1
|
Kobalter S, Wriessnegger T, Pichler H. Engineering yeast for tailored fatty acid profiles. Appl Microbiol Biotechnol 2025; 109:101. [PMID: 40263140 PMCID: PMC12014800 DOI: 10.1007/s00253-025-13487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The demand for sustainable and eco-friendly alternatives to fossil and plant oil-derived chemicals has spurred interest in microbial production of lipids, particularly triacylglycerols, fatty acids, and their derivatives. Yeasts are promising platforms for synthesizing these compounds due to their high lipid accumulation capabilities, robust growth, and generally recognized as safe (GRAS) status. There is vast interest in fatty acid and triacylglycerol products with tailored fatty acid chain lengths and compositions, such as polyunsaturated fatty acids and substitutes for cocoa butter and palm oil. However, microbes naturally produce a limited set of mostly long-chain fatty acids, necessitating the development of microbial cell factories with customized fatty acid profiles. This review explores the capabilities of key enzymes involved in fatty acid and triacylglycerol synthesis, including fatty acid synthases, desaturases, elongases, and acyltransferases. It discusses factors influencing fatty acid composition and presents engineering strategies to enhance fatty acid synthesis. Specifically, we highlight successful engineering approaches to modify fatty acid profiles in triacylglycerols and produce tailored fatty acids, and we offer recommendations for host selection to streamline engineering efforts. KEY POINTS: • Detailed overview on all basic aspects of fatty acid metabolism in yeast • Comprehensive description of fatty acid profile tailoring in yeast • Extensive summary of applying tailored fatty acid profiles in production processes.
Collapse
Affiliation(s)
- Simon Kobalter
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Tamara Wriessnegger
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
2
|
Lysyganicz PK, Barbosa AD, Khondker S, Stewart NA, Carman GM, Stansfeld PJ, Dymond MK, Siniossoglou S. Partitioning of fatty acids between membrane and storage lipids controls ER membrane expansion. EMBO J 2025; 44:781-800. [PMID: 39753951 PMCID: PMC11790888 DOI: 10.1038/s44318-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane. Phospholipid diacylglycerol acyltransferases (PDATs) use endogenous phospholipids as fatty-acyl donors to generate triglyceride stored in lipid droplets. The significance of this non-canonical triglyceride biosynthesis pathway has remained elusive. We find that the activity of the yeast PDAT Lro1 is regulated by a membrane-proximal helical segment facing the luminal side of the ER bilayer. To reveal the biological roles of PDATs, we engineered an Lro1 variant with derepressed activity. We show that active Lro1 mediates retraction of ER membrane expansion driven by phospholipid synthesis. Furthermore, subcellular distribution and membrane turnover activity of Lro1 are controlled by diacylglycerol produced by the activity of Pah1, a conserved member of the lipin family. Collectively, our findings reveal a lipid-metabolic network that regulates endoplasmic reticulum biogenesis by converting phospholipids into storage lipids.
Collapse
Affiliation(s)
- Pawel K Lysyganicz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Shoily Khondker
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Marcus K Dymond
- Centre for Lifelong Health, University of Brighton, Brighton, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
3
|
Song J, Mavraganis I, Shen W, Yang H, Patterson N, Wang L, Xiang D, Cui Y, Zou J. Pistil-derived lipids influence pollen tube growth and male fertility in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:763-772. [PMID: 38917229 DOI: 10.1093/plphys/kiae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
Pollen germination and pollen tube elongation require rapid phospholipid production and remodeling in membrane systems that involve both de novo synthesis and turnover. Phosphatidic acid phosphohydrolase (PAH) and lysophosphatidylcholine acyltransferase (LPCAT) are 2 key enzymes in membrane lipid maintenance. PAH generates diacylglycerol (DAG), a necessary precursor for the de novo synthesis of phosphatidylcholine (PC), while LPCAT reacylates lysophosphatidylcholine to PC and plays an essential role in the remodeling of membrane lipids. In this study, we investigated the synthetic defects of pah and lpcat mutations in sexual reproduction of Arabidopsis (Arabidopsis thaliana) and explored the prospect of pistil lipid provision to pollen tube growth. The combined deficiencies of lpcat and pah led to decreased pollen tube growth in the pistil and reduced male transmission. Interestingly, pistils of the lipid mutant dgat1 ameliorated the male transmission deficiencies of pah lpcat pollen. In contrast, pollination with a nonspecific phospholipase C (NPC) mutant exacerbated the fertilization impairment of the pah lpcat pollen. Given the importance of DAG in lipid metabolism and its contrasting changes in the dgat1 and npc mutants, we further investigated whether DAG supplement in synthetic media could influence pollen performance. DAG was incorporated into phospholipids of germinating pollen and stimulated pollen tube growth. Our study provides evidence that pistil-derived lipids contribute to membrane lipid synthesis in pollen tube growth, a hitherto unknown role in synergistic pollen-pistil interactions.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Ioannis Mavraganis
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Wenyun Shen
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Hui Yang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Liping Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
4
|
Li Q, Xia Z, Wu Y, Ma Y, Zhang D, Wang S, Fan J, Xu P, Li X, Bai L, Zhou X, Xue M. Lysophospholipid acyltransferase-mediated formation of saturated glycerophospholipids maintained cell membrane integrity for hypoxic adaptation. FEBS J 2024; 291:3191-3210. [PMID: 38602252 DOI: 10.1111/febs.17132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Adaptation to hypoxia has attracted much public interest because of its clinical significance. However, hypoxic adaptation in the body is complicated and difficult to fully explore. To explore previously unknown conserved mechanisms and key proteins involved in hypoxic adaptation in different species, we first used a yeast model for mechanistic screening. Further multi-omics analyses in multiple species including yeast, zebrafish and mice revealed that glycerophospholipid metabolism was significantly involved in hypoxic adaptation with up-regulation of lysophospholipid acyltransferase (ALE1) in yeast, a key protein for the formation of dipalmitoyl phosphatidylcholine [DPPC (16:0/16:0)], which is a saturated phosphatidylcholine. Importantly, a mammalian homolog of ALE1, lysophosphatidylcholine acyltransferase 1 (LPCAT1), enhanced DPPC levels at the cell membrane and exhibited the same protective effect in mammalian cells under hypoxic conditions. DPPC supplementation effectively attenuated growth restriction, maintained cell membrane integrity and increased the expression of epidermal growth factor receptor under hypoxic conditions, but unsaturated phosphatidylcholine did not. In agreement with these findings, DPPC treatment could also repair hypoxic injury of intestinal mucosa in mice. Taken together, ALE1/LPCAT1-mediated DPPC formation, a key pathway of glycerophospholipid metabolism, is crucial for cell viability under hypoxic conditions. Moreover, we found that ALE1 was also involved in glycolysis to maintain sufficient survival conditions for yeast. The present study offers a novel approach to understanding lipid metabolism under hypoxia and provides new insights into treating hypoxia-related diseases.
Collapse
Affiliation(s)
- Qiang Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Ma
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Di Zhang
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sihan Wang
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingxin Fan
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lu Bai
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Laquel P, Ayciriex S, Doignon F, Camougrand N, Fougère L, Rocher C, Wattelet-Boyer V, Bessoule JJ, Testet E. Mlg1, a yeast acyltransferase located in ER membranes associated with mitochondria (MAMs), is involved in de novo synthesis and remodelling of phospholipids. FEBS J 2024; 291:2683-2702. [PMID: 38297966 DOI: 10.1111/febs.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.
