1
|
Zhang F, Ling LZ, Gao LZ. Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3281. [PMID: 39683074 DOI: 10.3390/plants13233281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Although genome-wide studies have identified a number of candidate regions evolving under selection in domesticated animals and cultivated plants, few attempts have been made, from the point of a definite biological process, to assess sequence variation and characterize the regimes of the selection on miRNA-associated motifs. Here, we performed a genome-wide dissection of nucleotide variation and selection of miRNA targets associated with rice flower development. By sampling and resequencing 26 miRNA targets for globally diverse representative populations of Asian cultivated rice and wild relatives, we found that purifying selection has reduced genetic variation at the conserved miRNA binding sites on the whole, and highly conserved miRNA binding sequences were maintained in the studied rice populations. Conversely, non-neutral evolution of positive and/or artificial selection accelerates the elevated variations at nonconserved binding sites in a population-specific behavior which may have contributed to flower development-related phenotypic variation. Taken together, our results elucidate that miRNA targets involved in flower development are under distinctive selection regimes during rice evolution.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
| | - Li-Zhen Ling
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, 132, Lanhei Road, Kunming 650204, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, 132, Lanhei Road, Kunming 650204, China
| |
Collapse
|
2
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
3
|
Peng C, Xu H, Xie S, Zhong X, Chen L, He Y, Li Z, Zhou Y, Duan L. Unveiling the Regulatory Role of miRNAs in Internode Elongation: Integrated Analysis of MicroRNA and mRNA Expression Profiles across Diverse Dwarfing Treatments in Maize ( Zea mays L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7533-7545. [PMID: 38527761 DOI: 10.1021/acs.jafc.3c09507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
MicroRNAs are crucial regulators of gene expression in maize. However, the mechanisms through which miRNAs control internode elongation remain poorly understood. This study engineered varying levels of internode elongation inhibition, revealing that dwarfing treatments diminished gibberellin levels, curtailed cell longitudinal growth, and slowed the rate of internode elongation. Comprehensive transcriptome and miRNA profiling of the internode elongation zone showed gene expression changes that paralleled the extent of the internode length reduction. We identified 543 genes and 29 miRNAs with significant correlations to internode length, predominantly within families, including miR164 and miR396. By incorporating target gene expression levels, we pinpointed nine miRNA-mRNA pairs that are significantly associated with the regulation of the internode elongation. The inhibitory effects of these miRNAs on their target genes were confirmed through dual-luciferase reporter assays. Overexpression of miR164h in maize resulted in increased internode and cell length, suggesting a novel genetic avenue for manipulating plant stature. These miRNAs may also serve as precise spatiotemporal regulators for in vitro plant development.
Collapse
Affiliation(s)
- Chuanxi Peng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haidong Xu
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shipeng Xie
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xingyu Zhong
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yan He
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
4
|
Székely A, Gulyás Z, Balogh E, Payet R, Dalmay T, Kocsy G, Kalapos B. Identification of ascorbate- and salicylate-responsive miRNAs and verification of the spectral control of miR395 in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e14070. [PMID: 38148221 DOI: 10.1111/ppl.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
We assumed that miRNAs might regulate the physiological and biochemical processes in plants through their effects on the redox system and phytohormones. To check this hypothesis, the transcriptome profile of wild-type Arabidopsis and lines with decreased ascorbate (Asc), glutathione (GSH), or salicylate (Sal) levels were compared. GSH deficiency did not influence the miRNA expression, whereas lower levels of Asc and Sal reduced the accumulation of 9 and 44 miRNAs, respectively, but only four miRNAs were upregulated. Bioinformatics analysis revealed that their over-represented target genes are associated with the synthesis of nitrogen-containing and aromatic compounds, nucleic acids, and sulphate assimilation. Among them, the sulphate reduction-related miR395 - ATP-sulfurylase couple was selected to check the assumed modulating role of the light spectrum. A greater induction of the Asc- and Sal-responsive miR395 was observed under sulphur starvation in far-red light compared to white and blue light in wild-type and GSH-deficient Arabidopsis lines. Sal deficiency inhibited the induction of miR395 by sulphur starvation in blue light, whereas Asc deficiency greatly reduced it independently of the spectrum. Interestingly, sulphur starvation decreased only the level of ATP sulfurylase 4 among the miR395 target genes in far-red light. The expression level of ATP sulfurylase 3 was higher in far-red light than in blue light in wild-type and Asc-deficient lines. The results indicate the coordinated control of miRNAs by the redox and hormonal system since 11 miRNAs were affected by both Asc and Sal deficiency. This process can be modulated by light spectrum, as shown for miR395.
Collapse
Affiliation(s)
- András Székely
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| | - Eszter Balogh
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| | - Rocky Payet
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tamás Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, HUN-REN, Martonvásár, Hungary
| |
Collapse
|
5
|
Dai H, Yang J, Teng L, Wang Z, Liang T, Khan WA, Yang R, Qiao B, Zhang Y, Yang C. Mechanistic basis for mitigating drought tolerance by selenium application in tobacco ( Nicotiana tabacum L.): a multi-omics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1255682. [PMID: 37799555 PMCID: PMC10548829 DOI: 10.3389/fpls.2023.1255682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
The lack of irrigation water in agricultural soils poses a significant constraint on global crop production. In-depth investigation into microRNAs (miRNAs) has been widely used to achieve a comprehensive understanding of plant defense mechanisms. However, there is limited knowledge on the association of miRNAs with drought tolerance in cigar tobacco. In this study, a hydroponic experiment was carried out to identify changes in plant physiological characteristics, miRNA expression and metabolite profile under drought stress, and examine the mitigating effects of selenium (Se) application. The shoot dry weight of drought-stressed plants was approximately half (50.3%) of that in non-stressed (control) conditions. However, plants supplied with Se attained 38.8% greater shoot dry weight as compared to plants with no Se supply under drought stress. Thirteen miRNAs were identified to be associated with drought tolerance. These included 7 known (such as nta-miR156b and nta-miR166a) and 6 novel miRNAs (such as novel-nta-miR156-5p and novel-nta-miR209-5p) with the target genes of squamosa promoter-binding-like protein 4 (SPL4), serine/threonine protein phosphatase 2A (PPP2A), cation/calcium exchanger 4-like (CCX4), extensin-1-like (EXT1) and reduced wall acetylation 2 (RWA2). Further investigation revealed that the expression levels of Ext1 and RWA2 were significantly decreased under drought stress but increased with Se addition. Moreover, key metabolites such as catechin and N-acetylneuraminic acid were identified, which may play a role in the regulation of drought tolerance. The integrated analysis of miRNA sequencing and metabolome highlighted the significance of the novel-nta-miR97-5p- LRR-RLK- catechin pathway in regulating drought tolerance. Our findings provide valuable insights into the molecular mechanisms underlying drought tolerance and Se-induced stress alleviation in cigar tobacco.
