1
|
McKenzie SD, Puthiyaveetil S. Protein phosphorylation and oxidative protein modification promote plant photosystem II disassembly for repair. PLANT COMMUNICATIONS 2025; 6:101202. [PMID: 39639769 PMCID: PMC11956111 DOI: 10.1016/j.xplc.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
The light-driven water-splitting reaction of photosystem II exposes its key reaction center core protein subunits to irreversible oxidative photodamage. A rapid repair cycle replaces the photodamaged core subunits in plants, but how the large antenna-core supercomplex structures of plant photosystem II disassemble for repair is not currently understood. Here, we report the specific involvement of phosphorylation in removal of the peripheral antenna from the core and monomerization of the dimeric cores. However, monomeric cores disassemble further into smaller subcomplexes, even in the absence of phosphorylation, suggesting that there are other unknown mechanisms of disassembly. In this regard, we show that oxidative modifications of amino acids in core protein subunits of photosystem II are active mediators of monomeric core disassembly. Oxidative modifications thus likely disassemble only the damaged monomeric cores, ensuring an economical photosystem disassembly process. Taken together, our results suggest that phosphorylation and oxidative modification play distinct roles in photosystem II disassembly and repair.
Collapse
Affiliation(s)
- Steven D McKenzie
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Kosugi M, Ohtani S, Hara K, Toyoda A, Nishide H, Ozawa SI, Takahashi Y, Kashino Y, Kudoh S, Koike H, Minagawa J. Characterization of the far-red light absorbing light-harvesting chlorophyll a/ b binding complex, a derivative of the distinctive Lhca gene family in green algae. FRONTIERS IN PLANT SCIENCE 2024; 15:1409116. [PMID: 38916036 PMCID: PMC11194369 DOI: 10.3389/fpls.2024.1409116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.
Collapse
Affiliation(s)
- Makiko Kosugi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Japan
| | - Kojiro Hara
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, National Institutes of Natural Science, Okazaki, Japan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | | | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, Tokyo, Japan
- Department of Polar Science, School of Multidisciplinary Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
3
|
Ifuku K. Diversity of the PSI-PSII Megacomplexes That Conduct Energy Spillover in Green Plants. PLANT & CELL PHYSIOLOGY 2023; 64:844-846. [PMID: 37384582 DOI: 10.1093/pcp/pcad069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
4
|
Sun H, Shang H, Pan X, Li M. Structural insights into the assembly and energy transfer of the Lhcb9-dependent photosystem I from moss Physcomitrium patens. NATURE PLANTS 2023; 9:1347-1358. [PMID: 37474782 DOI: 10.1038/s41477-023-01463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
In plants and green algae, light-harvesting complexes I and II (LHCI and LHCII) constitute the antennae of photosystem I (PSI), thus effectively increasing the cross-section of the PSI core. The moss Physcomitrium patens (P. patens) represents a well-studied primary land-dwelling photosynthetic autotroph branching from the common ancestor of green algae and land plants at the early stage of evolution. P. patens possesses at least three types of PSI with different antenna sizes. The largest PSI form (PpPSI-L) exhibits a unique organization found neither in flowering plants nor in algae. Its formation is mediated by the P. patens-specific LHC protein, Lhcb9. While previous studies have revealed the overall architecture of PpPSI-L, its assembly details and the relationship between different PpPSI types remain unclear. Here we report the high-resolution structure of PpPSI-L. We identified 14 PSI core subunits, one Lhcb9, one phosphorylated LHCII trimer and eight LHCI monomers arranged as two belts. Our structural analysis established the essential role of Lhcb9 and the phosphorylated LHCII in stabilizing the complex. In addition, our results suggest that PpPSI switches between different types, which share identical modules. This feature may contribute to the dynamic adjustment of the light-harvesting capability of PSI under different light conditions.
Collapse
Affiliation(s)
- Haiyu Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Xiaowei Pan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Shang H, Li M, Pan X. Dynamic Regulation of the Light-Harvesting System through State Transitions in Land Plants and Green Algae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1173. [PMID: 36904032 PMCID: PMC10005731 DOI: 10.3390/plants12051173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes whose main function is to increase the light-harvesting capability of the core. In order to maintain optimal photosynthetic activity under a constantly changing natural light environment, plants and green algae regulate the absorbed photo-excitation energy between PSI and PSII through processes known as state transitions. State transitions represent a short-term light adaptation mechanism for balancing the energy distribution between the two photosystems by relocating light-harvesting complex II (LHCII) proteins. The preferential excitation of PSII (state 2) results in the activation of a chloroplast kinase which in turn phosphorylates LHCII, a process followed by the release of phosphorylated LHCII from PSII and its migration to PSI, thus forming the PSI-LHCI-LHCII supercomplex. The process is reversible, as LHCII is dephosphorylated and returns to PSII under the preferential excitation of PSI. In recent years, high-resolution structures of the PSI-LHCI-LHCII supercomplex from plants and green algae were reported. These structural data provide detailed information on the interacting patterns of phosphorylated LHCII with PSI and on the pigment arrangement in the supercomplex, which is critical for constructing the excitation energy transfer pathways and for a deeper understanding of the molecular mechanism of state transitions progress. In this review, we focus on the structural data of the state 2 supercomplex from plants and green algae and discuss the current state of knowledge concerning the interactions between antenna and the PSI core and the potential energy transfer pathways in these supercomplexes.
Collapse
Affiliation(s)
- Hui Shang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
6
|
Landi M, Guidi L. Effects of abiotic stress on photosystem II proteins. PHOTOSYNTHETICA 2022; 61:148-156. [PMID: 39650668 PMCID: PMC11515818 DOI: 10.32615/ps.2022.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/01/2022] [Indexed: 12/11/2024]
Abstract
Photosystem II (PSII) represents the most vulnerable component of the photosynthetic machinery and its response in plants subjected to abiotic stress has been widely studied over many years. PSII is a thylakoid membrane-located multiprotein pigment complex that catalyses the light-induced electron transfer from water to plastoquinone with the concomitant production of oxygen. PSII is rich in intrinsic (PsbA and PsbD, namely D1 and D2, CP47 or PsbB and CP43 or PsbC) but also extrinsic proteins. The first ones are more largely conserved from cyanobacteria to higher plants while the extrinsic proteins are different among species. It has been found that extrinsic proteins involved in oxygen evolution change dramatically the PSII efficiency and PSII repair systems. However, little information is available on the effects of abiotic stress on their function and structure.