Collapse
Affiliation(s)
- Patricia Laquel
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | - Sophie Ayciriex
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ISA, UMR 5280, Villeurbanne, France
| | | | | | - Louise Fougère
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | | | | | | | - Eric Testet
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
- Bordeaux INP, LBM, UMR 5200, Villenave d'Ornon, France
| |
Collapse
|
6
|
Barbosa AD, Siniossoglou S. Membranes that make fat: roles of membrane lipids as acyl donors for triglyceride synthesis and organelle function. FEBS Lett 2024; 598:1226-1234. [PMID: 38140812 DOI: 10.1002/1873-3468.14793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Triglycerides constitute an inert storage form for fatty acids deposited in lipid droplets and are mobilized to provide metabolic energy or membrane building blocks. The biosynthesis of triglycerides is highly conserved within eukaryotes and normally involves the sequential esterification of activated fatty acids with a glycerol backbone. Some eukaryotes, however, can also use cellular membrane lipids as direct fatty acid donors for triglyceride synthesis. The biological significance of a pathway that generates triglycerides at the expense of organelle membranes has remained elusive. Here we review current knowledge on how cells use membrane lipids as fatty acid donors for triglyceride synthesis and discuss the hypothesis that a primary function of this pathway is to regulate membrane lipid remodeling and organelle function.
Collapse
Affiliation(s)
- Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | | |
Collapse
|
7
|
You L, Połońska A, Jasieniecka-Gazarkiewicz K, Richard F, Jouhet J, Maréchal E, Banaś A, Hu H, Pan Y, Hao X, Jin H, Allen AE, Amato A, Gong Y. Two plastidial lysophosphatidic acid acyltransferases differentially mediate the biosynthesis of membrane lipids and triacylglycerols in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1543-1558. [PMID: 38031462 DOI: 10.1111/nph.19434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT. In vitro enzyme assays showed that they prefer lysophosphatidic acid over other lysophospholipids. ptATS2a is localized in the plastid inner envelope membrane and CRISPR/Cas9-generated ptATS2a mutants showed compromised cell growth, significantly changed plastid and extra-plastidial membrane lipids at nitrogen-replete condition and reduced triacylglycerols (TAGs) under nitrogen-depleted condition. ptATS2b is localized in thylakoid membranes and its knockout led to reduced growth rate and TAG content but slightly altered molecular composition of membrane lipids. The changes in glycerolipid profiles are consistent with the role of both LPAATs in the sn-2 acylation of sn-1-acyl-glycerol-3-phosphate substrates harboring 20:5 at the sn-1 position. Our findings suggest that both LPAATs are important for membrane lipids and TAG biosynthesis in P. tricornutum and further highlight that 20:5-Lyso-PA is likely involved in the massive import of 20:5 back to the plastid to feed plastid glycerolipid syntheses.
Collapse
Affiliation(s)
- Lingjie You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ada Połońska
- Intercollegiate Faculty of Biotechnology of UG and MUG, Gdansk, 80-307, Poland
| | | | - Fabien Richard
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology of UG and MUG, Gdansk, 80-307, Poland
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiahui Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041, Grenoble, France
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
8
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
9
|
Kwiatek JM, Gutierrez B, Izgu EC, Han GS, Carman GM. Phosphatidic Acid Mediates the Nem1-Spo7/Pah1 Phosphatase Cascade in Yeast Lipid Synthesis. J Lipid Res 2022; 63:100282. [PMID: 36314526 PMCID: PMC9587005 DOI: 10.1016/j.jlr.2022.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the PAH1-encoded Mg2+-dependent phosphatidate (PA) phosphatase Pah1 regulates the bifurcation of PA to diacylglycerol (DAG) for triacylglycerol (TAG) synthesis and to CDP-DAG for phospholipid synthesis. Pah1 function is mainly regulated via control of its cellular location by phosphorylation and dephosphorylation. Pah1 phosphorylated by multiple protein kinases is sequestered in the cytosol apart from its substrate PA in the membrane. The phosphorylated Pah1 is then recruited and dephosphorylated by the protein phosphatase complex Nem1 (catalytic subunit)-Spo7 (regulatory subunit) in the endoplasmic reticulum. The dephosphorylated Pah1 hops onto and scoots along the membrane to recognize PA for its dephosphorylation to DAG. Here, we developed a proteoliposome model system that mimics the Nem1-Spo7/Pah1 phosphatase cascade to provide a tool for studying Pah1 regulation. Purified Nem1-Spo7 was reconstituted into phospholipid vesicles prepared in accordance with the phospholipid composition of the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7 phosphatase reconstituted in the proteoliposomes, which were measured 60 nm in an average diameter, was catalytically active on Pah1 phosphorylated by Pho85-Pho80, and its active site was located at the external side of the phospholipid bilayer. Moreover, we determined that PA stimulated the Nem1-Spo7 activity, and the regulatory effect was governed by the nature of the phosphate headgroup but not by the fatty acyl moiety of PA. The reconstitution system for the Nem1-Spo7/Pah1 phosphatase cascade, which starts with the phosphorylation of Pah1 by Pho85-Pho80 and ends with the production of DAG, is a significant advance to understand a regulatory cascade in yeast lipid synthesis.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Bryan Gutierrez
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Enver Cagri Izgu
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
10
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
11
|
Ding J, Ruan C, Guan Y, Li H, Du W, Lu S, Wen X, Tang K, Chen Y. Nontargeted metabolomic and multigene expression analyses reveal the mechanism of oil biosynthesis in sea buckthorn berry pulp rich in palmitoleic acid. Food Chem 2021; 374:131719. [PMID: 34875440 DOI: 10.1016/j.foodchem.2021.131719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022]
Abstract
Sea buckthorn berry pulp (SBP) oil is abundant in palmitoleic acid (C16:1). However, metabolic mechanisms of oil biosynthesis in SBP (non-seed tissues) are not clear. Thus, comparative nontargeted metabolomic analysis of the four developmental stages of berry pulp in two lines, Za56 and TF2-36, was performed. The results revealed that glycerol-3-phosphate (G3P) was critical for high oil accumulation in the mid-early developmental stages. In particular, the metabolism of phosphatidylcholine (PC) (16:0/16:0), PC (16:0/16:1), and PC (16:1/16:1) was also significantly altered. Sufficient supply of G3P and 16:1-CoA, coupled with upregulated expression of the glycerol-3-phosphate dehydrogenase (GPD1) and delta-9 desaturase (Δ9D) genes, were associated with high oil content enriched in C16:1 in SBP. Our results provide a scientific basis for the development of metabolic engineering strategies to increase the oil content in SBP with a high level of C16:1.
Collapse
Key Words
- Berry pulp oil
- Choline, PubChem CID: 305
- Gene expression
- Glycerol, PubChem CID: 753
- Glycerol-3-phosphate
- Glycerol-3-phosphate, PubChem CID: 754
- Glycerophosphocholine, PubChem CID: 439285
- Lysophosphatidycholine (16:0), PubChem CID: 10097314
- Nontargeted metabolomics
- Palmitic acid, PubChem CID: 985
- Palmitoleic acid
- Palmitoleic acid, PubChem CID: 445638
- Phosphatidylcholine (16: 1/16: 1), PubChem CID: 24778764
- Phosphatidylcholine (16:0/160), PubChem CID: 3032281
- Phosphatidylcholine (16:0/161), PubChem CID: 6443788
- Sea buckthorn
Collapse
Affiliation(s)
- Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China.