Collapse
Affiliation(s)
- Huaxin Dai
- Department of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Jinpeng Yang
- Department of Research Center on Tobacco Cultivating and Curing, Tobacco Research Institute of Hubei, Wuhan, China
| | - Lidong Teng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Taibo Liang
- Department of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ruiwei Yang
- Department of Research Center on Tobacco Cultivating and Curing, Tobacco Research Institute of Hubei, Wuhan, China
| | - Baoming Qiao
- Department of Research Center on Tobacco Cultivating and Curing, Tobacco Research Institute of Hubei, Wuhan, China
| | - Yanling Zhang
- Department of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Chunlei Yang
- Department of Research Center on Tobacco Cultivating and Curing, Tobacco Research Institute of Hubei, Wuhan, China
| |
Collapse
|
6
|
Kaur S, Seem K, Kumar S, Kaundal R, Mohapatra T. Comparative Genome-Wide Analysis of MicroRNAs and Their Target Genes in Roots of Contrasting Indica Rice Cultivars under Reproductive-Stage Drought. Genes (Basel) 2023; 14:1390. [PMID: 37510295 PMCID: PMC10379292 DOI: 10.3390/genes14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent occurrence of drought stress in varying intensity has become a common phenomenon in the present era of global climate change, which not only causes severe yield losses but also challenges the cultivation of rice. This raises serious concerns for sustainable food production and global food security. The root of a plant is primarily responsible to perceive drought stress and acquire sufficient water for the survival/optimal growth of the plant under extreme climatic conditions. Earlier studies reported the involvement/important roles of microRNAs (miRNAs) in plants' responses to environmental/abiotic stresses. A number (738) of miRNAs is known to be expressed in different tissues under varying environmental conditions in rice, but our understanding of the role, mode of action, and target genes of the miRNAs are still elusive. Using contrasting rice [IR-64 (reproductive-stage drought sensitive) and N-22 (drought-tolerant)] cultivars, imposed with terminal (reproductive-stage) drought stress, we demonstrate differential expression of 270 known and 91 novel miRNAs in roots of the contrasting rice cultivars in response to the stress. Among the known miRNAs, osamiR812, osamiR166, osamiR156, osamiR167, and osamiR396 were the most differentially expressed miRNAs between the rice cultivars. In the root of N-22, 18 known and 12 novel miRNAs were observed to be exclusively expressed, while only two known (zero novels) miRNAs were exclusively expressed in the roots of IR-64. The majority of the target gene(s) of the miRNAs were drought-responsive transcription factors playing important roles in flower, grain development, auxin signaling, root development, and phytohormone-crosstalk. The novel miRNAs identified in this study may serve as good candidates for the genetic improvement of rice for terminal drought stress towards developing climate-smart rice for sustainable food production.
Collapse
Affiliation(s)
- Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
7
|
Li Y, Liu Y, Gao Z, Wang F, Xu T, Qi M, Liu Y, Li T. MicroRNA162 regulates stomatal conductance in response to low night temperature stress via abscisic acid signaling pathway in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1045112. [PMID: 36938045 PMCID: PMC10019595 DOI: 10.3389/fpls.2023.1045112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) mediate the degradation of target mRNA and inhibit mRNA translation to regulate gene expression at the transcriptional and post-transcriptional levels in response to environmental stress in plants. We characterized the post-transcriptional mechanism by deep sequencing small RNA (sRNA) to examine how miRNAs were involved in low night temperature (LNT) stress in tomato and whether the molecular mechanism depended on the abscisic acid (ABA) signaling pathway. We annotated conserved miRNAs and novel miRNAs with four sRNA libraries composed of wild-type (WT) tomato plants and ABA-deficient mutant (sit) plants under normal growth and LNT stress conditions. Reverse genetics analysis suggested that miR162 participated in LNT resistance and the ABA-dependent signaling pathway in tomato. miR162-overexpressing (pRI-miR162) and miR162-silenced (pRNAi-miR162) transgenic tomato plants were generated to evaluate miR162 functions in response to LNT stress. miR162 deficiency exhibited high photosynthetic capacity and regulated stomatal opening, suggesting negative regulation of miR162 in the ABA-dependent signaling pathway in response to LNT stress. As feedback regulation, miR162 positively regulated ABA to maintain homeostasis of tomato under diverse abiotic stresses. The mRNA of DICER-LIKE1 (DCL1) was targeted by miR162, and miR162 inhibited DCL1 cleavage in LNT response, including the regulation of miRNA160/164/171a and their targets. The DCL1-deficient mutants (dcl1) with CRISPR/Cas9 prevented stomatal opening to influence photosynthesis in the ABA signaling pathway under LNT stress. Finally, we established the regulatory mechanism of ABA-miR162-DCL1, which systematically mediated cold tolerance in tomato. This study suggests that post-transcriptional modulators acted as systemic signal responders via the stress hormone signaling pathway, and the model at the post-transcriptional level presents a new direction for research in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Yang Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Tongliao Agricultural Technology Extension Center, Tongliao, China
| | - Zhenhua Gao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Feng Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Tao Xu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Mingfang Qi
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Yufeng Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Tianlai Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| |
Collapse
|
8
|
Zhang Y, Fan X, Wang Y, Kong P, Zhao L, Fan X, Zhang Y. OsNAR2.1 induced endogenous nitrogen concentration variation affects transcriptional expression of miRNAs in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1093676. [PMID: 36909394 PMCID: PMC9998545 DOI: 10.3389/fpls.2023.1093676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The studies of rice nitrogen concentration on the expression of miRNA so far are mostly limited to the exogenous nitrogen, leaving the effect of endogenous nitrogen largely unexplored. OsNAR2.1 is a high-affinity nitrate transporter partner protein which plays a central role in nitrate absorption and translocation in rice. The expression of OsNAR2.1 could influence the concentration of the endogenous nitrogen in rice. We showed that the expression and production of miRNA in rice can be influenced by manipulating the endogenous nitrogen concentration via OsNAR2.1 transgenic lines. The small RNA content, particularly 24 nucleotides small RNA, expressed differently in two transgenic rice lines (nitrogen efficient line with overexpression of OsNAR2.1 (Ov199), nitrogen-inefficient line with knockdown OsNAR2.1 by RNAi (RNAi)) compared to the wild-type (NP). Comparative hierarchical clustering expression pattern analysis revealed that the expression profiles of mature miRNA in both transgenic lines were different from NP. Several previously unidentified miRNAs were identified to be differentially expressed under different nitrogen concentrations, namely miR1874, miR5150, chr3-36147, chr4-27017 and chr5-21745. In conclusion, our findings suggest that the level of endogenous nitrogen concentration variation by overexpression or knockdown OsNAR2.1 could mediate the expression pattern and intensity of miRNA in rice, which is of high potential to be used in molecular breeding to improve the rice responses towards nitrogen utilization.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Yulong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pulin Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| |
Collapse
|
9
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. The Integrated mRNA and miRNA Approach Reveals Potential Regulators of Flowering Time in Arundina graminifolia. Int J Mol Sci 2023; 24:ijms24021699. [PMID: 36675213 PMCID: PMC9865619 DOI: 10.3390/ijms24021699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Orchids are among the most precious flowers in the world. Regulation of flowering time is one of the most important targets to enhance their ornamental value. The beauty of Arundina graminifolia is its year-round flowering, although the molecular mechanism of this flowering ability remains masked. Therefore, we performed a comprehensive assessment to integrate transcriptome and miRNA sequencing to disentangle the genetic regulation of flowering in this valuable species. Clustering analyses provided a set of molecular regulators of floral transition and floral morphogenesis. We mined candidate floral homeotic genes, including FCA, FPA, GI, FT, FLC, AP2, SOC1, SVP, GI, TCP, and CO, which were targeted by a variety of miRNAs. MiR11091 targeted the highest number of genes, including candidate regulators of phase transition and hormonal control. The conserved miR156-miR172 pathway of floral time regulation was evident in our data, and we found important targets of these miRNAs in the transcriptome. Moreover, endogenous hormone levels were determined to decipher the hormonal control of floral buds in A. graminifolia. The qRT-PCR analysis of floral and hormonal integrators validated the transcriptome expression. Therefore, miRNA-mediated mining of candidate genes with hormonal regulation forms the basis for comprehending the complex regulatory network of perpetual flowering in precious orchids. The findings of this study can do a great deal to broaden the breeding programs for flowering time manipulation of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8516-1014
| |
Collapse
|
10
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Pradhan M, Requena N. Distinguishing friends from foes: Can smRNAs modulate plant interactions with beneficial and pathogenic organisms? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102259. [PMID: 35841651 DOI: 10.1016/j.pbi.2022.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In their agro-ecological habitats, plants are constantly challenged by fungal interactions that might be pathogenic or beneficial in nature, and thus, plants need to exhibit appropriate responses to discriminate between them. Such interactions involve sophisticated molecular mechanism of signal exchange, signal transduction and regulation of gene expression. Small RNAs (smRNAs), including the microRNAs (miRNAs), form an essential layer of regulation in plant developmental processes as well as in plant adaptation to environmental stresses, being key for the outcome during plant-microbial interactions. Further, smRNAs are mobile signals that can go across kingdoms from one interacting partner to the other and hence can be used as communication as well as regulatory tools not only by the host plant but also by the colonising fungus. Here, largely with a focus on plant-fungal interactions and miRNAs, we will discuss the role of smRNAs, and how they might help plants to discriminate between friends and foes.