Collapse
Affiliation(s)
- M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - L. Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
7
|
Rantala M, Ivanauskaite A, Laihonen L, Kanna SD, Ughy B, Mulo P. Chloroplast Acetyltransferase GNAT2 is Involved in the Organization and Dynamics of Thylakoid Structure. PLANT & CELL PHYSIOLOGY 2022; 63:1205-1214. [PMID: 35792507 PMCID: PMC9474947 DOI: 10.1093/pcp/pcac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 05/28/2023]
Abstract
Higher plants acclimate to changes in light conditions by adjusting the thylakoid membrane ultrastructure. Additionally, excitation energy transfer between photosystem II (PSII) and photosystem I (PSI) is balanced in a process known as state transition. These modifications are mediated by reversible phosphorylation of Lhcb1 and Lhcb2 proteins in different pools of light-harvesting complex (LHCII) trimers. Our recent study demonstrated that chloroplast acetyltransferase NUCLEAR SHUTTLE INTERACTING (NSI)/GNAT2 (general control non-repressible 5 (GCN5)-related N-acetyltransferase 2) is also needed for the regulation of light harvesting, evidenced by the inability of the gnat2 mutant to perform state transitions although there are no defects in LHCII phosphorylation. Here, we show that despite contrasting phosphorylation states of LHCII, grana packing in the gnat2 and state transition 7 (stn7) mutants possesses similar features, as the thylakoid structure of the mutants does not respond to the shift from darkness to light, which is in striking contrast to wild type (Wt). Circular dichroism and native polyacrylamide gel electrophoresis analyses further revealed that the thylakoid protein complex organization of gnat2 and stn7 resembles each other, but differ from that of Wt. Also, the location of the phosphorylated Lhcb2 as well as the LHCII antenna within the thylakoid network in gnat2 mutant is different from that of Wt. In gnat2, the LHCII antenna remains largely in grana stacks, where the phosphorylated Lhcb2 is found in all LHCII trimer pools, including those associated with PSII. These results indicate that in addition to phosphorylation-mediated regulation through STN7, the GNAT2 enzyme is involved in the organization and dynamics of thylakoid structure, probably through the regulation of chloroplast protein acetylation.
Collapse
Affiliation(s)
- Marjaana Rantala
- Molecular Plant Biology, University of Turku, BioCity A, Tykistökatu 6, Turku, FI-20520, Finland
| | - Aiste Ivanauskaite
- Molecular Plant Biology, University of Turku, BioCity A, Tykistökatu 6, Turku, FI-20520, Finland
| | - Laura Laihonen
- Molecular Plant Biology, University of Turku, BioCity A, Tykistökatu 6, Turku, FI-20520, Finland
| | - Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged H-6726, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged H-6726, Hungary
| | | |
Collapse
|
8
|
Kong H, Xia W, Hou M, Ruan N, Li J, Zhu J. Cloning and function analysis of a Saussurea involucrata LEA4 gene. FRONTIERS IN PLANT SCIENCE 2022; 13:957133. [PMID: 35928707 PMCID: PMC9343949 DOI: 10.3389/fpls.2022.957133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Late embryogenesis abundant proteins (LEA) help adapt to adverse low-temperature environments. The Saussurea involucrate SiLEA4, which encodes a membrane protein, was significantly up-regulated in response to low temperature stress. Escherichia coli expressing SiLEA4 showed enhanced low-temperature tolerance, as evident from the significantly higher survival numbers and growth rates at low temperatures. Moreover, tomato strains expressing SiLEA4 had significantly greater freezing resistance, due to a significant increase in the antioxidase activities and proline content. Furthermore, they had higher yields due to higher water utilization and photosynthetic efficiency under the same water and fertilizer conditions. Thus, expressing SiLEA4 has multiple advantages: (1) mitigating chilling injury, (2) increasing yields, and (3) water-saving, which also indicates the great potential of the SiLEA4 for breeding applications.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Mengjuan Hou
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Nan Ruan
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Zhou M, Zhu S, Mo X, Guo Q, Li Y, Tian J, Liang C. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency. Cells 2022; 11:cells11040651. [PMID: 35203302 PMCID: PMC8870294 DOI: 10.3390/cells11040651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.
Collapse
Affiliation(s)
- Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Qi Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Yaxue Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| |
Collapse
|
10
|
Hommel E, Liebers M, Offermann S, Pfannschmidt T. Effectiveness of Light-Quality and Dark-White Growth Light Shifts in Short-Term Light Acclimation of Photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 12:615253. [PMID: 35046964 PMCID: PMC8761940 DOI: 10.3389/fpls.2021.615253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2021] [Indexed: 05/23/2023]
Abstract
Photosynthesis needs to run efficiently under permanently changing illumination. To achieve this, highly dynamic acclimation processes optimize photosynthetic performance under a variety of rapidly changing light conditions. Such acclimation responses are acting by a complex interplay of reversible molecular changes in the photosynthetic antenna or photosystem assemblies which dissipate excess energy and balance uneven excitation between the two photosystems. This includes a number of non-photochemical quenching processes including state transitions and photosystem II remodeling. In the laboratory such processes are typically studied by selective illumination set-ups. Two set-ups known to be effective in a highly similar manner are (i) light quality shifts (inducing a preferential excitation of one photosystem over the other) or (ii) dark-light shifts (inducing a general off-on switch of the light harvesting machinery). Both set-ups result in similar effects on the plastoquinone redox state, but their equivalence in induction of photosynthetic acclimation responses remained still open. Here, we present a comparative study in which dark-light and light-quality shifts were applied to samples of the same growth batches of plants. Both illumination set-ups caused comparable effects on the phosphorylation of LHCII complexes and, hence, on the performance of state transitions, but generated different effects on the degree of state transitions and the formation of PSII super-complexes. The two light set-ups, thus, are not fully equivalent in their physiological effectiveness potentially leading to different conclusions in mechanistic models of photosynthetic acclimation. Studies on the regulation of photosynthetic light acclimation, therefore, requires to regard the respective illumination test set-up as a critical parameter that needs to be considered in the discussion of mechanistic and regulatory aspects in this subject.