| | - Ying Guan
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Shunguang Lu
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing 100000, China
| | - Xiufeng Wen
- Management Center of Seabuckthorn Development, Ministry of Water Resources, Beijing 100000, China
| | - Ke Tang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ye Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
12
|
Iwai M, Yamada-Oshima Y, Asami K, Kanamori T, Yuasa H, Shimojima M, Ohta H. Recycling of the major thylakoid lipid MGDG and its role in lipid homeostasis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2021; 187:1341-1356. [PMID: 34618048 PMCID: PMC8566231 DOI: 10.1093/plphys/kiab340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 06/01/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG), the most abundant lipid in thylakoid membranes, is involved in photosynthesis and chloroplast development. MGDG lipase has an important role in lipid remodeling in Chlamydomonas reinhardtii. However, the process related to turnover of the lysogalactolipid that results from MGDG degradation, monogalactosylmonoacylglycerol (MGMG), remains to be clarified. Here we identified a homolog of Arabidopsis thaliana lysophosphatidylcholine acyltransferase (LPCAT) and characterized two independent knockdown (KD) alleles in C. reinhardtii. The enzyme designated as C. reinhardtiiLysolipid Acyltransferase 1 (CrLAT1) has a conserved membrane-bound O-acyl transferase domain. LPCAT from Arabidopsis has a key role in deacylation of phosphatidylcholine (PC). Chlamydomonas reinhardtii, however, lacks PC, and thus we hypothesized that CrLAT1 has some other important function in major lipid flow in this organism. In the CrLAT1 KD mutants, the amount of MGMG was increased, but triacylglycerols (TAGs) were decreased. The proportion of more saturated 18:1 (9) MGDG was lower in the KD mutants than in their parental strain, CC-4533. In contrast, the proportion of MGMG has decreased in the CrLAT1 overexpression (OE) mutants, and the proportion of 18:1 (9) MGDG was higher in the OE mutants than in the empty vector control cells. Thus, CrLAT1 is involved in the recycling of MGDG in the chloroplast and maintains lipid homeostasis in C. reinhardtii.
Collapse
Affiliation(s)
- Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yui Yamada-Oshima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kota Asami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
13
|
Gopalam R, Datey A, Bijoor S, Chakravortty D, Tumaney AW. Biochemical Characterization of Acyl-CoA: Lysophosphatidylcholine Acyltransferase (LPCAT) Enzyme from the Seeds of Salvia hispanica. Mol Biotechnol 2021; 63:963-972. [PMID: 34129179 DOI: 10.1007/s12033-021-00354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
Salvia hispanica (chia) is the highest reported terrestrial plant source of alpha-linolenic acid (ALA, ~ 65%), an ω-3 polyunsaturated fatty acid with numerous health benefits. The molecular basis of high ALA accumulation in chia is yet to be understood. We have identified lysophosphatidylcholine acyltransferase (LPCAT) gene from the developing seed transcriptome data of chia and carried out its biochemical characterization through heterologous expression in Saccharomyces cerevisiae. Expression profiling showed that the enzyme was active throughout the seed development, indicating a pivotal role in oil biosynthesis. The enzyme could utilize both saturated and unsaturated lysophosphatidylcholine substrates at the same rate, to synthesize phosphatidylcholine (PC). The enzyme also exhibited lysophosphatidic acid acyltransferase (LPAAT) activity, by preferring lysophosphatidic acid substrate. Substrate specificity studies showed that the enzyme preferred both monounsaturated and polyunsaturated fatty acyl CoAs over saturated CoAs. This activity may play a key role in enriching the PC fraction with polyunsaturated fatty acids (PUFAs). PUFAs present on PC can be transferred to oil through the action of other acyltransferases. Our results describe a new LPCAT enzyme that can be used to biotechnologically alter oilseed crops to incorporate more PUFA in its seed oil.
Collapse
Affiliation(s)
- Rahul Gopalam
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Sharath Bijoor
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Ajay W Tumaney
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Athenstaedt K. Phosphatidic acid biosynthesis in the model organism yeast Saccharomyces cerevisiae - a survey. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158907. [PMID: 33610760 PMCID: PMC7613133 DOI: 10.1016/j.bbalip.2021.158907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Phosphatidic acid biosynthesis represents the initial part of de novo formation of all glycerophospholipids (membrane lipids) as well as triacylglycerols (storage lipids), and is thus the centerpiece of glycerolipid metabolism. The universal route of phosphatidic acid biosynthesis starts from the precursor glycerol-3-phosphate and comprises two consecutive acylation reactions which are catalyzed by a glycerol-3-phosphate acyltransferase and a 1-acyl glycerol-3-phosphate acyltransferase. In addition, yeast and mammals harbor a set of enzymes which can synthesize phosphatidic acid from the precursor dihydroxyacetone phosphate. In the present review our current knowledge about enzymes contributing to phosphatidic acid biosynthesis in the invaluable model organism yeast, Saccharomyces cerevisiae, is summarized. A special focus is laid upon the regulation and the localization of these enzymes. Furthermore, research needs for a deeper insight into the high complexity of phosphatidic acid biosynthesis and consequently the entire lipid metabolic network is presented.
Collapse
Affiliation(s)
- Karin Athenstaedt
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/2, 8010 Graz, Austria.
| |
Collapse
|
15
|
Meesapyodsuk D, Chen Y, Ye S, Chapman RG, Qiu X. Co-expressing Eranthis hyemalis lysophosphatidic acid acyltransferase 2 and elongase improves two very long chain polyunsaturated fatty acid production in Brassica carinata. Metab Eng Commun 2021; 12:e00171. [PMID: 34026531 PMCID: PMC8129929 DOI: 10.1016/j.mec.2021.e00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Docosadienoic acid (DDA, 22:2–13,16) and docosatrienoic acid (DTA, 22:3–13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant Eranthis hyemalis can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop Brassica carinata produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the sn-2 position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the sn-2 position of triacylglycerols was identified from E. hyemalis. RT-PCR analysis showed that it was preferentially expressed in developing seeds where EhELO1 was exclusively expressed in E. hyemalis. Seed specific expression of EhLPAAT2 along with EhELO1 in B. carinata resulted in the effective incorporation of DDA and DTA at the sn-2 position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses. The first plant LPAAT able to acylate VLCPUFAs was identified from winter aconite. It could complement the defective phenotype of E. coli LPAAT mutant. It could improve the incorporation of two VLCPUFAs into TAGs in oilseeds. It could enhance the total production of two VLCPUFAs in oilseeds. Seed-specific expression of it could also increase seed oil and seed weight.
Collapse
Affiliation(s)
| | - Yi Chen
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shengjian Ye
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Xiao Qiu
- National Research Council Canada, Saskatoon, Saskatchewan, Canada.,Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Jeucken A, Molenaar MR, van de Lest CHA, Jansen JWA, Helms JB, Brouwers JF. A Comprehensive Functional Characterization of Escherichia coli Lipid Genes. Cell Rep 2020; 27:1597-1606.e2. [PMID: 31042483 DOI: 10.1016/j.celrep.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid membranes are the border between living cells and their environments. The membrane's lipid composition defines fluidity, thickness, and protein activity and is controlled by the intricate actions of lipid gene-encoded enzymes. However, a comprehensive analysis of each protein's contribution to the lipidome is lacking. Here, we present such a comprehensive and functional overview of lipid genes in Escherichia coli by individual overexpression or deletion of these genes. We developed a high-throughput lipidomic platform, combining growth analysis, one-step lipid extraction, rapid LC-MS, and bioinformatic analysis into one streamlined procedure. This allowed the processing of more than 300 samples per day and revealed interesting functions of known enzymes and distinct effects of individual proteins on the phospholipidome. Our data demonstrate the plasticity of the phospholipidome and unexpected relations between lipid classes and cell growth. Modeling of lipidomic responses to short-chain alcohols provides a rationale for targeted membrane engineering.