Collapse
Affiliation(s)
- Maitree Pradhan
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
13
|
Sharma VK, Parmar S, Tang W, Hu H, White JF, Li H. Effects of fungal seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. Front Microbiol 2022; 13:995830. [PMID: 36212824 PMCID: PMC9532605 DOI: 10.3389/fmicb.2022.995830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Metal-induced oxidative stress in contaminated soils affects plant growth. In the present study, we evaluated the role of seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. A series of pot experiments were conducted under variable Zn (500, 1,000, and 1,500 mg kg–1) and Cd (5, 15, 30, and 60 mg kg–1). The results demonstrated that FXZ2-inoculation significantly enhanced the growth of D. ambrosioides and improved its chlorophyll and GSH content. In the rhizosphere, FXZ2 inoculation changed the chemical speciation of Zn/Cd and thus affected their uptake and accumulation in host plants. The exchangeable and carbonate-bound fractions (F1 + F2) of Zn decreased in the rhizosphere of FXZ2-inoculated plants (E+) as compared to non-inoculated plants (E-) under Zn stress (500 and 1,000 mg kg–1), correspondingly, Zn in the shoots of E+ decreased (p < 0.05). However, at Cd stress (30 and 60 mg kg–1), the F1 + F2 fractions of Cd in E+ rhizospheric soils increased; subsequently, Cd in the shoots of E+ increased (p < 0.05). FXZ2 could exogenously secrete phytohormones IAA, GA, and JA. The study suggests that seed endophyte FXZ2 can increase Zn/Cd tolerance of host plant by altering Zn/Cd speciation in rhizospheric soils, as well as exogenous production of phytohormones to promote growth, lowering oxidative damage while enhancing antioxidant properties. For Zn/Cd accumulation, it has opposite effects: Zn uptake in E+ plants was significantly (p < 0.05) decreased, while Cd accumulation in E+ plants was significantly (p < 0.05) increased. Thus, FXZ2 has excellent application prospects in Cd phytoextraction and decreasing Zn toxicity in agriculturally important crops.
Collapse
Affiliation(s)
- Vijay K. Sharma
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Shobhika Parmar
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenting Tang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Haiyan Li,
| |
Collapse
|
14
|
Molecular Aspects of MicroRNAs and Phytohormonal Signaling in Response to Drought Stress: A Review. Curr Issues Mol Biol 2022; 44:3695-3710. [PMID: 36005149 PMCID: PMC9406886 DOI: 10.3390/cimb44080253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.
Collapse
|
15
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
16
|
An Integrated Analysis of Transcriptome and miRNA Sequencing Provides Insights into the Dynamic Regulations during Flower Morphogenesis in Petunia. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Published genome sequences can facilitate multiple genome sequencing studies of flower development, which can serve as the basis for later analysis of variation in flower phenotypes. To identify potential regulators related to flower morphology, we captured dynamic expression patterns under five different developmental stages of petunia flowers, a popular bedding plant, using transcriptome and miRNA sequencing. The significant transcription factor (TF) families, including MYB, MADS, and bHLH, were elucidated. MADS-box genes exhibited co-expression patterns with BBR-BPC, GATA, and Dof genes in different modules according to a weighted gene co-expression network analysis. Through miRNA sequencing, a total of 45 conserved and 26 novel miRNAs were identified. According to GO and KEGG enrichment analysis, the carbohydrate metabolic process, photosynthesis, and phenylalanine metabolism were significant at the transcriptomic level, while the response to hormone pathways was significantly enriched by DEmiR-targeted genes. Finally, an miRNA–RNA network was constructed, which suggested the possibility of novel miRNA-mediated regulation pathways being activated during flower development. Overall, the expression data in the present study provide novel insights into the developmental gene regulatory network facilitated by TFs, miRNA, and their target genes.
Collapse
|
17
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
18
|
Parmar S, Sharma VK, Li T, Tang W, Li H. Fungal Seed Endophyte FZT214 Improves Dysphania ambrosioides Cd Tolerance Throughout Different Developmental Stages. Front Microbiol 2022; 12:783475. [PMID: 35058903 PMCID: PMC8764135 DOI: 10.3389/fmicb.2021.783475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Phytoremediation is a promising remediation method of heavy metal (HM)-contaminated soils. However, lower HM tolerance of metal accumulator inhibits its practical application and effects. The current study was aimed to illustrate the role of fungal seed endophyte (FZT214) in improving Dysphania ambrosioides Cd tolerance during different developmental stages under various Cd stresses (5, 15, 30 mg kg-1) by pot experiments. The results showed that FZT214 significantly (p < 0.05) improved the host plant's growth at the flowering and fruiting stage in most of the treatment, while at the growing stage the increase was less (p > 0.05). The seed yield was also improved (p < 0.05) in the FZT214-inoculated plants (E+) and induced early flowering was observed. Moreover, the inoculation also positively affected total chlorophyll content, antioxidant process, and lipid peroxidation in most of the treatments throughout three developmental stages. Not all but in most cases, IAA and GA were more in E+ plants while JA was more in the E- plants (non-inoculated plants) during three developmental stages. The results suggested that the colonization of FZT214 to the D. ambrosioides might trigger multiple and comprehensive protective strategies against Cd stress, which mainly include activation of the dilution effects, induced biochemical changes to overcome damage from Cd toxicity, and alteration of the endogenous phytohormones. FZT214 can find competent application in the future to improve the growth of other crop plants.
Collapse
Affiliation(s)
- Shobhika Parmar
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Vijay K. Sharma
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wenting Tang
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
19
|
Xu P, Zhu Y, Zhang Y, Jiang J, Yang L, Mu J, Yu X, He Y. Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Front Genet 2021; 12:741858. [PMID: 34594365 PMCID: PMC8476912 DOI: 10.3389/fgene.2021.741858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.
Collapse
Affiliation(s)
- Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianxin Mu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Regmi R, Newman TE, Kamphuis LG, Derbyshire MC. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen. BMC PLANT BIOLOGY 2021; 21:366. [PMID: 34380425 PMCID: PMC8356391 DOI: 10.1186/s12870-021-03148-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/27/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Small RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed B. napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem. RESULTS We identified different classes of sRNAs from B. napus using high throughput sequencing of replicated mock and infected samples at 24 h post-inoculation (HPI). Overall, 3999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. These 730 up-regulated sRNAs targeted 64 genes, including disease resistance proteins and transcriptional regulators. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 2124 cleaved mRNA products from these miRNAs from combined mock and infected samples. Among these, 50 genes were specific to infection. Altogether, 20 conserved miRNAs were differentially expressed and 8 transcripts were cleaved by the differentially expressed miRNAs miR159, miR5139, and miR390, suggesting they may have a role in the S. sclerotiorum response. A miR1885-triggered disease resistance gene-derived secondary sRNA locus was also identified and verified with degradome sequencing. We also found further evidence for silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5'-RACE and RT-qPCR. CONCLUSIONS The findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia.