Collapse
Affiliation(s)
- Elisabeth Hommel
- Pflanzenphysiologie, Institut für Biologie, Universität Leipzig, Leipzig, Germany
| | - Monique Liebers
- Molekulare Pflanzenphysiologie, Institut für Pflanzenwissenschaften und Mikrobiologie, Universität Hamburg, Hamburg, Germany
| | - Sascha Offermann
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Leibniz-Universität Hannover, Hanover, Germany
| | - Thomas Pfannschmidt
- Pflanzenphysiologie, Institut für Botanik, Naturwissenschaftliche Fakultät, Leibniz-Universität Hannover, Hanover, Germany
| |
Collapse
|
11
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|
12
|
Pan X, Tokutsu R, Li A, Takizawa K, Song C, Murata K, Yamasaki T, Liu Z, Minagawa J, Li M. Structural basis of LhcbM5-mediated state transitions in green algae. NATURE PLANTS 2021; 7:1119-1131. [PMID: 34239095 DOI: 10.1038/s41477-021-00960-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 05/10/2023]
Abstract
In green algae and plants, state transitions serve as a short-term light-acclimation process in the regulation of the light-harvesting capacity of photosystems I and II (PSI and PSII, respectively). During the process, a portion of light-harvesting complex II (LHCII) is phosphorylated, dissociated from PSII and binds with PSI to form the supercomplex PSI-LHCI-LHCII. Here, we report high-resolution structures of PSI-LHCI-LHCII from Chlamydomonas reinhardtii, revealing the mechanism of assembly between the PSI-LHCI complex and two phosphorylated LHCII trimers containing all four types of LhcbM protein. Two specific LhcbM isoforms, namely LhcbM1 and LhcbM5, directly interact with the PSI core through their phosphorylated amino terminal regions. Furthermore, biochemical and functional studies on mutant strains lacking either LhcbM1 or LhcbM5 indicate that only LhcbM5 is indispensable in supercomplex formation. The results unravel the specific interactions and potential excitation energy transfer routes between green algal PSI and two phosphorylated LHCIIs.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Ryutaro Tokutsu
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Anjie Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kenji Takizawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Astrobiology Centre, National Institutes of Natural Sciences, Mitaka, Japan
| | - Chihong Song
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, Kochi, Japan
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Wu J, Rong L, Lin W, Kong L, Wei D, Zhang L, Rochaix JD, Xu X. Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7. PLANT PHYSIOLOGY 2021; 186:964-976. [PMID: 33620491 PMCID: PMC8195503 DOI: 10.1093/plphys/kiab091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 05/07/2023]
Abstract
In response to changing light quantity and quality, photosynthetic organisms perform state transitions, a process which optimizes photosynthetic yield and mitigates photo-damage. The serine/threonine-protein kinase STN7 phosphorylates the light-harvesting complex of photosystem II (PSII; light-harvesting complex II), which then migrates from PSII to photosystem I (PSI), thereby rebalancing the light excitation energy between the photosystems and restoring the redox poise of the photosynthetic electron transport chain. Two conserved cysteines forming intra- or intermolecular disulfide bonds in the lumenal domain (LD) of STN7 are essential for the kinase activity although it is still unknown how activation of the kinase is regulated. In this study, we show lumen thiol oxidoreductase 1 (LTO1) is co-expressed with STN7 in Arabidopsis (Arabidopsis thaliana) and interacts with the LD of STN7 in vitro and in vivo. LTO1 contains thioredoxin (TRX)-like and vitamin K epoxide reductase domains which are related to the disulfide-bond formation system in bacteria. We further show that the TRX-like domain of LTO1 is able to oxidize the conserved lumenal cysteines of STN7 in vitro. In addition, loss of LTO1 affects the kinase activity of STN7 in Arabidopsis. Based on these results, we propose that LTO1 helps to maintain STN7 in an oxidized active state in state 2 through redox interactions between the lumenal cysteines of STN7 and LTO1.
Collapse
Affiliation(s)
- Jianghao Wu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Lin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxi Kong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengjie Wei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jean-David Rochaix
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Author for communication:
| |
Collapse
|
14
|
He Y, Ma J, Joseph V, Wei Y, Liu M, Zhang Z, Li G, He Q, Li H. Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115576. [PMID: 32898730 DOI: 10.1016/j.envpol.2020.115576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Potassium (K+) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K+ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K+ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K+, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K+ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K+ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K+ availability can regulate the physiological metabolic activity of M. aeruginosa and K+ deficiency leads to depressed growth and MC production in M. aeruginosa.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jianrong Ma
- CAS Key Laboratory of Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Vanderwall Joseph
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengzi Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zhaoxue Zhang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Guo Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
15
|
Negi S, Perrine Z, Friedland N, Kumar A, Tokutsu R, Minagawa J, Berg H, Barry AN, Govindjee G, Sayre R. Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae †. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:584-603. [PMID: 32180283 DOI: 10.1111/tpj.14751] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light-harvesting antenna captures photons at a rate nearly 10 times faster than the rate-limiting step in photosynthetic electron transport. Excess captured energy is dissipated by non-productive pathways including the production of reactive oxygen species. Substantial improvements in photosynthetic efficiency have been achieved by reducing the optical cross-section of the light-harvesting antenna by selectively reducing chlorophyll b levels and peripheral light-harvesting complex subunits. Smaller light-harvesting antenna, however, may not exhibit optimal photosynthetic performance in low or fluctuating light environments. We describe a translational control system to dynamically adjust light-harvesting antenna sizes for enhanced photosynthetic performance. By expressing a chlorophyllide a oxygenase (CAO) gene having a 5' mRNA extension encoding a Nab1 translational repressor binding site in a CAO knockout line it was possible to continuously alter chlorophyll b levels and correspondingly light-harvesting antenna sizes by light-activated Nab1 repression of CAO expression as a function of growth light intensity. Significantly, algae having light-regulated antenna sizes had substantially higher photosynthetic rates and two-fold greater biomass productivity than the parental wild-type strains as well as near wild-type ability to carry out state transitions and non-photochemical quenching. These results have broad implications for enhanced algae and plant biomass productivity.