Collapse
Affiliation(s)
- Aike Jeucken
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Martijn R Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Chris H A van de Lest
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands.
| |
Collapse
|
17
|
Chen L, Ma WL, Cheng WC, Yang JC, Wang HC, Su YT, Ahmad A, Hung YC, Chang WC. Targeting lipid droplet lysophosphatidylcholine for cisplatin chemotherapy. J Cell Mol Med 2020; 24:7187-7200. [PMID: 32543783 PMCID: PMC7339169 DOI: 10.1111/jcmm.15218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
This study aims to explore lipidic mechanism towards low‐density lipoprotein receptor (LDLR)‐mediated platinum chemotherapy resistance. By using the lipid profiling technology, LDLR knockdown was found to increase lysosomal lipids and decrease membranous lipid levels in EOC cells. LDLR knockdown also down‐regulated ether‐linked phosphatidylethanolamine (PE‐O, lysosomes or peroxisomes) and up‐regulated lysophosphatidylcholine [LPC, lipid droplet (LD)]. This implies that the manner of using Lands cycle (conversion of lysophospholipids) for LDs might affect cisplatin sensitivity. The bioinformatics analyses illustrated that LDLR‐related lipid entry into LD, rather than an endogenous lipid resource (eg Kennedy pathway), controls the EOC prognosis of platinum chemotherapy patients. Moreover, LDLR knockdown increased the number of platinum‐DNA adducts and reduced the LD platinum amount. By using a manufactured LPC‐liposome‐cisplatin (LLC) drug, the number of platinum‐DNA adducts increased significantly in LLC‐treated insensitive cells. Moreover, the cisplatin content in LDs increased upon LLC treatment. Furthermore, lipid profiles of 22 carcinoma cells with differential cisplatin sensitivity (9 sensitive vs 13 insensitive) were acquired. These profiles revealed low storage lipid levels in insensitive cells. This result recommends that LD lipidome might be a common pathway in multiple cancers for platinum sensitivity in EOC. Finally, LLC suppressed both cisplatin‐insensitive human carcinoma cell training and testing sets. Thus, LDLR‐platinum insensitivity can be due to a defective Lands cycle that hinders LPC production in LDs. Using lipidome assessment with the newly formulated LLC can be a promising cancer chemotherapy method.
Collapse
Affiliation(s)
- Lumin Chen
- Department of OBS & GYN, BenQ Medical Center, Suzhou, China.,Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Hsiao-Ching Wang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ting Su
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Azaj Ahmad
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Mapelli-Brahm A, Sánchez R, Pan X, Moreno-Pérez AJ, Garcés R, Martínez-Force E, Weselake RJ, Salas JJ, Venegas-Calerón M. Functional Characterization of Lysophosphatidylcholine: Acyl-CoA Acyltransferase Genes From Sunflower ( Helianthus annuus L.). FRONTIERS IN PLANT SCIENCE 2020; 11:403. [PMID: 32351524 PMCID: PMC7176023 DOI: 10.3389/fpls.2020.00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
Lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) is an evolutionarily conserved key enzyme in the Lands cycle that catalyzes acylation of lysophosphatidylcholine (LPC) to produce phosphatidylcholine (PC), the main phospholipid in cellular membranes. In this study, three LPCAT genes from sunflower were identified and the corresponding proteins characterized. These HaLPCAT genes encoded functionally active enzymes that were able to complement a deficient yeast mutant. Moreover, enzymatic assays were carried out using microsomal preparations of the yeast cells. When acyl specificities were measured in the forward reaction, these enzymes exhibited a substrate preference for unsaturated acyl-CoAs, especially for linolenoyl-CoA, while in the reverse reaction, linoleoyl or linolenoyl acyl groups were transferred from PC to acyl-CoA to a similar extent. Expression levels of LPCAT genes were studied revealing distinct tissue-specific expression patterns. In summary, this study suggests that the combined forward and reverse reactions catalyzed by sunflower LPCATs facilitate acyl-exchange between the sn-2 position of PC and the acyl-CoA pool. Sunflower LPCATs displayed different characteristics, which could point to different functionalities, favoring the enrichment of seed triacylglycerols (TAGs) with polyunsaturated fatty acid (PUFA).
Collapse
Affiliation(s)
- Ana Mapelli-Brahm
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada
| | - Rosario Sánchez
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Xue Pan
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada
| | | | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | | | - Randall J. Weselake
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada
| | - Joaquín J. Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
- *Correspondence: Joaquín J. Salas,
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Mónica Venegas-Calerón,
| |
Collapse
|
19
|
Patton-Vogt J, de Kroon AIPM. Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158462. [PMID: 31146038 PMCID: PMC10716787 DOI: 10.1016/j.bbalip.2019.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
The turnover of phospholipids plays an essential role in membrane lipid homeostasis by impacting both lipid head group and acyl chain composition. This review focusses on the degradation and acyl chain remodeling of the major phospholipid classes present in the ER membrane of the reference eukaryote Saccharomyces cerevisiae, i.e. phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Phospholipid turnover reactions are introduced, and the occurrence and important functions of phospholipid remodeling in higher eukaryotes are briefly summarized. After presenting an inventory of established mechanisms of phospholipid acyl chain exchange, current knowledge of phospholipid degradation and remodeling by phospholipases and acyltransferases localized to the yeast ER is summarized. PC is subject to the PC deacylation-reacylation remodeling pathway (PC-DRP) involving a phospholipase B, the recently identified glycerophosphocholine acyltransferase Gpc1p, and the broad specificity acyltransferase Ale1p. PI is post-synthetically enriched in C18:0 acyl chains by remodeling reactions involving Cst26p. PE may undergo turnover by the phospholipid: diacylglycerol acyltransferase Lro1p as first step in acyl chain remodeling. Clues as to the functions of phospholipid acyl chain remodeling are discussed.
Collapse
Affiliation(s)
- Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anton I P M de Kroon
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Zhao X, Qiu X. Very Long Chain Polyunsaturated Fatty Acids Accumulated in Triacylglycerol Are Channeled From Phosphatidylcholine in Thraustochytrium. Front Microbiol 2019; 10:645. [PMID: 30972054 PMCID: PMC6446058 DOI: 10.3389/fmicb.2019.00645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrium is a marine protist that can accumulate a large amount of very long chain polyunsaturated fatty acids (VLCPUFA) in triacylglycerols (TAG). How these freshly synthesized VLCPUFAs are channeled into TAG remains unknown. In this study, the glycerolipid profile of Thraustochytrium at log and stationary growth stages was first analyzed by lipidomic tools, and then 14C-acetate and 14C-glycerol were used to trace the flux of fatty acids and backbone in glycerolipids. Lipidomic analysis showed that VLCPUFAs were mostly allocated to phosphatidylcholine (PC) and TAG. PC possessed a relatively stable profile of VLCPUFAs, whereas TAG carrying VLCPUFAs were significantly increased at the stationary phase. 14C-acetate labeled VLCPUFAs were predominately incorporated into PC initially but were mostly found in TAG at later time of labeling. Positional analysis showed that PC had either one VLCPUFA at its sn-2 position (PC1) or two VLCPUFAs (PC2), while TAG incorporated VLCPUFAs almost exclusively at the sn-2 position. Similarly, 14C-glycerol was more efficiently incorporated into PC1 than TAG initially but was mostly found in TAG at later time of labeling, and diacylglycerol and PC1 shared a similar incorporation pattern. These results indicate that VLCPUFAs in TAG are mainly channeled from PC likely through diacylglycerol as the intermediate.