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
21
|
Öztürk Gökçe ZN, Aksoy E, Bakhsh A, Demirel U, Çalışkan S, Çalışkan ME. Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars. Funct Integr Genomics 2021; 21:489-502. [PMID: 34241734 DOI: 10.1007/s10142-021-00793-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small, non-coding RNAs that are responsible for regulation of gene expression during plant growth and development. Although there are many studies on miRNAs in other plants, little work has been done to understand the role of miRNAs in abiotic stress tolerance in potatoes. This study investigates changes in miRNA profiles of two different potato cultivars (tolerant, Unica and susceptible, Russet Burbank) in response to heat, drought and their combination. Transcriptomic studies revealed that miRNA profiles depend on the susceptibility and tolerance of the cultivar and also the stress conditions. Large number of miRNAs were expressed in Unica, whereas Russet Burbank indicated lesser number of changes in miRNA expression. Physiological and transcriptional results clearly supported that Unica cultivar is tolerant to combined drought and heat stress compared to Russet Burbank. Moreover, psRNATarget analysis predicted that major miRNAs identified were targeting genes playing important roles in response to drought and heat stress and their important roles in genetic and post-transcriptional regulation, root development, auxin responses and embryogenesis were also observed. This study focused on eight miRNAs (Novel_8, Novel_9, Novel_105, miR156d-3p, miR160a-5p, miR162a-3p, miR172b-3p and miR398a-5p) and their putative targets where results indicate that they may play a vital role at different post-transcriptional levels against drought and heat stresses. We suggest that miRNA overexpression in plants can lead to increased tolerance against abiotic stresses; furthermore, there should be more emphasis on the studies to investigate the role of miRNAs in combined abiotic stress in plants.
Collapse
Affiliation(s)
- Zahide Neslihan Öztürk Gökçe
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey.
| | - Emre Aksoy
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Allah Bakhsh
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Ufuk Demirel
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Sevgi Çalışkan
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Mehmet Emin Çalışkan
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| |
Collapse
|
22
|
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. PHYSIOLOGIA PLANTARUM 2021; 172:1808-1821. [PMID: 33956991 DOI: 10.1111/ppl.13451] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Drought is one of the most important abiotic stress factors impeding crop productivity. With the uncovering of their role as potential regulators of gene expression, microRNAs (miRNAs) have been recognized as new targets for developing stress resistance. MicroRNAs are small noncoding RNAs whose abundance is significantly altered under stress conditions. Interestingly, plant miRNAs predominantly targets transcription factors (TFs), and some of which are also the most critical drought-responsive genes that in turn could regulate the expression of numerous loci with drought-adaptive potential. The phytohormone ABA plays important roles in regulating stomatal conductance and in initiating an adaptive response to drought stress. miRNAs are implicated in regulating ABA-(abscisic acid) and non-ABA-mediated drought resistance pathways. For instance, miR159-MYB module and miR169-NFYA module participates in an ABA-dependent pathway, whereas several other ABA-independent miRNA-target modules (miR156-SPL; miR393-TIR1; miR160-ARF10, ARF16, ARF17; miR167-ARF6 and ARF8; miR390/TAS3siRNA-ARF2, ARF3, ARF4) collectively regulate drought responses in plants. Overall, miRNA-mediated drought response manifests diverse molecular, biochemical and physiological processes. Because of their immense role in controlling gene expression, miRNA manipulation has significant potential to augment plant tolerance to drought stress. This review compiles the current understanding of drought-responsive miRNAs in major cereals. Also, potential miRNA manipulation strategies currently in use along with the challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Garima Singroha
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ramanjulu Sunkur
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
23
|
Luo Y, Wang T, Yang D, Luo B, Wang WP, Yu D, He FL, Wang QM, Rao LQ. Identification and characterization of heat-responsive microRNAs at the booting stage in two rice varieties, 9311 and Nagina 22. Genome 2021; 64:969-984. [PMID: 33901411 DOI: 10.1139/gen-2020-0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs that play important roles in abiotic stress responses in plants, but their regulatory roles in the adaptive response to heat stress at the booting stage in two rice varieties, 9311 and Nagina 22, remain largely unknown. In this study, 464 known miRNAs and 123 potential novel miRNAs were identified. Of these miRNAs, a total of 90 differentially expressed miRNAs were obtained with 9311 libraries as the control group, of which 54 were upregulated and 36 were downregulated. To gain insight into functional significance, 2773 potential target genes of these 90 differentially expressed miRNAs were predicted. GO enrichment analysis showed that the predicted target genes of differentially expressed miRNAs included NACs, LACs, CSD, and Hsp40. KEGG pathway analysis showed that the target genes of these differentially expressed miRNAs were significantly enriched in the plant hormone signal transduction pathway. The expression levels of 10 differentially expressed miRNAs and their target genes obtained by qRT-PCR were largely consistent with the sequencing results. This study lays a foundation for the elucidation of the miRNA-mediated regulatory mechanisms in rice at elevated temperatures.
Collapse
Affiliation(s)
- Ying Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China.,College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Tao Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Dan Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Biao Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Wei-Ping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dong Yu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Fu-Lin He
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Qi-Ming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Li-Qun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
24
|
Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings. PLANTS 2021; 10:plants10050826. [PMID: 33919185 PMCID: PMC8143135 DOI: 10.3390/plants10050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Stress events have transgenerational effects on plant growth and development. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress was investigated in two genotypes. Both genotypes showed a significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length, and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the percentage reduction of most traits was lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions, associated with DEM-target modules in stress adaptation processes, that could contribute to the phenotypic differences observed between the two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on the N starvation response in durum wheat.
Collapse
|
25
|
Su Z, Wang X, Xuan X, Sheng Z, Jia H, Emal N, Liu Z, Zheng T, Wang C, Fang J. Characterization and Action Mechanism Analysis of VvmiR156b/c/d-VvSPL9 Module Responding to Multiple-Hormone Signals in the Modulation of Grape Berry Color Formation. Foods 2021; 10:foods10040896. [PMID: 33921800 PMCID: PMC8073990 DOI: 10.3390/foods10040896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, more and more reports have shown that the miR156-SPL module can participate in the regulation of anthocyanin synthesis in plants. However, little is known about how this module responds to hormonal signals manipulating this process in grapes. In this study, exogenous GA, ABA, MeJA, and NAA were used to treat the 'Wink' grape berries before color conversion, anthocyanin and other related quality physiological indexes (such as sugar, aroma) were determined, and spatio-temporal expression patterns of related genes were analyzed. The results showed that the expression levels of VvmiR156b/c/d showed a gradually rising trend with the ripening and color formation of grape berries, and the highest expression levels were detected at day 28 after treatment, while the expression level of VvSPL9 exhibited an opposite trend as a whole, which further verifies that VvmiR156b/c/d can negatively regulate VvSPL9. Besides, VvmiR156b/c/d was positively correlated with anthocyanin content and related genes levels, while the expression pattern of VvSPL9 showed a negative correlation. Analysis of promoter cis-elements and GUS staining showed that VvmiR156b/c/d contained a large number of hormone response cis-elements (ABA, GA, SA, MeJA, and NAA) and were involved in hormone regulation. Exogenous ABA and MeJA treatments significantly upregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes in the early stage of color conversion and made grape berries quickly colored. Interestingly, GA treatment downregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes in the early color-change period, but significantly upregulated in the middle color-change and ripening stages, therefore GA mainly modulated grape berry coloring in the middle- and late-ripening stages. Furthermore, NAA treatment downregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes and delayed the peak expression of genes. Meanwhile, to further recognize the potential functions of VvmiR156b/c/d, the mature tomato transient trangenetic system was utilized in this work. Results showed that transient overexpression of VvmiR156b/c/d in tomato promoted fruit coloring and overexpression of VvSPL9 inhibited fruit coloration. Finally, a regulatory network of the VvmiR156b/c/d-VvSPL9 module responsive to hormones modulating anthocyanin synthesis was developed. In conclusion, VvmiR156b/c/d-mediated VvSPL9 participated in the formation of grape color in response to multi-hormone signals.