Collapse
Affiliation(s)
- Sangeeta Negi
- New Mexico Consortium and Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Zoee Perrine
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Anil Kumar
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Howard Berg
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Amanda N Barry
- Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
16
|
McKenzie SD, Ibrahim IM, Aryal UK, Puthiyaveetil S. Stoichiometry of protein complexes in plant photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148141. [DOI: 10.1016/j.bbabio.2019.148141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
17
|
Pralon T, Collombat J, Pipitone R, Ksas B, Shanmugabalaji V, Havaux M, Finazzi G, Longoni P, Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6 Phenotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:337. [PMID: 32269582 PMCID: PMC7109304 DOI: 10.3389/fpls.2020.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Collapse
Affiliation(s)
- Thibaut Pralon
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Joy Collombat
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Ksas
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | | | - Michel Havaux
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agromique (INRA), Interdisciplinary Research Institute of Grenoble - Cell and Plant Physiology Laboratory (IRIG-LPCV), Grenoble, France
| | - Paolo Longoni
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Paolo Longoni,
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Felix Kessler,
| |
Collapse
|
18
|
Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochim Biophys Acta Gen Subj 2019; 1863:1429-1442. [PMID: 31075358 DOI: 10.1016/j.bbagen.2019.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 11/20/2022]
Abstract
The microalga Haematococcus lacustris (formerly H. pluvialis) is the richest source of the valuable pigment astaxanthin, accumulated in red aplanospores (haematocysts). In this work, we report on the photoprotective mechanisms in H. lacustris, conveying this microalga its ability to cope with a wide range of adverse conditions, with special emphasis put on non-photochemical quenching (NPQ) of the excited chlorophyll states. We studied the changes in the primary photochemistry of the photosystems (PS) as a function of irradiance and the physiological state. We leveraged the transcriptomic data to gain a deeper insight into possible NPQ mechanisms in this microalga. Peculiar to H. lacustris is a bi-phasic pattern of changes in photoprotection during haematocyst formation. The first phase coincides with a transient rise of photosynthetic activity. Based on transcriptomic data, high NPQ level in the first phase is maintained predominantly by the expression of PsbS and LhcsR proteins. Then, (in mature haematocysts), stress tolerance is achieved by optical shielding by astaxanthin and dramatic reduction of photosynthetic apparatus. In contrast to many microalgae, shielding plays an important role in H. lacistris haematocysts, whereas regulated NPQ is suppressed. Astaxanthin is decoupled from the PS, hence the light energy is not transferred to reaction centers and dissipates as heat. It allows to retain a higher photochemical yield in haematocysts comparing to vegetative cells. The ability of H. lacustris to substitute the "classical" active photoprotective mechanisms such as NPQ with optic shielding and general metabolism quiescence makes this organism a useful model to reveal photoprotection mechanisms.
Collapse
|
19
|
Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A. The PSI-PSII Megacomplex in Green Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1098-1108. [PMID: 30753722 DOI: 10.1093/pcp/pcz026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 02/04/2019] [Indexed: 05/27/2023]
Abstract
Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.
Collapse
Affiliation(s)
- Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Atsugi, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Akio Murakami
- Kobe University Research Centre for Inland Seas, Awaji, Japan
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| |
Collapse
|
20
|
Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans 2018; 46:467-482. [DOI: 10.1042/bst20170307] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
Abstract
Photosynthesis uses sunlight to convert water and carbon dioxide into biomass and oxygen. When in excess, light can be dangerous for the photosynthetic apparatus because it can cause photo-oxidative damage and decreases the efficiency of photosynthesis because of photoinhibition. Plants have evolved many photoprotective mechanisms in order to face reactive oxygen species production and thus avoid photoinhibition. These mechanisms include quenching of singlet and triplet excited states of chlorophyll, synthesis of antioxidant molecules and enzymes and repair processes for damaged photosystem II and photosystem I reaction centers. This review focuses on the mechanisms involved in photoprotection of chloroplasts through dissipation of energy absorbed in excess.
Collapse
|
21
|
Schuurmans RM, Matthijs JCP, Hellingwerf KJ. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2017; 132:69-82. [PMID: 28108865 PMCID: PMC5357262 DOI: 10.1007/s11120-016-0329-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/16/2016] [Indexed: 05/03/2023]
Abstract
Phototrophic microorganisms like cyanobacteria show growth curves in batch culture that differ from the corresponding growth curves of chemotrophic bacteria. Instead of the usual three phases, i.e., lag-, log-, and stationary phase, phototrophs display four distinct phases. The extra growth phase is a phase of linear, light-limited growth that follows the exponential phase and is often ignored as being different. Results of this study demonstrate marked growth phase-dependent alterations in the photophysiology of the cyanobacterium Synechocystis sp. PCC 6803 between cells harvested from the exponential and the linear growth phase. Notable differences are a gradual shift in the energy transfer of the light-harvesting phycobilisomes to the photosystems and a distinct change in the redox state of the plastoquinone pool. These differences will likely affect the result of physiological studies and the efficiency of product formation of Synechocystis in biotechnological applications. Our study also demonstrates that the length of the period of exponential growth can be extended by a gradually stronger incident light intensity that matches the increase of the cell density of the culture.