Collapse
Affiliation(s)
| | - Xiao Qiu
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Genetically Compromising Phospholipid Metabolism Limits Candida albicans' Virulence. Mycopathologia 2019; 184:213-226. [PMID: 30693413 DOI: 10.1007/s11046-019-00320-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/19/2019] [Indexed: 01/06/2023]
Abstract
Perturbing ergosterol synthesis has been previously shown to reduce the virulence of Candida albicans. We tested the hypothesis that further altering cell membrane composition by limiting phospholipid synthesis or remodeling will have the same effect. To model partial inhibition, C. albicans strains independently harboring heterozygous deletion of four genes that encode for enzymes that mediate phospholipid synthesis or modification were generated. Quantitative PCR determined that heterozygous deletion routinely caused a nearly 50% reduction in the respective gene's transcript abundance. Compensatory increased transcript abundance was only found with the deletion of LRO1, a homolog of phospholipid diacylglycerol acyltransferases. Virulence of the mutants was assayed in a Caenorhabditis elegans host model. Even modestly reduced expression of LRO1, phosphatidylserine synthase (CHO1), and lysophospholipid acyltransferase (LPT1) significantly reduced virulence by 23-38%. Reintroducing a second functional allele, respectively, to all three mutants restored virulence. Heterozygous deletion of SLC1, a homolog of 1-acylglycerol-3-phosphate O-acyltransferases, did not significantly reduce virulence. Electrospray ionization tandem mass spectrometry analysis of phospholipid composition followed by principal component analysis identified comprehensive changes in the LRO1 and CHO1 deletion heterozygotes. Strikingly (p < 0.001), univariate comparisons found that both deletion heterozygotes had 20% more phosphatidylinositol, 75% less lysophosphatidylcholine, and 35% less lysophosphatidylethanolamine compared to wild type. Heterozygous deletion of LPT1 also significantly increased phosphatidylinositol abundance. No growth phenotype, including filamentation, was affected by any mutation. Together, these data predict that even partial pharmacological inhibition of Lro1p, Cho1p, and Lpt1p will limit C. albicans virulence through altering phospholipid composition.
Collapse
|
22
|
Anaokar S, Kodali R, Jonik B, Renne MF, Brouwers JFHM, Lager I, de Kroon AIPM, Patton-Vogt J. The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. J Biol Chem 2018; 294:1189-1201. [PMID: 30514764 DOI: 10.1074/jbc.ra118.005232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Phospholipase B-mediated hydrolysis of phosphatidylcholine (PC) results in the formation of free fatty acids and glycerophosphocholine (GPC) in the yeast Saccharomyces cerevisiae GPC can be reacylated by the glycerophosphocholine acyltransferase Gpc1, which produces lysophosphatidylcholine (LPC), and LPC can be converted to PC by the lysophospholipid acyltransferase Ale1. Here, we further characterized the regulation and function of this distinct PC deacylation/reacylation pathway in yeast. Through in vitro and in vivo experiments, we show that Gpc1 and Ale1 are the major cellular GPC and LPC acyltransferases, respectively. Importantly, we report that Gpc1 activity affects the PC species profile. Loss of Gpc1 decreased the levels of monounsaturated PC species and increased those of diunsaturated PC species, whereas Gpc1 overexpression had the opposite effects. Of note, Gpc1 loss did not significantly affect phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine profiles. Our results indicate that Gpc1 is involved in postsynthetic PC remodeling that produces more saturated PC species. qRT-PCR analyses revealed that GPC1 mRNA abundance is regulated coordinately with PC biosynthetic pathways. Inositol availability, which regulates several phospholipid biosynthetic genes, down-regulated GPC1 expression at the mRNA and protein levels and, as expected, decreased levels of monounsaturated PC species. Finally, loss of GPC1 decreased stationary phase viability in inositol-free medium. These results indicate that Gpc1 is part of a postsynthetic PC deacylation/reacylation remodeling pathway (PC-DRP) that alters the PC species profile, is regulated in coordination with other major lipid biosynthetic pathways, and affects yeast growth.
Collapse
Affiliation(s)
- Sanket Anaokar
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Ravindra Kodali
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Benjamin Jonik
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jana Patton-Vogt
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
23
|
Morisada S, Ono Y, Kodaira T, Kishino H, Ninomiya R, Mori N, Watanabe H, Ohta A, Horiuchi H, Fukuda R. The membrane‐bound
O
‐acyltransferase Ale1 transfers an acyl moiety to newly synthesized 2‐alkyl‐
sn
‐glycero‐3‐phosphocholine in yeast. FEBS Lett 2018; 592:1829-1836. [DOI: 10.1002/1873-3468.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Shiho Morisada
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Yusuke Ono
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Teruhisa Kodaira
- Department of Applied Biological Chemistry The University of Tokyo Bunkyo‐ku Japan
| | - Hideyuki Kishino
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Ryo Ninomiya
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| | - Naoki Mori
- Department of Applied Biological Chemistry The University of Tokyo Bunkyo‐ku Japan
| | - Hidenori Watanabe
- Department of Applied Biological Chemistry The University of Tokyo Bunkyo‐ku Japan
| | - Akinori Ohta
- Department of Biological Chemistry College of Bioscience and Biotechnology Chubu University Kasugai Japan
| | | | - Ryouichi Fukuda
- Department of Biotechnology The University of Tokyo Bunkyo‐ku Japan
| |
Collapse
|
24
|
Oelkers P, Pokhrel K. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae. Lipid Insights 2016; 9:31-41. [PMID: 27920551 PMCID: PMC5127605 DOI: 10.4137/lpi.s40597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths.
Collapse
Affiliation(s)
- Peter Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, USA
| |
Collapse
|
25
|
Renne MF, Bao X, De Smet CH, de Kroon AIPM. Lipid Acyl Chain Remodeling in Yeast. Lipid Insights 2016; 8:33-40. [PMID: 26819558 PMCID: PMC4720183 DOI: 10.4137/lpi.s31780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/21/2015] [Indexed: 11/05/2022] Open
Abstract
Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.; Present address: Division of Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Anton I P M de Kroon
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
26
|
Zhang D, Jasieniecka-Gazarkiewicz K, Wan X, Luo L, Zhang Y, Banas A, Jiang M, Gong Y. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana. PLoS One 2015; 10:e0144653. [PMID: 26684752 PMCID: PMC4684200 DOI: 10.1371/journal.pone.0144653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid acyltransferases from N. benthamiana.
Collapse
Affiliation(s)
- Donghui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | | | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yinbo Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Antoni Banas
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80–822, Gdansk, Poland
| | - Mulan Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
27
|
Jasieniecka-Gazarkiewicz K, Demski K, Lager I, Stymne S, Banaś A. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids. Lipids 2015; 51:15-23. [PMID: 26643989 PMCID: PMC4700060 DOI: 10.1007/s11745-015-4102-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/12/2015] [Indexed: 12/02/2022]
Abstract
Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiaeale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme.
Collapse
Affiliation(s)
| | - Kamil Demski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822, Gdańsk, Poland
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822, Gdańsk, Poland.
| |
Collapse
|
28
|
Renauer P, Nasiri N, Oelkers P. Saccharomyces cerevisiae lysophospholipid acyltransferase, Lpt1, requires Asp146 and Glu297 for catalysis. J Lipid Res 2015; 56:2143-50. [PMID: 26382650 DOI: 10.1194/jlr.m062141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/20/2022] Open
Abstract
The esterification of lysophospholipids contributes to phospholipid synthesis, remodeling, and scavenging. Acyl-CoA-dependent lysophospholipid acyltransferase activity with broad substrate use is mediated by Saccharomyces cerevisiae Lpt1p. We sought to identify Lpt1p active site amino acids besides the histidine conserved among homologs and repeatedly found to be required for catalysis. In vitro Lpt1p assays with amino acid modifying agents implicated aspartate, glutamate, and lysine as active site residues. Threonine and tyrosine were not ruled out. Aligning the primary structures of functionally characterized LPT1 homologs from fungi, plants, and animals identified 11 conserved aspartate, glutamate, lysine, threonine, and tyrosine residues. Site-directed mutagenesis of the respective codons showed that changing D146 and E297 abolished activity without abolishing protein expression. The mechanism of Lpt1p was further analyzed using monounsaturated acyl-CoA species with different double bond positions. Delta 6 species showed the highest catalytic efficiency. We propose that D146 and E297 act in conjunction with H382 as nucleophiles that attack the hydroxyl group in lysophospholipids in a general acid/base mechanism. This sequential mechanism provides a precedent for other members of the membrane bound O-acyltransferase family. Also, Lpt1p optimally orients acyl-CoA substrates with 7.5 Å between a double bond and the thioester bond.