Collapse
Affiliation(s)
- Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
- Institute of Pomology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Zilu Sheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Haoran Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Naseri Emal
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
- Correspondence:
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| |
Collapse
|
26
|
Dalio RJD, Litholdo CG, Arena G, Magalhães D, Machado MA. Contribution of Omics and Systems Biology to Plant Biotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:171-188. [DOI: 10.1007/978-3-030-80352-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Betti F, Ladera-Carmona MJ, Perata P, Loreti E. RNAi Mediated Hypoxia Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E9394. [PMID: 33321742 PMCID: PMC7764064 DOI: 10.3390/ijms21249394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Small RNAs regulate various biological process involved in genome stability, development, and adaptive responses to biotic or abiotic stresses. Small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs). MicroRNAs (miRNAs) are regulators of gene expression that affect the transcriptional and post-transcriptional regulation in plants and animals through RNA interference (RNAi). miRNAs are endogenous small RNAs that originate from the processing of non-coding primary miRNA transcripts folding into hairpin-like structures. The mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) and drive the Argonaute (AGO) proteins towards their mRNA targets. siRNAs are generated from a double-stranded RNA (dsRNA) of cellular or exogenous origin. siRNAs are also involved in the adaptive response to biotic or abiotic stresses. The response of plants to hypoxia includes a genome-wide transcription reprogramming. However, little is known about the involvement of RNA signaling in gene regulation under low oxygen availability. Interestingly, miRNAs have been shown to play a role in the responses to hypoxia in animals, and recent evidence suggests that hypoxia modulates the expression of various miRNAs in plant systems. In this review, we describe recent discoveries on the impact of RNAi on plant responses to hypoxic stress in plants.
Collapse
Affiliation(s)
- Federico Betti
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Maria José Ladera-Carmona
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56010 Pisa, Italy; (F.B.); (M.J.L.-C.); (P.P.)
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
28
|
Synergy between the anthocyanin and RDR6/SGS3/DCL4 siRNA pathways expose hidden features of Arabidopsis carbon metabolism. Nat Commun 2020; 11:2456. [PMID: 32415123 PMCID: PMC7229025 DOI: 10.1038/s41467-020-16289-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Anthocyanin pigments furnish a powerful visual output of the stress and metabolic status of Arabidopsis thaliana plants. Essential for pigment accumulation is TRANSPARENT TESTA19 (TT19), a glutathione S-transferase proposed to bind and stabilize anthocyanins, participating in their vacuolar sequestration, a function conserved across the flowering plants. Here, we report the identification of genetic suppressors that result in anthocyanin accumulation in the absence of TT19. We show that mutations in RDR6, SGS3, or DCL4 suppress the anthocyanin defect of tt19 by pushing carbon towards flavonoid biosynthesis. This effect is not unique to tt19 and extends to at least one other anthocyanin pathway gene mutant. This synergy between mutations in components of the RDR6-SGS3-DCL4 siRNA system and the flavonoid pathway reveals genetic/epigenetic mechanisms regulating metabolic fluxes. TRANSPARENT TESTA19 (TT19) encodes a glutathione S-transferase which functions in anthocyanin stabilization and vacuolar transport. Here, by tt19 suppressor screening, the authors show that RDR6/SGS3/DCL4 siRNA pathway constituents synergistically interact with components of the flavonoid pathway to control carbon metabolism.
Collapse
|
29
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
30
|
Xia H, Yu S, Kong D, Xiong J, Ma X, Chen L, Luo L. Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice. BMC Genomics 2020; 21:232. [PMID: 32171232 PMCID: PMC7071783 DOI: 10.1186/s12864-020-6646-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plant miRNAs play crucial roles in responses to drought and developmental processes. It is essential to understand the association of miRNAs with drought-tolerance (DT), as well as their impacts on growth, development, and reproduction (GDP). This will facilitate our utilization of rice miRNAs in breeding. RESULTS In this study, we investigated the time course of miRNA responses to a long-term drought among six rice genotypes by high-throughput sequencing. In total, 354 conserved miRNAs were drought responsive, representing obvious genotype- and stage-dependent patterns. The drought-responsive miRNAs (DRMs) formed complex regulatory network via their coexpression and direct/indirect impacts on the rice transcriptome. Based on correlation analyses, 211 DRMs were predicted to be associated with DT and/or GDP. Noticeably, 14.2% DRMs were inversely correlated with DT and GDP. In addition, 9 pairs of mature miRNAs, each derived from the same pre-miRNAs, were predicted to have opposite roles in regulating DT and GDP. This suggests a potential yield penalty if an inappropriate miRNA/pre-miRNA is utilized. miRNAs have profound impacts on the rice transcriptome reflected by great number of correlated drought-responsive genes. By regulating these genes, a miRNA could activate diverse biological processes and metabolic pathways to adapt to drought and have an influence on its GDP. CONCLUSION Based on the temporal pattern of miRNAs in response to drought, we have described the complex network between DRMs. Potential associations of DRMs with DT and/or GDP were disclosed. This knowledge provides valuable information for a better understanding in the roles of miRNAs play in rice DT and/or GDP, which can facilitate our utilization of miRNA in breeding.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jie Xiong
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| |
Collapse
|
31
|
Wen CH, Hong SF, Hu SF, Lin SS, Chu FH. Lfo-miR164b and LfNAC1 as autumn leaf senescence regulators in Formosan sweet gum (Liquidambar formosana Hance). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110325. [PMID: 31928688 DOI: 10.1016/j.plantsci.2019.110325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/18/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
In this study, a microRNA microarray was used to investigate the microRNA profiles from young green leaves, and senescent red leaves and yellow leaves of Formosan sweet gum (Liquidambar formosana Hance). The conserved microRNA miR164 was highly expressed in green leaves compared to senescent leaves. The pri-microRNA of miR164 was identified and named lfo-miR164b based on its secondary structure. In Agrobacterium-mediated transient expression experiment, lfo-miR164b was confirmed to regulate the leaf senescence-associated gene LfNAC1 and LfNAC100. Transient overexpression of LfNAC1 induced the expression of leaf senescence genes in Nicotiana benthamiana. In addition, LfNAC1 activated the expression of proLfSGR::YFP, suggesting the regulatory role of LfNAC1 in leaf senescence. In summary, miR164 inhibits the expression of LfNAC1 in spring and summer, later on LfNAC1 actives leaf senescence-associated genes to cause leaf senescence following a gradual decline of miR164 as the seasons change. The "miR164-NAC" regulatory mechanism was confirmed in Formosan sweet gum autumn leaf senescence.