Collapse
Affiliation(s)
- R M Schuurmans
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J C P Matthijs
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - K J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Shikanai T, Yamamoto H. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. MOLECULAR PLANT 2017; 10:20-29. [PMID: 27575692 DOI: 10.1016/j.molp.2016.08.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 05/05/2023]
Abstract
Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b6f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan
| |
Collapse
|
23
|
Ibrahim IM, Puthiyaveetil S, Khan C, Allen JF. Probing the nucleotide-binding activity of a redox sensor: two-component regulatory control in chloroplasts. PHOTOSYNTHESIS RESEARCH 2016; 130:93-101. [PMID: 26873738 PMCID: PMC5054060 DOI: 10.1007/s11120-016-0229-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/02/2016] [Indexed: 05/08/2023]
Abstract
Two-component signal transduction systems mediate adaptation to environmental changes in bacteria, plants, fungi, and protists. Each two-component system consists of a sensor histidine kinase and a response regulator. Chloroplast sensor kinase (CSK) is a modified sensor histidine kinase found in chloroplasts-photosynthetic organelles of plants and algae. CSK regulates the transcription of chloroplast genes in response to changes in photosynthetic electron transport. In this study, the full-length and truncated forms of Arabidopsis CSK proteins were overexpressed and purified in order to characterise their kinase and redox sensing activities. Our results show that CSK contains a modified kinase catalytic domain that binds ATP with high affinity and forms a quinone adduct that may confer redox sensing activity.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Sujith Puthiyaveetil
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
24
|
Singh SK, Hasan SS, Zakharov SD, Naurin S, Cohn W, Ma J, Whitelegge JP, Cramer WA. Trans-membrane Signaling in Photosynthetic State Transitions: REDOX- AND STRUCTURE-DEPENDENT INTERACTION IN VITRO BETWEEN STT7 KINASE AND THE CYTOCHROME b6f COMPLEX. J Biol Chem 2016; 291:21740-21750. [PMID: 27539852 DOI: 10.1074/jbc.m116.732545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Trans-membrane signaling involving a serine/threonine kinase (Stt7 in Chlamydomonas reinhardtii) directs light energy distribution between the two photosystems of oxygenic photosynthesis. Oxidation of plastoquinol mediated by the cytochrome b6f complex on the electrochemically positive side of the thylakoid membrane activates the kinase domain of Stt7 on the trans (negative) side, leading to phosphorylation and redistribution ("state transition") of the light-harvesting chlorophyll proteins between the two photosystems. The molecular description of the Stt7 kinase and its interaction with the cytochrome b6f complex are unknown or unclear. In this study, Stt7 kinase has been cloned, expressed, and purified in a heterologous host. Stt7 kinase is shown to be active in vitro in the presence of reductant and purified as a tetramer, as determined by analytical ultracentrifugation, electron microscopy, and electrospray ionization mass spectrometry, with a molecular weight of 332 kDa, consisting of an 83.41-kDa monomer. Far-UV circular dichroism spectra show Stt7 to be mostly α-helical and document a physical interaction with the b6f complex through increased thermal stability of Stt7 secondary structure. The activity of wild-type Stt7 and its Cys-Ser mutant at positions 68 and 73 in the presence of a reductant suggest that the enzyme does not require a disulfide bridge for its activity as suggested elsewhere. Kinase activation in vivo could result from direct interaction between Stt7 and the b6f complex or long-range reduction of Stt7 by superoxide, known to be generated in the b6f complex by quinol oxidation.
Collapse
Affiliation(s)
| | | | | | | | - Whitaker Cohn
- the Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90024
| | - Jia Ma
- Biophysical Analysis Laboratory, Bindley Bioscience Center,Purdue University, West Lafayette, Indiana 47907 and
| | - Julian P Whitelegge
- the Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90024
| | | |
Collapse
|
25
|
Curien G, Flori S, Villanova V, Magneschi L, Giustini C, Forti G, Matringe M, Petroutsos D, Kuntz M, Finazzi G. The Water to Water Cycles in Microalgae. PLANT & CELL PHYSIOLOGY 2016; 57:1354-1363. [PMID: 26955846 DOI: 10.1093/pcp/pcw048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/23/2016] [Indexed: 05/28/2023]
Abstract
In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO2 assimilation. In Viridiplantae, there is a consensus that alternative electron flow comprises cyclic electron flow around PSI and the water to water cycles. The latter processes include photosynthetic O2 reduction via the Mehler reaction at PSI, the plastoquinone terminal oxidase downstream of PSII, photorespiration (the oxygenase activity of Rubisco) and the export of reducing equivalents towards the mitochondrial oxidases, through the malate shuttle. In this review, we summarize current knowledge about the role of the water to water cycles in photosynthesis, with a special focus on their occurrence and physiological roles in microalgae.
Collapse
Affiliation(s)
- Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | - Serena Flori
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | | | - Leonardo Magneschi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | - Cécile Giustini
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | - Giorgio Forti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France
| |
Collapse
|
26
|
Kruk J, Szymańska R, Nowicka B, Dłużewska J. Function of isoprenoid quinones and chromanols during oxidative stress in plants. N Biotechnol 2016; 33:636-643. [PMID: 26970272 DOI: 10.1016/j.nbt.2016.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023]
Abstract
Isoprenoid quinones and chromanols in plants fulfill both signaling and antioxidant functions under oxidative stress. The redox state of the plastoquinol pool (PQ-pool), which is modulated by interaction with reactive oxygen species (ROS) during oxidative stress, has a major regulatory function in both short- and long-term acclimatory responses. By contrast, the scavenging of ROS by prenyllipids affects signaling pathways where ROS play a role as signaling molecules. As the primary antioxidants, isoprenoid quinones and chromanols are synthesized under high-light stress in response to any increased production of ROS. During photo-oxidative stress, these prenyllipids are continuously synthesized and oxidized to other compounds. In turn, their oxidation products (hydroxy-plastochromanol, plastoquinol-C, plastoquinone-B) can still have an antioxidant function. The oxidation products of isoprenoid quinones and chromanols formed specifically in the face of singlet oxygen, can be indicators of singlet oxygen stress.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jolanta Dłużewska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
27
|
Mechanisms of Superoxide Generation and Signaling in Cytochrome bc Complexes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Spicher L, Glauser G, Kessler F. Lipid Antioxidant and Galactolipid Remodeling under Temperature Stress in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:167. [PMID: 26925083 PMCID: PMC4756161 DOI: 10.3389/fpls.2016.00167] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 05/22/2023]
Abstract
Increased temperatures are a major scenario in climate change and present a threat to plant growth and agriculture. Plant growth depends on photosynthesis. To function optimally, the photosynthetic machinery at the thylakoid membrane in chloroplasts continuously adapts to changing conditions. Here, we set out to discover the most important changes arising at the lipid level under high temperature (38°C) in comparison to mild (20°C) and moderately cold temperature (10°C) using a non-targeted lipidomics approach. To our knowledge, no comparable experiment at the level of the whole membrane system has been documented. Here, 791 molecular species were detected by mass spectrometry and ranged from membrane lipids, prenylquinones (tocopherols, phylloquinone, plastoquinone, plastochromanol), carotenoids (β-carotene, xanthophylls) to numerous unidentified compounds. At high temperatures, the most striking changes were observed for the prenylquinones (α-tocopherol and plastoquinone/-ol) and the degree of saturation of fatty acids in galactolipids and phosphatidyl ethanolamine. Photosynthetic efficiency at high temperature was not affected but at moderately cold temperature mild photoinhibition occurred. The results indicate, that the thylakoid membrane is remodeled with regard to fatty acid saturation in galactolipids and lipid antioxidant concentrations under high temperature stress. The data strongly suggest, that massively increased concentrations of α-tocopherol and plastoquinone are important for protection against high temperature stress and proper function of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Livia Spicher
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler
| |
Collapse
|
29
|
Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:272-8. [DOI: 10.1016/j.jphotobiol.2015.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/18/2015] [Accepted: 09/11/2015] [Indexed: 12/26/2022]
|
30
|
Bergner SV, Scholz M, Trompelt K, Barth J, Gäbelein P, Steinbeck J, Xue H, Clowez S, Fucile G, Goldschmidt-Clermont M, Fufezan C, Hippler M. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes. PLANT PHYSIOLOGY 2015; 168:615-34. [PMID: 25858915 PMCID: PMC4453777 DOI: 10.1104/pp.15.00072] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/04/2015] [Indexed: 05/18/2023]
Abstract
In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of light-harvesting complex stress-related protein3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-light harvesting complex I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions.