Collapse
Affiliation(s)
- Paul Renauer
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128
| | - Nour Nasiri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128
| | - Peter Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128
| |
Collapse
|
29
|
Pan X, Chen G, Kazachkov M, Greer MS, Caldo KMP, Zou J, Weselake RJ. In Vivo and in Vitro Evidence for Biochemical Coupling of Reactions Catalyzed by Lysophosphatidylcholine Acyltransferase and Diacylglycerol Acyltransferase. J Biol Chem 2015; 290:18068-18078. [PMID: 26055703 DOI: 10.1074/jbc.m115.654798] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
Seed oils of flax (Linum usitatissimum L.) and many other plant species contain substantial amounts of polyunsaturated fatty acids (PUFAs). Phosphatidylcholine (PC) is the major site for PUFA synthesis. The exact mechanisms of how these PUFAs are channeled from PC into triacylglycerol (TAG) needs to be further explored. By using in vivo and in vitro approaches, we demonstrated that the PC deacylation reaction catalyzed by the reverse action of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) can transfer PUFAs on PC directly into the acyl-CoA pool, making these PUFAs available for the diacylglycerol acyltransferase (DGAT)-catalyzed reaction for TAG production. Two types of yeast mutants were generated for in vivo and in vitro experiments, respectively. Both mutants provide a null background with no endogenous TAG forming capacity and an extremely low LPCAT activity. In vivo experiments showed that co-expressing flax DGAT1-1 and LPCAT1 in the yeast quintuple mutant significantly increased 18-carbon PUFAs in TAG with a concomitant decrease of 18-carbon PUFAs in phospholipid. We further showed that after incubation of sn-2-[(14)C]acyl-PC, formation of [(14)C]TAG was only possible with yeast microsomes containing both LPCAT1 and DGAT1-1. Moreover, the specific activity of overall LPCAT1 and DGAT1-1 coupling process exhibited a preference for transferring (14)C-labeled linoleoyl or linolenoyl than oleoyl moieties from the sn-2 position of PC to TAG. Together, our data support the hypothesis of biochemical coupling of the LPCAT1-catalyzed reverse reaction with the DGAT1-1-catalyzed reaction for incorporating PUFAs into TAG. This process represents a potential route for enriching TAG in PUFA content during seed development in flax.
Collapse
Affiliation(s)
- Xue Pan
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Michael Kazachkov
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Michael S Greer
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Randall J Weselake
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
30
|
Wang L, Kazachkov M, Shen W, Bai M, Wu H, Zou J. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:965-76. [PMID: 25268378 DOI: 10.1111/tpj.12683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.
Collapse
Affiliation(s)
- Liping Wang
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Prog Lipid Res 2014; 56:19-35. [PMID: 25107699 DOI: 10.1016/j.plipres.2014.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/14/2014] [Indexed: 12/28/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have received growing attention due to their significant roles in human health. Currently the main source of these nutritionally and medically important fatty acids is marine fish, which has not met ever-increasing global demand. Microorganisms are an important alternative source also being explored. Although many microorganisms accumulate omega-3 LC-PUFAs naturally, metabolic engineering might still be necessary for significantly improving their yields. Here, we review recent research involving the engineering of microorganisms for production of omega-3 LC-PUFAs, including eicospentaenoic acid and docosohexaenoic acid. Both reconstitution of omega-3 LC-PUFA biosynthetic pathways and modification of existing pathways in microorganisms have demonstrated the potential to produce high levels of omega-3 LC-PUFAs. However, the yields of omega-3 LC-PUFAs in host systems have been substantially limited by potential metabolic bottlenecks, which might be caused partly by inefficient flux of fatty acid intermediates between the acyl-CoA and different lipid class pools. Although fatty acid flux in both native and heterologous microbial hosts might be controlled by several acyltransferases, evidence has suggested that genetic manipulation of one acyltransferase alone could significantly increase the accumulation of LC-PUFAs. The number of oleaginous microorganisms that can be genetically transformed is increasing, which will advance engineering efforts to maximize LC-PUFA yields in microbial strains.
Collapse
|
32
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
33
|
Kishino H, Eguchi H, Takagi K, Horiuchi H, Fukuda R, Ohta A. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis. Biochem Biophys Res Commun 2014; 445:289-93. [PMID: 24491568 DOI: 10.1016/j.bbrc.2014.01.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of (13)C-labeled diC8PC ((methyl-(13)C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-(13)C)3-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.
Collapse
Affiliation(s)
- Hideyuki Kishino
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Eguchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiko Takagi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
34
|
Characterization of a lysophospholipid acyltransferase involved in membrane remodeling in Candida albicans. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:505-13. [PMID: 24406902 DOI: 10.1016/j.bbalip.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/08/2013] [Accepted: 12/30/2013] [Indexed: 11/22/2022]
Abstract
Phospholipid remodeling involves phospholipase activity to remove acyl chains and acyltransferases to replace acyl chains. We here describe the characterization of a lysophospholipid acyltransferase in the opportunistic fungal pathogen, Candida albicans. Expression of this gene, C.a. LPT1, complemented the lysophospholipid acyltransferase defect in Saccharomyces cerevisiae strains lacking the homologous LPT1 gene. In vitro, lysophospholipid acyltransferase activity in these strains showed acyl-CoA substrate specificity, as measured by apparent Vmax/Km ratios, to be linolenoyl-CoA>oleoyl-CoA>linoleoyl-CoA>stearoyl-CoA. To address the physiological importance of C.a. LPT1, homozygous deletion strains were generated. Lysophospholipid acyltransferase activity with amine containing lysophospholipids was dramatically reduced while lysophosphatidylinositol and lysophosphatidic acid esterification was not significantly lowered. However, C.a. LPT1 over-expression yielded an increased amount of lysophosphatidic acyltransferase activity, suggesting a role in de novo phospholipid synthesis. LPT1 deletion strains showed slightly slowed growth in standard liquid media but no phenotype in media containing three antifungals that target sterols. To assess the role of C.a. Lpt1 in phospholipid remodeling, an in vivo, pulse-chase assay utilizing polysorbitan palmitate and mass spectrometry was developed. Cellular phospholipid composition became atypical with the provision of palmitate and gradually returned to the typical distribution when palmitate was removed. Deletion of C.a. LPT1 showed a modest yet significant effect on remodeling under these conditions.
Collapse
|
35
|
Wang P, Wang Z, Dou Y, Zhang X, Wang M, Tian X. Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants. PLANTA 2013; 238:907-22. [PMID: 23928653 DOI: 10.1007/s00425-013-1939-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/23/2013] [Indexed: 05/05/2023]
Abstract
Membrane bound O-acyl transferase (MBOAT) family is composed of gene members encoding a variety of acyltransferase enzymes, which play important roles in plant acyl lipid metabolism. Here, we present the first genome-enabled identification and analysis of MBOAT gene models in plants. In total, we identified 136 plant MBOAT sequences from 14 plant species with complete genomes. Phylogenetic relationship analyses suggested the plant MBOAT gene models fell into four major groups, two of which likely encode enzymes of diacylglycerol acyltransferase 1 (DGAT1) and lysophospholipid acyltransferase (LPLAT), respectively, with one-three copies of paralogs present in each of the most plant species. A group of gene sequences, which are homologous to Saccharomyces cerevisiae glycerol uptake proteins (GUP), was identified in plants; copy numbers were conserved, with only one copy represented in each of the most plant species; analyses showed that residues essential for acyltransferases were more prone to be conserved than vertebrate orthologs. Among four groups, one was inferred to emerge in land plants and experience a rapid expansion in genomes of angiosperms, which suggested their important roles in adaptation of plants in lands. Sequence and phylogeny analyses indicated that genes in all four groups encode enzymes with acyltransferases. Comprehensive sequence identification of MBOAT family members and investigation into classification provide a complete picture of the MBOAT gene family in plants, and could shed light into enzymatic functions of different MBOAT genes in plants.