Collapse
Affiliation(s)
- Chi-Hsiang Wen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Sin-Fen Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan; Experimental Forest, National Taiwan University, Taiwan.
| |
Collapse
|
32
|
Zhang QL, Su LY, Zhang ST, Xu XP, Chen XH, Li X, Jiang MQ, Huang SQ, Chen YK, Zhang ZH, Lai ZX, Lin YL. Analyses of microRNA166 gene structure, expression, and function during the early stage of somatic embryogenesis in Dimocarpus longan Lour. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:205-214. [PMID: 31869733 DOI: 10.1016/j.plaphy.2019.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
MicroRNA166 (miR166) contributes to post-transcriptional regulation by binding the mRNAs of HD-ZIP III genes, which affects plant growth and development. The structural characteristics, expression, and functions of miR166 genes during the early somatic embryogenesis stage in Dimocarpus longan remain unknown. We isolated the transcripts of pri-miR166 S78 with two transcription initiation sites (TSSs) and pri-miR166 S338 with one TSS. These sequences contain potential smORFs and encode different miRNA peptides (miPEPs). Additionally, their promoters contain cis-acting elements responsive to diverse stimuli. The pre-miR166 S78 and pre-miR166 S338 expression levels were up-regulated in response to 2,4-D, abscisic acid, and ethylene. Although the expression patterns induced by hormones were similar, there were differences in the extent of the response, with pre-miR166 S338 more responsive than pre-miR166 S78. Thus, miRNA transcription and maturation are not simply linearly correlated. Moreover, pre-miR166 S78 and pre-miR166 S338 expression levels were down-regulated, whereas ATHB15 (target gene) expression was up-regulated, from the longan embryonic callus to the globular embryo stages. These results are indicative of a negative regulatory relationship between miR166 and ATHB15 during the early somatic embryogenesis stage in longan. At the same stages, miR166a.2-agomir, miR166a.2-antagomir, and miPEP166 S338 increased or decreased the expression of miR166a.2 and ATHB15, but with no consistent patterns or linear synchronization, from which we've found some reasons for it.
Collapse
Affiliation(s)
- Q L Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - L Y Su
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - S T Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - X P Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - X H Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - X Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - M Q Jiang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - S Q Huang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Y K Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Z H Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Z X Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Y L Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
33
|
Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W. MiR319 mediated salt tolerance by ethylene. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2370-2383. [PMID: 31094071 PMCID: PMC6835123 DOI: 10.1111/pbi.13154] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 05/03/2023]
Abstract
Salinity-induced accumulation of certain microRNAs accompanied by gaseous phytohormone ethylene production has been recognized as a mechanism of plant salt tolerance. MicroRNA319 (miR319) has been characterized as an important player in abiotic stress resistance in some C3 plants, such as Arabidopsis thaliana and rice. However, its role in the dedicated biomass plant switchgrass (Panicum virgatum L.), a C4 plant, has not been reported. Here, we show crosstalk between miR319 and ethylene (ET) for increasing salt tolerance. By overexpressing Osa-MIR319b and a target mimicry form of miR319 (MIM319), we showed that miR319 positively regulated ET synthesis and salt tolerance in switchgrass. By experimental treatments, we demonstrated that ET-mediated salt tolerance in switchgrass was dose-dependent, and miR319 regulated the switchgrass salt response by fine-tuning ET synthesis. Further experiments showed that the repression of a miR319 target, PvPCF5, in switchgrass also led to enhanced ethylene accumulation and salt tolerance in transgenic plants. Genome-wide transcriptome analysis demonstrated that overexpression of miR319 (OE-miR319) down-regulated the expression of key genes in the methionine (Met) cycle but promoted the expression of genes in ethylene synthesis. The results enrich our understanding of the synergistic effects of the miR319-PvPCF5 module and ethylene synthesis in the salt tolerance of switchgrass, a C4 bioenergy plant.
Collapse
Affiliation(s)
- Yanrong Liu
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC)Beijing Academy of Agricultural and Forestry SciencesNational Engineering Research Center for VegetablesBeijingChina
| | - Jianping Yan
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Kexin Wang
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Wanjun Zhang
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
- National Energy R&D Center for Biomass (NECB)China Agricultural UniversityBeijingChina
| |
Collapse
|
34
|
Magwanga RO, Kirungu JN, Lu P, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Agong SG, Wang K, Liu F. Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1292. [PMID: 31681384 PMCID: PMC6804553 DOI: 10.3389/fpls.2019.01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/29/2023]
Abstract
We found 33, 17, and 20 Alba genes in Gossypium hirsutum, Gossypium arboretum, and Gossypium raimondii, respectively. The Alba protein lengths ranged from 62 to 312 aa, the molecular weight (MW) from 7.003 to 34.55 kDa, grand average hydropathy values of -1.012 to 0.609 and isoelectric (pI) values of -3 to 11. Moreover, miRNAs such as gra-miR8770 targeted four genes, gra-miR8752 and gra-miR8666 targeted three genes, and each and gra-miR8657 a, b, c, d, e targeted 10 genes each, while the rests targeted 1 to 2 genes each. Similarly, various cis-regulatory elements were detected with significant roles in enhancing abiotic stress tolerance, such as CBFHV (RYCGAC) with a role in cold stress acclimation among others. Two genes, Gh_D01G0884 and Gh_D01G0922, were found to be highly induced under water deficit and salt stress conditions. Through virus-induced gene silencing (VIGS), the VIGS cotton plants were found to be highly susceptible to both water deficit and salt stresses; the VIGS plants exhibited a significant reduction in root growth, low cell membrane stability (CMS), saturated leaf weight (SLW), chlorophyll content levels, and higher excised leaf water loss (ELWL). Furthermore, the stress-responsive genes and ROS scavenging enzymes were significantly reduced in the VIGS plants compared to either the wild type (WT) and or the positively controlled plants. The VIGS plants registered higher concentration levels of hydrogen peroxide and malondialdehyde, with significantly lower levels of the various antioxidants evaluated an indication that the VIGS plants were highly affected by salt and drought stresses. This result provides a key foundation for future exploration of the Alba proteins in relation to abiotic stress.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Joy Nyangasi Kirungu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Pu Lu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xiaoyan Cai
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yanchao Xu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xingxing Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Zhongli Zhou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yuqing Hou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Stephen Gaya Agong
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Kunbo Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Fang Liu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| |
Collapse
|
35
|
Nadarajah K, Kumar IS. Drought Response in Rice: The miRNA Story. Int J Mol Sci 2019; 20:ijms20153766. [PMID: 31374851 PMCID: PMC6696311 DOI: 10.3390/ijms20153766] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
As a semi-aquatic plant, rice requires water for proper growth, development, and orientation of physiological processes. Stress is induced at the cellular and molecular level when rice is exposed to drought or periods of low water availability. Plants have existing defense mechanisms in planta that respond to stress. In this review we examine the role played by miRNAs in the regulation and control of drought stress in rice through a summary of molecular studies conducted on miRNAs with emphasis on their contribution to drought regulatory networks in comparison to other plant systems. The interaction between miRNAs, target genes, transcription factors and their respective roles in drought-induced stresses is elaborated. The cross talk involved in controlling drought stress responses through the up and down regulation of targets encoding regulatory and functional proteins is highlighted. The information contained herein can further be explored to identify targets for crop improvement in the future.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia.
| | - Ilakiya Sharanee Kumar
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| |
Collapse
|
36
|
Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 2019; 20:488. [PMID: 31195958 PMCID: PMC6567507 DOI: 10.1186/s12864-019-5799-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background With rising global temperature, understanding plants’ adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. Results Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. Conclusion The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5799-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada.,Present address: Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
37
|
Micromanagement of Developmental and Stress-Induced Senescence: The Emerging Role of MicroRNAs. Genes (Basel) 2019; 10:genes10030210. [PMID: 30871088 PMCID: PMC6470504 DOI: 10.3390/genes10030210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are short (19⁻24-nucleotide-long), non-coding RNA molecules. They downregulate gene expression by triggering the cleavage or translational inhibition of complementary mRNAs. Senescence is a stage of development following growth completion and is dependent on the expression of specific genes. MicroRNAs control the gene expression responsible for plant competence to answer senescence signals. Therefore, they coordinate the juvenile-to-adult phase transition of the whole plant, the growth and senescence phase of each leaf, age-related cellular structure changes during vessel formation, and remobilization of resources occurring during senescence. MicroRNAs are also engaged in the ripening and postharvest senescence of agronomically important fruits. Moreover, the hormonal regulation of senescence requires microRNA contribution. Environmental cues, such as darkness or drought, induce senescence-like processes in which microRNAs also play regulatory roles. In this review, we discuss recent findings concerning the role of microRNAs in the senescence of various plant species.