Collapse
Affiliation(s)
- Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Johannes Barth
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Philipp Gäbelein
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Sophie Clowez
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Geoffrey Fucile
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Michel Goldschmidt-Clermont
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Munster, Germany (S.V.B., M.S., K.T., J.B., P.G., J.S., H.X., C.F., M.H.);Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75005 Paris, France (S.C.); andDepartment of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland (G.F., M.G.-C.)
| |
Collapse
|
31
|
Sawyer AL, Hankamer BD, Ross IL. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. PLANTA 2015; 241:1287-1302. [PMID: 25672503 DOI: 10.1007/s00425-015-2249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.
Collapse
Affiliation(s)
- Anne L Sawyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
32
|
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:481-503. [PMID: 25752440 DOI: 10.1111/tpj.12823] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular, soil-dwelling (and aquatic) green alga that has significant metabolic flexibility for balancing redox equivalents and generating ATP when it experiences hypoxic/anoxic conditions. The diversity of pathways available to ferment sugars is often revealed in mutants in which the activities of specific branches of fermentative metabolism have been eliminated; compensatory pathways that have little activity in parental strains under standard laboratory fermentative conditions are often activated. The ways in which these pathways are regulated and integrated have not been extensively explored. In this review, we primarily discuss the intricacies of dark anoxic metabolism in Chlamydomonas, but also discuss aspects of dark oxic metabolism, the utilization of acetate, and the relatively uncharacterized but critical interactions that link chloroplastic and mitochondrial metabolic networks.
Collapse
Affiliation(s)
- Wenqiang Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Claudia Catalanotti
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Tyler M Wittkopp
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Matthew C Posewitz
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
33
|
Grieco M, Suorsa M, Jajoo A, Tikkanen M, Aro EM. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:607-19. [PMID: 25843550 DOI: 10.1016/j.bbabio.2015.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/31/2023]
Abstract
In plant chloroplasts, the two photosystems (PSII and PSI) are enriched in different thylakoid domains and, according to the established view, are regarded as energetically segregated from each other. A specific fraction of the light harvesting complex II (LHCII) has been postulated to get phosphorylated by the STN7 kinase and subsequently to migrate from PSII to PSI as part of a process called 'state transition'. Nevertheless, the thylakoid membrane incorporates a large excess of LHCII not present in the isolatable PSII-LHCII and PSI-LHCII complexes. Moreover, LHCII phosphorylation is not limited to a specific LHCII pool and "state 2" condition, but is found in all thylakoid domains in any constant light condition. Here, using a targeted solubilization of pigment-protein complexes from different thylakoid domains, we demonstrate that even a minor detachment of LHCII leads to markedly increased fluorescence emission from LHCII and PSII both in grana core and non-appressed thylakoid membranes and the effect of the detergent to detach LHCII is enhanced in the absence of LHCII phosphorylation. These findings provide evidence that PSII and PSI are energy traps embedded in the same energetically connected LHCII lake. In the lake, PSI and LHCII are energetically connected even in the absence of LHCII phosphorylation, yet the phosphorylation enhances the interaction required for efficient energy transfer to PSI in the grana margin regions.
Collapse
Affiliation(s)
- Michele Grieco
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore 452017, MP, India
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
34
|
Wei S, Wang X, Zhang J, Liu P, Zhao B, Li G, Dong S. The role of nitrogen in leaf senescence of summer maize and analysis of underlying mechanisms using comparative proteomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:72-81. [PMID: 25711815 DOI: 10.1016/j.plantsci.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/29/2014] [Accepted: 01/03/2015] [Indexed: 05/24/2023]
Abstract
Leaf senescence is associated with fundamental changes on the level of the proteome and it can be modulated by nitrogen. To determine the precise regulatory mechanisms underlying these effects, we conducted a comparative proteomics study using 2-dimensional gel electrophoresis and MALDI-TOF/TOF MS. Based on our study of the maize leaf proteome, leaf senescence induces complex responses including the degradation of 32 senescence-associated proteins that are involved in many biological processes, especially energy, metabolism and cell rescue, defense and virulence pathways. Although similar conclusions have been highlighted in other crops, this study filled the knowledge gap in maize leaf senescence. Moreover, we discovered, for the first time, 29 "nitrogen-regulated senescence proteins" had significant (P≤0.05) interaction term for nitrogen×stage. Although further study of nitrogen-related senescence proteins, such as 30S ribosomal protein, will be required to fully elucidate their complex functions, the surprising results in our study provide a new vision to research the relationship between nitrogen and senescence.