Collapse
Affiliation(s)
- Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737, Hainan, China,
| | | | | | | | | | | |
Collapse
|
36
|
Arroyo-Caro JM, Chileh T, Alonso DL, García-Maroto F. Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L. Lipids 2013; 48:663-74. [PMID: 23700249 DOI: 10.1007/s11745-013-3797-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/07/2013] [Indexed: 11/27/2022]
Abstract
Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) catalyzes acylation of lysophosphatidylcholine (lysoPtdCho) to produce phosphatidylcholine (PtdCho), the main phospholipid in cellular membranes. This reaction is a key component of the acyl-editing process, involving recycling of the fatty acids (FA) mainly at the sn-2 position of PtdCho. Growing evidences indicate that the LPCAT reaction controls the direct entry of newly synthesized FA into PtdCho and, at least in some plant species, it has an important impact on the synthesis and composition of triacylglycerols. Here we describe the molecular characterization of the single LPCAT gene found in the genome of Ricinus communis (RcLPCAT) that is homologous to LPCAT genes of the MBOAT family previously described in Arabidopsis and Brassica. RcLPCAT is ubiquitously expressed in all organs of the castor plant. Biochemical properties have been studied by heterologous expression of RcLPCAT in the ale1 yeast mutant, defective in lysophospholipid acyltransferase activity. RcLPCAT preferentially acylates lysoPtdCho against other lysophospholipids (lysoPL) and does not discriminates the acyl chain in the acceptor, displaying a strong activity with alkyl lysoPL. Regarding the acyl-CoA donor, RcLPCAT uses monounsaturated fatty acid thioesters, such as oleoyl-CoA (18:1-CoA), as preferred donors, while it has a low activity with saturated fatty acids and shows a poor utilization of ricinoleoyl-CoA (18:1-OH-CoA). These characteristics are discussed in terms of a possible role of RcLPCAT in regulating the entry of FA into PtdCho and the exclusion from the membranes of the hydroxylated FA.
Collapse
Affiliation(s)
- José María Arroyo-Caro
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario (CeiA3), CITE-II B, Almería, Spain
| | | | | | | |
Collapse
|
37
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
38
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
39
|
De Smet CH, Cox R, Brouwers JF, de Kroon AIPM. Yeast cells accumulate excess endogenous palmitate in phosphatidylcholine by acyl chain remodeling involving the phospholipase B Plb1p. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1167-76. [PMID: 23501167 DOI: 10.1016/j.bbalip.2013.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.
Collapse
|
40
|
Abstract
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
Collapse
|
41
|
Zheng Q, Li JQ, Kazachkov M, Liu K, Zou J. Identification of Brassica napus lysophosphatidylcholine acyltransferase genes through yeast functional screening. PHYTOCHEMISTRY 2012; 75:21-31. [PMID: 22212851 DOI: 10.1016/j.phytochem.2011.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 05/21/2023]
Abstract
Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which acylates lysophosphatidylcholine (LPC) to produce phosphatidylcholine (PC), is a key enzyme in the Lands cycle. There is evidence that acyl exchange involving LPCAT is a prevailing metabolic process during triacylglycerol (TAG) synthesis in seeds. In this study, by complementing the yeast lca1Δ mutant deficient in LPCAT activity with an Arabidopsis seedling cDNA library, it was found that the previously reported lysophospholipid acyltransferases (LPLATs), At1g12640 and At1g63050, were the only two acyltransferase genes that restored hyposensitivity of the lca1Δ mutant to lyso-platelet-activating factor (lyso-PAF). A developing seed cDNA library from Brassica napus L. cv Hero was constructed to further explore the heterologous yeast complementation approach. Three B. napusLPCAT homologs were identified, of which BnLPCAT1-1 and BnLPCAT1-2 are orthologous to ArabidopsisAtLPLAT1 (At1g12640) while BnLPCAT2 is an ortholog of AtLPLAT2 (At1g63050). The proteins encoded by BnLPCAT1-1 and BnLPCAT2 were chosen for further study. Enzymatic assays demonstrated that both proteins exhibited a substrate preference for LPCs and unsaturated fatty acyl-CoAs. In addition to the enzymatic properties of plant lysophosphatidylcholine acyltransferases uncovered in this study, this report describes a useful technique that facilitates subsequent analyses into the role of LPCATs in PC turnover and seed oil biosynthesis.
Collapse
Affiliation(s)
- Qian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, No. 1, Shizi Shan Street, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
42
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
43
|
Pagac M, de la Mora HV, Duperrex C, Roubaty C, Vionnet C, Conzelmann A. Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae. J Biol Chem 2011; 286:36438-47. [PMID: 21849510 DOI: 10.1074/jbc.m111.256511] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Martin Pagac
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Shui G, Guan XL, Gopalakrishnan P, Xue Y, Goh JSY, Yang H, Wenk MR. Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay. PLoS One 2010; 5:e11956. [PMID: 20694142 PMCID: PMC2915916 DOI: 10.1371/journal.pone.0011956] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/08/2010] [Indexed: 11/26/2022] Open
Abstract
Background Phosphatidic acid (PA) is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA) by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT). Recent findings have substantiated the essential roles of acyltransferases in various biological functions. Methodologies/Principal Findings We used a flow-injection-based lipidomic approach with ∼200 multiple reaction monitoring (MRM) transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography–based multi-stage MRM approach (more than 500 MRM transitions) was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates. Conclusions We found that Slc1p utilized fatty acid (FA) 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0) in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for glycerophospholipid biosynthesis.
Collapse
Affiliation(s)
- Guanghou Shui
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Life Science Institute, National University of Singapore, Singapore, Singapore
- * E-mail: (GS); (MRW)
| | - Xue Li Guan
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | | | - Yangkui Xue
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Joyce Sze Yuin Goh
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Markus R. Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (GS); (MRW)
| |
Collapse
|
45
|
Steinhauer J, Gijón MA, Riekhof WR, Voelker DR, Murphy RC, Treisman JE. Drosophila lysophospholipid acyltransferases are specifically required for germ cell development. Mol Biol Cell 2010; 20:5224-35. [PMID: 19864461 DOI: 10.1091/mbc.e09-05-0382] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Enzymes of the membrane-bound O-acyltransferase (MBOAT) family add fatty acyl chains to a diverse range of protein and lipid substrates. A chromosomal translocation disrupting human MBOAT1 results in a novel syndrome characterized by male sterility and brachydactyly. We have found that the Drosophila homologues of MBOAT1, Oysgedart (Oys), Nessy (Nes), and Farjavit (Frj), are lysophospholipid acyltransferases. When expressed in yeast, these MBOATs esterify specific lysophospholipids preferentially with unsaturated fatty acids. Generating null mutations for each gene allowed us to identify redundant functions for Oys and Nes in two distinct aspects of Drosophila germ cell development. Embryos lacking both oys and nes show defects in the ability of germ cells to migrate into the mesoderm, a process guided by lipid signals. In addition, oys nes double mutant adult males are sterile due to specific defects in spermatid individualization. oys nes mutant testes, as well as single, double, and triple mutant whole adult animals, show an increase in the saturated fatty acid content of several phospholipid species. Our findings suggest that lysophospholipid acyltransferase activity is essential for germline development and could provide a mechanistic explanation for the etiology of the human MBOAT1 mutation.