Collapse
|
38
|
Multiple Regression Analysis Reveals MicroRNA Regulatory Networks in Oryza sativa under Drought Stress. Int J Genomics 2018; 2018:9395261. [PMID: 30402456 PMCID: PMC6196795 DOI: 10.1155/2018/9395261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Drought is a major abiotic stress that reduces rice development and yield. miRNAs (microRNAs) are known to mediate posttranscriptional regulation under drought stress. Although the importance of individual miRNAs has been established, the crosstalks between miRNAs and mRNAs remain unearthed. Here we performed microarray analysis of miRNAs and matched mRNA expression profiles of drought-treated rice cultivar Nipponbare. Drought-responsive miRNA-mRNA regulations were identified by a combination of a partial least square (PLS) regression approach and sequence-based target prediction. A drought-induced network with 13 miRNAs and 58 target mRNAs was constructed, and four miRNA coregulatory modules were revealed. Functional analysis suggested that drought-response miRNA targets are enriched in hormone signaling, lipid and carbohydrate metabolism, and antioxidant defense. 13 candidate miRNAs and target genes were validated by RT-qPCR, hierarchical clustering, and ROC analysis. Two target genes (DWARF-3 and P0651G05.2) of miRNA coregulatory modules were further verified by RLM-5' RACE. Together, our integrative study of miRNA-mRNA interaction provided attractive candidates that will help elucidate the drought-response mechanisms in Oryza sativa.
Collapse
|
39
|
Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018; 15:68. [PMID: 30302122 PMCID: PMC6167836 DOI: 10.1186/s12986-018-0305-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of single-stranded non-coding RNA of about 22 nucleotides, are potent regulators of gene expression existing in both plants and animals. Recent studies showed that plant miRNAs could enter mammalian bloodstream via gastrointestinal tract, through which access a variety of tissues and cells of recipients to exert therapeutic effects. This intriguing phenomenon indicates that miRNAs of diet/plant origin may act as a new class of bioactive ingredients communicating with mammalian systems. In this review, in order to pinpoint the reason underlying discrepancies of miRNAs transmission from diet/plant to animals, the pathways that generate miRNAs and machineries involved in the functions of miRNAs in both kingdoms were outlined and compared. Then, the current controversies concerning cross-kingdom regulations and the potential mechanisms responsible for absorption and transfer of diet/plant-derived miRNAs were interpreted. Furthermore, the hormone-like action of miRNAs and the intricate interplay between miRNAs and hormones were implicated. Finally, how these findings may impact nutrition and medicine were briefly discussed.
Collapse
Affiliation(s)
- Zhiqing Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005 People's Republic of China
| | - Ruodan Xu
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China.,3Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ning Li
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| |
Collapse
|
40
|
Jian H, Ma J, Wei L, Liu P, Zhang A, Yang B, Li J, Xu X, Liu L. Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to Sclerotinia sclerotiorum (Lib.) infection. Sci Rep 2018; 8:10987. [PMID: 30030454 PMCID: PMC6054686 DOI: 10.1038/s41598-018-29365-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2018] [Indexed: 11/23/2022] Open
Abstract
Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is a devastating disease resulting in yield losses and decreases in seed quality in oilseed rape (Brassica napus) worldwide. However, the molecular mechanisms underlying the response of oilseed rape to S. sclerotiorum infection at the transcriptional and post-transcriptional levels are poorly understood. Here, we used an integrated omics approach (transcriptome, sRNAome, and degradome sequencing) on the Illumina platform to compare the RNA expression and post-transcriptional profiles of oilseed rape plants inoculated or not with S. sclerotiorum. In total, 7,065 differentially expressed genes (DEGs) compared with the mock-inoculated control at 48 hours post inoculation were identified. These DEGs were associated with protein kinases, signal transduction, transcription factors, hormones, pathogenesis-related proteins, secondary metabolism, and transport. In the sRNA-Seq analysis, 77 known and 176 novel miRNAs were identified; however, only 10 known and 41 novel miRNAs were differentially expressed between the samples inoculated or not with S. sclerotiorum. Degradome sequencing predicted 80 cleavage sites with 64 miRNAs. Integrated mRNA, sRNA and degradome sequencing analysis reveal oilseed rape complex responses to S. sclerotiorum infection. This study provides a global view of miRNA and mRNA expression profiles in oilseed rape following S. sclerotiorum infection.
Collapse
Affiliation(s)
- Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Pu Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
41
|
Fard EM, Bakhshi B, Farsi M, Kakhki AM, Nikpay N, Ebrahimi MA, Mardi M, Salekdeh GH. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots. MOLECULAR BIOSYSTEMS 2018; 13:2289-2302. [PMID: 28872648 DOI: 10.1039/c7mb00298j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption were found to be the most important regulatory pathways distinguishing the DD and WD conditions.
Collapse
Affiliation(s)
- Ehsan Mohseni Fard
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu J, Zeng T, Xia Q, Qian Q, Yang C, Ding Y, Chen L, Wang W. Unravelling miRNA regulation in yield of rice (Oryza sativa) based on differential network model. Sci Rep 2018; 8:8498. [PMID: 29855560 PMCID: PMC5981461 DOI: 10.1038/s41598-018-26438-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the essential staple food crops and tillering, panicle branching and grain filling are three important traits determining the grain yield. Although miRNAs have been reported being regulating yield, no study has systematically investigated how miRNAs differentially function in high and low yield rice, in particular at a network level. This abundance of data from high-throughput sequencing provides an effective solution for systematic identification of regulatory miRNAs using developed algorithms in plants. We here present a novel algorithm, Gene Co-expression Network differential edge-like transformation (GRN-DET), which can identify key regulatory miRNAs in plant development. Based on the small RNA and RNA-seq data, miRNA-gene-TF co-regulation networks were constructed for yield of rice. Using GRN-DET, the key regulatory miRNAs for rice yield were characterized by the differential expression variances of miRNAs and co-variances of miRNA-mRNA, including osa-miR171 and osa-miR1432. Phytohormone cross-talks (auxin and brassinosteroid) were also revealed by these co-expression networks for the yield of rice.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Hybrid rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiongmei Xia
- Institute of Food Crop of Yunan Academy of Agricultural Sciences, Longtou Street, North Suburb, Kunming, 650205, China
| | - Qian Qian
- State Key Laboratory of Hybrid rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Congdang Yang
- Institute of Food Crop of Yunan Academy of Agricultural Sciences, Longtou Street, North Suburb, Kunming, 650205, China
| | - Yi Ding
- State Key Laboratory of Hybrid rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
43
|
|
44
|
|
45
|
Wu Y, Lv W, Hu L, Rao W, Zeng Y, Zhu L, He Y, He G. Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants. Sci Rep 2017; 7:8712. [PMID: 28821824 PMCID: PMC5562839 DOI: 10.1038/s41598-017-09143-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
The brown planthopper (BPH) is the most devastating insect pest of rice. The rice gene BPH15 confers resistance to BPH. MicroRNAs (miRNAs) regulate a spectrum of development and defense response processes in plants. In this study, we analyzed six miRNA profiles of a BPH15 introgression line (P15) and a susceptible recipient line (PC) at three time points (0 h, 6 h and 48 h) after BPH attack, and identified 464 known miRNAs and 183 potential novel miRNAs. Before the BPH feeding, we identified 23 miRNAs differentially expressed in P15 and PC. We speculated that the resistant plant is in a priming state by the regulation of miRNAs. After the BPH feeding, 104 miRNAs were found to be expressed differentially in P15 (68 in P15-6/P15-0, 36 in P15-48/P15-0), and 80 miRNAs were found expressed differentially in PC (32 in PC-6/PC-0, 48 in PC-48/PC-0), which illustrated that miRNA expression is activated upon attack. These miRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. Our study provides additional data for scientists to further explore the mechanism of plant defense against insect attack and to find a way for efficient insect control.