Collapse
Affiliation(s)
- Shanshan Wei
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Xiangyu Wang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai-an, Shandong 271018, PR China.
| |
Collapse
|
35
|
Nellaepalli S, Kodru S, Raghavendra AS, Subramanyam R. Antimycin A sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 146:24-33. [PMID: 25792151 DOI: 10.1016/j.jphotobiol.2015.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 12/01/2022]
Abstract
We investigated the mechanism involved in triggering state transitions at 40°C in Arabidopsis thaliana. Leaves (1-6 week old) exposed to 40°C exhibited state II transition indicating its role as one of the earliest stress responsive mechanism apart from regulation of light energy distribution between photosystem (PS)II and PSI. Post illumination transients (rise in Fo') revealed that non-photochemical reduction of PQ pool at 40°C in dark is responsible for activation of STN7 kinase, consequently light harvesting complex (LHC)II phosphorylation leading to state II condition. Later, in pgr5 mutant, non-photochemical reduction of PQ pool was observed indicating the involvement of alternative electron transfer routes. In chlororespiratory mutant crr2-2, state II transition occurred signifying that the reduction of PQ pool is independent from NDH mediated cyclic electron transfer. Further, antimycin A inhibitor studies in wt and mutants revealed its inhibitory action on non-photochemical reduction of PQ pool affecting both LHCII phosphorylation and migration to PSI which leads to state I. Thus, our study showed that antimycin A sensitive pathway independent from PGR5 dependent cyclic electron transfer, is responsible for inducing non-photochemical reduction of PQ pool and state transitions at 40°C.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sireesha Kodru
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
36
|
Iwai M, Yokono M, Kono M, Noguchi K, Akimoto S, Nakano A. Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. NATURE PLANTS 2015; 1:14008. [PMID: 27246756 DOI: 10.1038/nplants.2014.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/14/2014] [Indexed: 05/10/2023]
Abstract
Light-harvesting complex (LHC) proteins in chloroplast thylakoid membranes not only transfer absorbed light energy to the two photosystems but also regulate the rate of energy transfer to avoid photodamage. Here we demonstrate that Lhcb9, a recently discovered LHC protein in the moss Physcomitrella patens, functions to connect LHC proteins with photosystem I (PSI), resulting in the formation of two different types of PSI supercomplexes in thylakoid membranes. We observed that the Lhcb9-containing PSI supercomplex is disassembled in response to excess light conditions. On the basis of our phylogenetic analysis, it appears that P. patens acquired Lhcb9 by horizontal gene transfer from the earlier green algal lineage, leading to the presence of both green alga-type and vascular plant-type PSI supercomplexes, which would have been crucial for conquering the dynamic environmental interface between aquatic and terrestrial conditions it faced during evolution.
Collapse
Affiliation(s)
- Masakazu Iwai
- Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Nakano
- Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Madireddi SK, Nama S, Devadasu ER, Subramanyam R. Photosynthetic membrane organization and role of state transition in cyt, cpII, stt7 and npq mutants of Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:77-83. [DOI: 10.1016/j.jphotobiol.2014.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
|
38
|
Kangasjärvi S, Tikkanen M, Durian G, Aro EM. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:128-34. [PMID: 24361390 DOI: 10.1016/j.plaphy.2013.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 05/09/2023]
Abstract
Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants.
Collapse
Affiliation(s)
| | - Mikko Tikkanen
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Guido Durian
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
39
|
Mabbitt PD, Wilbanks SM, Eaton-Rye JJ. Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:96-107. [PMID: 24656878 DOI: 10.1016/j.plaphy.2014.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PS II) is a macromolecular complex responsible for light-driven oxidation of water and reduction of plastoquinone as part of the photosynthetic electron transport chain found in thylakoid membranes. Each PS II complex is composed of at least 20 protein subunits and over 80 cofactors. The biogenesis of PS II requires further hydrophilic and membrane-spanning proteins which are not part of the active holoenzyme. Many of these biogenesis proteins make transient interactions with specific PS II assembly intermediates: sometimes these are essential for biogenesis while in other examples they are required for optimizing assembly of the mature complex. In this review the function and structure of the Psb27, Psb28 and Ycf48 hydrophilic assembly factors is discussed by combining structural, biochemical and physiological information. Each of these assembly factors has homologues in all oxygenic photosynthetic organisms. We provide a simple overview for the roles of these protein factors in cyanobacterial PS II assembly emphasizing their participation in both photosystem biogenesis and recovery from photodamage.
Collapse
Affiliation(s)
- Peter D Mabbitt
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
40
|
Wittenberg G, Levitan A, Klein T, Dangoor I, Keren N, Danon A. Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1003-13. [PMID: 24684167 DOI: 10.1111/tpj.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 05/09/2023]
Abstract
A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild-type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non-photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild-type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light-regulated manner.
Collapse
Affiliation(s)
- Gal Wittenberg
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Takahashi H, Okamuro A, Minagawa J, Takahashi Y. Biochemical Characterization of Photosystem I-Associated Light-Harvesting Complexes I and II Isolated from State 2 Cells of Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014; 55:1437-49. [DOI: 10.1093/pcp/pcu071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:89-99. [PMID: 24776379 DOI: 10.1016/j.jphotobiol.2014.02.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 12/26/2022]
Abstract
Light energy absorbed by chloroplasts drives photosynthesis. When absorbed light is in excess, the thermal dissipation systems of excess energy are induced and the photosynthetic electron flow is regulated, both contributing to suppression of reactive oxygen species production and photodamages. Various regulation mechanisms of the photosynthetic electron flow and energy dissipation systems have been revealed. However, most of such knowledge has been obtained by the experiments conducted under controlled conditions with constant light, whereas natural light condition is drastically fluctuated. To understand photosynthesis in nature, we need to clarify not only the mechanisms that raise photosynthetic efficiency but those for photoprotection in fluctuating light. Although these mechanisms appear to be well balanced, regulatory mechanisms achieving the balance is little understood. Recently, some pioneering studies have provided new insight into the regulatory mechanisms in fluctuating light. In this review, firstly, the possible mechanisms involved in regulation of the photosynthetic electron flow in fluctuating light are presented. Next, we introduce some recent studies focusing on the photosynthetic electron flow in fluctuating light. Finally, we discuss how plants effectively cope with fluctuating light showing our recent results.
Collapse
|
43
|
Drop B, Yadav K N S, Boekema EJ, Croce R. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:181-91. [PMID: 24506306 DOI: 10.1111/tpj.12459] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 05/10/2023]
Abstract
State transitions represent a photoacclimation process that regulates the light-driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light-harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI-bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.