Collapse
Affiliation(s)
- Josefa Steinhauer
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
46
|
Deng L, Fukuda R, Kakihara T, Narita K, Ohta A. Incorporation and remodeling of phosphatidylethanolamine containing short acyl residues in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:635-45. [PMID: 20176132 DOI: 10.1016/j.bbalip.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/06/2010] [Accepted: 02/11/2010] [Indexed: 11/17/2022]
Abstract
Phosphatidylethanolamine (PE) is one of the essential phospholipids in the yeast Saccharomyces cerevisiae. We have previously shown that a yeast strain, the endogenous PE synthesis of which was controllable, grew in the presence of PE containing decanoyl residues (diC10PE) when PE synthesis was repressed. In this study, we investigated the fate of diC10PE, its uptake and remodeling in yeast. Deletion of the genes encoding Lem3p/Ros3p or P-type ATPases, Dnf1p and Dnf2p, impaired the growth of the mutants in the medium containing diC10PE, suggesting the involvement of these proteins in the uptake of diC10PE. Analysis of the metabolism of deuterium-labeled diC10PE by electrospray ionization tandem mass spectrometry revealed that it was rapidly converted to deuterium-labeled PEs containing C16 or C18 acyl residues. The probable intermediate PEs that contained decanoic acid and C16 or C18 fatty acids as acyl residues were also detected. In addition, a substantial amount of decanoic acid was released into the culture medium during growth in the presence of diC10PE. These results imply that diC10PE was remodeled to PEs with longer acyl residues and used as membrane components. Defects in the remodeling of diC10PE in the deletion mutants of ALE1 and SLC1, products of which were capable of acyl-transfer to the sn-2 position of lyso-phospholipids, suggested their involvement in the introduction of acyl residues to the sn-2 position of lyso-phosphatidylethanolamine in the remodeling reaction of diC10PE. Our results also suggest the presence of a mechanism to maintain the physiological length of PE acyl residues in yeast.
Collapse
Affiliation(s)
- Lan Deng
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
47
|
Rajakumari S, Daum G. Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell 2009; 21:501-10. [PMID: 20016004 PMCID: PMC2820416 DOI: 10.1091/mbc.e09-09-0775] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The yeast triacylglycerol (TAG) lipases Tgl3p and Tgl5p not only contain a TAG lipase, but also an acyltransferase motif. We show that purified Tgl3p and Tgl5p indeed exhibit lysophospholipid acyltransferase activity. Both Tgl3p and Tgl5p affect the level of glycerophospholipids, and Tgl3p is also important for efficient sporulation of yeast. In the yeast, mobilization of triacylglycerols (TAGs) is facilitated by the three TAG lipases Tgl3p, Tgl4p, and Tgl5p. Motif search analysis, however, indicated that Tgl3p and Tgl5p do not only contain the TAG lipase motif GXSXG but also an H-(X)4-D acyltransferase motif. Interestingly, lipid analysis revealed that deletion of TGL3 resulted in a decrease and overexpression of TGL3 in an increase of glycerophospholipids. Similar results were obtained with TGL5. Therefore, we tested purified Tgl3p and Tgl5p for acyltransferase activity. Indeed, both enzymes not only exhibited lipase activity but also catalyzed acylation of lysophosphatidylethanolamine and lysophosphatidic acid, respectively. Experiments using variants of Tgl3p created by site-directed mutagenesis clearly demonstrated that the two enzymatic activities act independently of each other. We also showed that Tgl3p is important for efficient sporulation of yeast cells, but rather through its acyltransferase than lipase activity. In summary, our results demonstrate that yeast Tgl3p and Tgl5p play a dual role in lipid metabolism contributing to both anabolic and catabolic processes.
Collapse
Affiliation(s)
- Sona Rajakumari
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | | |
Collapse
|
48
|
Le Guédard M, Bessoule JJ, Boyer V, Ayciriex S, Velours G, Kulik W, Ejsing CS, Shevchenko A, Coulon D, Lessire R, Testet E. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast. FEBS J 2009; 276:6412-24. [DOI: 10.1111/j.1742-4658.2009.07355.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Zhang M, Zhang Y, Giblin EM, Taylor DC. Ectopic expression of Arabidopsis phospholipase A genes elucidates role of phospholipase Bs in S. cerevisiae cells. Open Microbiol J 2009; 3:136-45. [PMID: 19707290 PMCID: PMC2731109 DOI: 10.2174/1874285800903010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 07/21/2009] [Accepted: 07/24/2009] [Indexed: 11/22/2022] Open
Abstract
In S. cerevisiae neither disruption of the phospholipase B triple knockout mutant (plb1plb2plb3; plb123) nor over-expression of phospholipase Bs (PLBs) result in a phenotype different from wild type. In performing experiments to characterize candidate plant phospholipase (PLA) genes, we found, surprisingly, that ectopic expression of either of two different A. thaliana PLA2 or PLA1 genes in the yeast plb123 mutant completely inhibited cell growth. We proposed that while PLBs might not be essential for growth and metabolism of yeast cells, they may play an important role in cell survival by metabolizing excess intracellular lysophospholipids. To test our hypothesis, we overexpressed a plant phospholipase A2 (PLA2) in both WT and plb123 cells, producing a pool of lysophosphatidylcholine (lysoPtdCho) in both transformants. In 14C acetate labeling experiments, WT cells were able to catabolize the resultant labeled lysoPtdCho, preventing accumulation, and the cells grew normally. In contrast, in the triple plb123 mutant PLA2 transformant, lysoPtDCho accumulated more than 4-fold to a toxic level, inhibiting cell growth. However, this growth inhibition was complemented by co-expression of either PLB1, PLB2 or PLB3 in the plb123 triple mutant already expressing the plant PLA2. Furthermore, in labeling experiments, the rescued cells exhibited a 60-75% reduction in 14C-lysoPtdCho build-up compared to plb123PLA2 cells. Our data provides conclusive evidence that yeast PLBs can metabolize intracellular lysoPtdCho produced by plant PLA2 overexpression in yeast. Our experiments indicate the utility of ectopic plant phospholipase A gene expression to characterize poorly-understood phospholipid metabolism mutants in yeast or other organisms.
Collapse
Affiliation(s)
- Meng Zhang
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | | | | | | |
Collapse
|
50
|
Stålberg K, Ståhl U, Stymne S, Ohlrogge J. Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine. BMC PLANT BIOLOGY 2009; 9:60. [PMID: 19445718 PMCID: PMC2690597 DOI: 10.1186/1471-2229-9-60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 05/16/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Two previously uncharacterized Arabidopsis genes that encode proteins with acyltransferase PlsC regions were selected for study based on their sequence similarity to a recently identified lung lysophosphatidylcholine acyltransferase (LPCAT). To identify their substrate specificity and biochemical properties, the two Arabidopsis acyltransferases, designated AtLPEAT1, (At1g80950), and AtLPEAT2 (At2g45670) were expressed in yeast knockout lines ale1 and slc1 that are deficient in microsomal lysophosphatidyl acyltransferase activities. RESULTS Expression of AtLPEAT1 in the yeast knockout ale1 background exhibited strong acylation activity of lysophosphatidylethanolamine (LPE) and lysophosphatidate (LPA) with lower activity on lysophosphatidylcholine (LPC) and lysophosphatidylserine (LPS). AtLPEAT2 had specificities in the order of LPE > LPC > LPS and had no or very low activity with LPA. Both acyltransferases preferred 18:1-LPE over 16:0-LPE as acceptor and preferred palmitoyl-CoA as acyl donor in combination with 18:1-LPE. Both acyltransferases showed no or minor responses to Ca2+, despite the presence of a calcium binding EF-hand region in AtLPEAT2. AtLPEAT1 was more active at basic pH while AtLPEAT2 was equally active between pH 6.0 - 9.0. CONCLUSION This study represents the first description of plant acyltransferases with a preference for LPE. In conclusion it is suggested that the two AtLPEATs, with their different biochemical and expression properties, have different roles in membrane metabolism/homoeostasis.
Collapse
Affiliation(s)
- Kjell Stålberg
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Ulf Ståhl
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Box101, SE-230 53 Alnarp, Sweden
| | - Sten Stymne
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Box101, SE-230 53 Alnarp, Sweden
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|