Collapse
Affiliation(s)
- Yan Wu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wentang Lv
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Liang Hu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiwei Rao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Zeng
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
46
|
Cui X, Yan Q, Gan S, Xue D, Dou D, Guo N, Xing H. Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae. Gene 2017; 621:32-39. [PMID: 28411083 DOI: 10.1016/j.gene.2017.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are universal regulators that repress target gene expression in eukaryotes and play essential roles in plant immune responses. miRNAs were recently found to be involved in soybean and Phytophthora sojae interactions. Here, we screened miR1510, which was repressed in soybean during infection with P. sojae, indicating that it might be involved in soybean response to pathogens. To further uncover the roles of miRNAs in soybean, gma-miR1510a/b was overexpressed in the hairy roots of soybean using an Arabidopsis miR319a precursor as the backbone. The gma-miR1510a/b-overexpressing hairy roots showed enhanced susceptibility to P. sojae, and the results showed that miR1510 guides the cleavage of the Glyma.16G135500 gene, which encodes a classic type of plant disease resistance-associated gene that harbors the Toll-interleukin-like receptor (TIR) domain and nucleotide-binding site-leucine-rich repeat (NB-LRR) domain. Noticeably, several biotic stresses and hormone-responsive cis-regulatory elements were found to be present in the promoters of gma-MIR1510a and the target gene. Collectively, the results obtained in the current study reveal that gma-miR1510 regulates the target NB-LRR immune receptor gene Glyma.16G135500 and thus plays a crucial role in regulating the resistance of soybean to P. sojae.
Collapse
Affiliation(s)
- Xiaoxia Cui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuping Gan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
47
|
Dingkuhn M, Pasco R, Pasuquin JM, Damo J, Soulié JC, Raboin LM, Dusserre J, Sow A, Manneh B, Shrestha S, Balde A, Kretzschmar T. Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 1. Phenology. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4369-4388. [PMID: 28922774 DOI: 10.1093/jxb/erx249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenology and time of flowering are crucial determinants of rice adaptation to climate variation. A previous study characterized flowering responses of 203 diverse indica rices (the ORYTAGE panel) to ten environments in Senegal (six sowing dates) and Madagascar (two years and two altitudes) under irrigation in the field. This study used the physiological phenology model RIDEV V2 to heuristically estimate component traits of flowering such as cardinal temperatures (base temperature (Tbase) and optimum temperature), basic vegetative phase, photoperiod sensitivity and cold acclimation, and to conduct a genome-wide association study for these traits using 16 232 anonymous single-nucleotide polymorphism (SNP) markers. The RIDEV model after genotypic parameter optimization explained 96% of variation in time to flowering for Senegal alone and 91% for Senegal and Madagascar combined. The latter was improved to 94% by including an acclimation parameter reducing Tbase when the crop experienced low temperatures during early vegetative development. Eighteen significant (P<1.0 × 10-5) quantitative trait loci (QTLs) were identified, namely ten for RIDEV parameters and eight for climatic index variables (difference in time to flowering between key environments). Co-localization of QTLs for different traits were rare. RIDEV parameters gave QTLs that were mostly more significant and distinct from QTLs for index variables. Candidate genes were investigated within the estimated 50% linkage disequilibrium regions of 39 kB. In addition to several known flowering network genes, they included genes related to thermal stress adaptation and epigenetic control mechanisms. The peak SNP for a QTL for the crop parameter Tbase (P=2.0 × 10-7) was located within HD3a, a florigen that was recently identified as implicated in flowering under cool conditions.
Collapse
Affiliation(s)
- Michael Dingkuhn
- Cirad, Umr AGAP (Dept BIOS) and Upr AIDA (Dept ES), F-34398, Montpellier, France
| | - Richard Pasco
- IRRI, CESD Division, DAPO Box 7777, Metro Manila, Philippines
| | | | - Jean Damo
- IRRI, CESD Division, DAPO Box 7777, Metro Manila, Philippines
| | | | - Louis-Marie Raboin
- Cirad, Umr AGAP (Dept BIOS) and Upr AIDA (Dept ES), F-34398, Montpellier, France
| | - Julie Dusserre
- Cirad, Umr AGAP (Dept BIOS) and Upr AIDA (Dept ES), F-34398, Montpellier, France
| | - Abdoulaye Sow
- Africa Rice Center, Sahel Station, PB 96, St Louis, Senegal
| | | | - Suchit Shrestha
- IRRI, CESD Division, DAPO Box 7777, Metro Manila, Philippines
| | - Alpha Balde
- Africa Rice Center, Sahel Station, PB 96, St Louis, Senegal
| | | |
Collapse
|
48
|
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C. Plant hormone signaling in flowering: An epigenetic point of view. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:16-27. [PMID: 28419906 DOI: 10.1016/j.jplph.2017.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 05/19/2023]
Abstract
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering.
Collapse
Affiliation(s)
| | | | | | - Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Fátima Duarte-Aké
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| |
Collapse
|
49
|
Zhang H, Sonnewald U. Differences and commonalities of plant responses to single and combined stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:839-855. [PMID: 28370754 DOI: 10.1111/tpj.13557] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/21/2023]
Abstract
In natural or agricultural environments, plants are constantly exposed to a wide range of biotic and abiotic stresses. Given the forecasted global climate changes, plants will cope with heat waves, drought periods and pathogens at the same time or consecutively. Heat and drought cause opposing physiological responses, while pathogens may or may not profit from climate changes depending on their lifestyle. Several studies have been conducted to find stress-specific signatures or stress-independent commonalities. Previously this has been done by comparing different single stress treatments. This approach has been proven difficult since most studies, comparing single and combined stress conditions, have come to the conclusion that each stress treatment results in specific transcriptional changes. Although transcriptional changes at the level of individual genes are highly variable and stress-specific, central metabolic and signaling responses seem to be common, often leading to an overall reduced plant growth. Understanding how specific transcriptional changes are linked to stress adaptations and identifying central hubs controlling this interaction will be the challenge for the coming years. In this review, we will summarize current knowledge on plant responses to different individual and combined stresses and try to find a common thread potentially underlying these responses. We will begin with a brief summary of known physiological, metabolic, transcriptional and hormonal responses to individual stresses, elucidate potential commonalities and conflicts and finally we will describe results obtained during combined stress experiments. Here we will concentrate on simultaneous application of stress conditions but we will also touch consequences of sequential stress treatments.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|
50
|
MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. Transgenic Res 2017; 26:541-557. [DOI: 10.1007/s11248-017-0024-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
|