.
Collapse
|
25
|
Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 2009; 20:223-30. [PMID: 19298861 DOI: 10.1016/j.niox.2009.03.001] [Citation(s) in RCA: 470] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO), a free gaseous signaling molecule, is involved in the regulation of the cardiovascular, nervous and immune system. The neurotransmitter function of nitric oxide is dependent on dynamic regulation of its biosynthetic enzyme, nitric oxide synthase (NOS). There are three types of NOS, neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS). Of the three NOS, we focus on nNOS in the present review. Brain nNOS exists in particulate and soluble forms and the differential subcellular localization of nNOS may contribute to its diverse functions. Proteins bearing PDZ domains can interact directly with the PDZ domain of nNOS, influencing the subcellular distribution and/or activity of the enzyme. During the past several years, an increasing number of reports have demonstrated the importance of nNOS in a variety of synaptic signaling events. nNOS has been implicated in modulating physiological functions such as learning, memory, and neurogenesis, as well as being involved in a number of human diseases. In this review we concentrate on recent findings regarding the structural features, subcellular localization and factors regulating nNOS function. In particular, we conclude with a section discussing the role of nNOS in a wide range of physiological and pathological conditions.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
26
|
Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 2007; 104:17518-23. [PMID: 17956977 DOI: 10.1073/pnas.0702275104] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)), likely functions in multiple signaling pathways. Here, we report the characterization of a mouse mutant lacking Vac14, a regulator of PI(3,5)P(2) synthesis. The mutant mice exhibit massive neurodegeneration, particularly in the midbrain and in peripheral sensory neurons. Cell bodies of affected neurons are vacuolated, and apparently empty spaces are present in areas where neurons should be present. Similar vacuoles are found in cultured neurons and fibroblasts. Selective membrane trafficking pathways, especially endosome-to-TGN retrograde trafficking, are defective. This report, along with a recent report on a mouse with a null mutation in Fig4, presents the unexpected finding that the housekeeping lipid, PI(3,5)P(2), is critical for the survival of neural cells.
Collapse
|