Collapse
Affiliation(s)
- Bartlomiej Drop
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
44
|
Chen X, Chan WL, Zhu FY, Lo C. Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii. Proteome Sci 2014; 12:16. [PMID: 24628833 PMCID: PMC4022089 DOI: 10.1186/1477-5956-12-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/06/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Selaginella (Selaginella moellendorffii) is a lycophyte which diverged from other vascular plants approximately 410 million years ago. As the first reported non-seed vascular plant genome, Selaginella genome data allow comparative analysis of genetic changes that may be associated with land plant evolution. Proteomics investigations on this lycophyte model have not been extensively reported. Phosphorylation represents the most common post-translational modifications and it is a ubiquitous regulatory mechanism controlling the functional expression of proteins inside living organisms. RESULTS In this study, polyethylene glycol fractionation and immobilized metal ion affinity chromatography were employed to isolate phosphopeptides from wild-growing Selaginella. Using liquid chromatography-tandem mass spectrometry analysis, 1593 unique phosphopeptides spanning 1104 non-redundant phosphosites with confirmed localization on 716 phosphoproteins were identified. Analysis of the Selaginella dataset revealed features that are consistent with other plant phosphoproteomes, such as the relative proportions of phosphorylated Ser, Thr, and Tyr residues, the highest occurrence of phosphosites in the C-terminal regions of proteins, and the localization of phosphorylation events outside protein domains. In addition, a total of 97 highly conserved phosphosites in evolutionary conserved proteins were identified, indicating the conservation of phosphorylation-dependent regulatory mechanisms in phylogenetically distinct plant species. On the other hand, close examination of proteins involved in photosynthesis revealed phosphorylation events which may be unique to Selaginella evolution. Furthermore, phosphorylation motif analyses identified Pro-directed, acidic, and basic signatures which are recognized by typical protein kinases in plants. A group of Selaginella-specific phosphoproteins were found to be enriched in the Pro-directed motif class. CONCLUSIONS Our work provides the first large-scale atlas of phosphoproteins in Selaginella which occupies a unique position in the evolution of terrestrial plants. Future research into the functional roles of Selaginella-specific phosphorylation events in photosynthesis and other processes may offer insight into the molecular mechanisms leading to the distinct evolution of lycophytes.
Collapse
Affiliation(s)
- Xi Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China.,Wuhan Institute of Biotechnology, Wuhan, Hubei, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Fu-Yuan Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Hong Kong, China
| |
Collapse
|
45
|
Nikkanen L, Rintamäki E. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130224. [PMID: 24591711 PMCID: PMC3949389 DOI: 10.1098/rstb.2013.0224] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plants have adopted a number of mechanisms to restore redox homeostasis in the chloroplast under fluctuating light conditions in nature. Chloroplast thioredoxin systems are crucial components of this redox network, mediating environmental signals to chloroplast proteins. In the reduced state, thioredoxins control the structure and function of proteins by reducing disulfide bridges in the redox active site of a protein. Subsequently, an oxidized thioredoxin is reduced by a thioredoxin reductase, the two enzymes together forming a thioredoxin system. Plant chloroplasts have versatile thioredoxin systems, including two reductases dependent on ferredoxin and NADPH as reducing power, respectively, several types of thioredoxins, and the system to deliver thiol redox signals to the thylakoid membrane and lumen. Light controls the activity of chloroplast thioredoxin systems in two ways. First, light reactions activate the thioredoxin systems via donation of electrons to oxidized ferredoxin and NADP+, and second, light induces production of reactive oxygen species in chloroplasts which deactivate the components of the thiol redox network. The diversity and partial redundancy of chloroplast thioredoxin systems enable chloroplast metabolism to rapidly respond to ever-changing environmental conditions and to raise plant fitness in natural growth conditions.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, , Turku 20014, Finland
| | | |
Collapse
|
46
|
Tikkanen M, Gollan PJ, Mekala NR, Isojärvi J, Aro EM. Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130229. [PMID: 24591716 DOI: 10.1098/rstb.2013.0229] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The amount of light energy that is harvested and directed to the photosynthetic machinery is regulated in order to control the production of reactive oxygen species (ROS) in leaf tissues. ROS have important roles as signalling factors that instigate and mediate a range of cellular responses, suggesting that the mechanisms regulating light-harvesting and photosynthetic energy transduction also affect cell signalling. In this study, we exposed wild-type (WT) Arabidopsis and mutants impaired in the regulation of photosynthetic light-harvesting (stn7, tap38 and npq4) to transient high light (HL) stress in order to study the role of these mechanisms for up- and downregulation of gene expression under HL stress. The mutants, all of which have disturbed regulation of excitation energy transfer and distribution, responded to transient HL treatment with surprising similarity to the WT in terms of general 'abiotic stress-regulated' genes associated with hydrogen peroxide and 12-oxo-phytodienoic acid signalling. However, we identified distinct expression profiles in each genotype with respect to induction of singlet oxygen and jasmonic acid-dependent responses. The results of this study suggest that the control of excitation energy transfer interacts with hormonal regulation. Furthermore, the photosynthetic pigment-protein complexes appear to operate as receptors that sense the energetic balance between the photosynthetic light reactions and downstream metabolism.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, , 20014 Turku, Finland
| | | | | | | | | |
Collapse
|
47
|
Flood PJ, Yin L, Herdean A, Harbinson J, Aarts MGM, Spetea C. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130499. [PMID: 24591726 DOI: 10.1098/rstb.2013.0499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University, , Wageningen 6708 PB, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Finazzi G, Minagawa J. High Light Acclimation in Green Microalgae. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Tikkanen M, Aro EM. Integrative regulatory network of plant thylakoid energy transduction. TRENDS IN PLANT SCIENCE 2014; 19:10-7. [PMID: 24120261 DOI: 10.1016/j.tplants.2013.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/02/2013] [Accepted: 09/13/2013] [Indexed: 05/03/2023]
Abstract
Highly flexible regulation of photosynthetic light reactions in plant chloroplasts is a prerequisite to provide sufficient energy flow to downstream metabolism and plant growth, to protect light reactions against photodamage, and to ensure controlled cellular signaling from the chloroplast to the nucleus. Such comprehensive regulation occurs via the control of excitation energy transfer to and between the two photosystems (PSII and PSI), of the electrochemical gradient across the thylakoid membrane (ΔpH), and of electron transfer from PSII to PSI electron acceptors. In this opinion article, we propose that these regulatory mechanisms, functioning at different levels of photosynthetic energy conversion, might be interconnected and describe how the concomitant and integrated function of these mechanisms might enable plants to acclimate to a full array of environmental changes.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
50
|
Cui Z, Wang Y, Zhang A, Zhang L. Regulation of Reversible Dissociation of LHCII from PSII by Phosphorylation in Plants. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.52032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|