1
|
Mazza L, Bory A, Luscher A, Kloehn J, Wolfender JL, van Delden C, Köhler T. Multidrug efflux pumps of Pseudomonas aeruginosa show selectivity for their natural substrates. Front Microbiol 2025; 15:1512472. [PMID: 39850140 PMCID: PMC11754269 DOI: 10.3389/fmicb.2024.1512472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Antibiotic-resistant Gram-negative bacteria are an increasing threat to human health. Strategies to restore antibiotic efficacy include targeting multidrug efflux pumps by competitive efflux pump inhibitors. These could be derived from natural substrates of these efflux systems. In this work, we aimed to elucidate the natural substrates of the clinically relevant Mex efflux pumps of Pseudomonas aeruginosa by an untargeted metabolomic approach. We constructed a PA14 mutant, genetically deleted in the major multidrug efflux pumps MexAB-OprM, MexCD-OprJ, MexXY-OprM, and MexEF-OprN and expressed in this mutant each efflux pump individually from an inducible promoter. Comparative analysis of the exo-metabolomes identified 210 features that were more abundant in the supernatant of efflux pump overexpressors compared to the pump-deficient mutant. Most of the identified features were efflux pump specific, while only a few were shared among several Mex pumps. We identified by-products of secondary metabolites as well as signaling molecules. Supernatants of the pump-deficient mutant also showed decreased accumulation of fatty acids, including long chain homoserine lactone quorum sensing molecules. Our data suggests that Mex efflux pumps of P. aeruginosa appear to have dedicated roles in extruding signaling molecules, metabolic by-products, as well as oxidized fatty acids. These findings represent an interesting starting point for the development of competitive efflux pump inhibitors.
Collapse
Affiliation(s)
- Léna Mazza
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bory
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Alexandre Luscher
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thilo Köhler
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
3
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
4
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Hu EW, Lu HF, Lin YT, Yang TC, Li LH. Modulatory role of SmeQ in SmeYZ efflux pump-involved functions in Stenotrophomonas maltophilia. J Antimicrob Chemother 2024; 79:383-390. [PMID: 38134316 DOI: 10.1093/jac/dkad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND SmeYZ is a constitutively expressed efflux pump in Stenotrophomonas maltophilia. Previous studies demonstrated that: (i) smeYZ inactivation causes compromised swimming, oxidative stress tolerance and aminoglycoside resistance; and (ii) the ΔsmeYZ-mediated pleiotropic defects, except aminoglycoside susceptibility, result from up-regulation of entSCEBB'FA and sbiAB operons, and decreased intracellular iron level. OBJECTIVES To elucidate the modulatory role of SmeQ, a novel cytoplasmic protein, in ΔsmeYZ-mediated pleiotropic defects. METHODS The presence of operons was verified using RT-PCR. The role of SmeQ in ΔsmeYZ-mediated pleiotropic defects was assessed using in-frame deletion mutants and functional assays. A bacterial adenylate cyclase two-hybrid assay was used to investigate the protein-protein interactions. Gene expression was quantified using quantitative RT-PCR (RT-qPCR). RESULTS SmeYZ and the downstream smeQ formed an operon. SmeQ inactivation in the WT KJ decreased aminoglycoside resistance but did not affect swimming and tolerance to oxidative stress or iron depletion. However, smeQ inactivation in the smeYZ mutant rescued the ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. In the WT KJ, SmeQ positively modulated SmeYZ pump function by transcriptionally up-regulating the smeYZQ operon. Nevertheless, in the smeYZ mutant, SmeQ exerted its modulatory role by up-regulating entSCEBB'FA and sbiAB operons, decreasing intracellular iron levels, and causing ΔsmeYZ-mediated pleiotropic defects, except for aminoglycoside susceptibility. CONCLUSIONS SmeQ is the first small protein identified to be involved in efflux pump function in S. maltophilia. It exerts modulatory effect by transcriptionally altering the expression of target genes, which are the smeYZQ operon in the WT KJ, and smeYZQ, entSCEBB'FA and sbiAB operons in smeYZ mutants.
Collapse
Affiliation(s)
- En-Wei Hu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan, Republic of China
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
6
|
Hussein SM, Sofoluwe A, Paleja A, Duhme-Klair A, Thomas MS. Identification of a system for hydroxamate xenosiderophore-mediated iron transport in Burkholderia cenocepacia. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001425. [PMID: 38189440 PMCID: PMC10866019 DOI: 10.1099/mic.0.001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.
Collapse
Affiliation(s)
- Syakira Mohammed Hussein
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Ameya Paleja
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Mark S. Thomas
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
7
|
Stein NV, Eder M, Burr F, Stoss S, Holzner L, Kunz HH, Jung H. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol Spectr 2023; 11:e0230023. [PMID: 37800935 PMCID: PMC10715066 DOI: 10.1128/spectrum.02300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Gram-negative bacteria from the Pseudomonas group are survivors in various environmental niches. For example, the bacteria secrete siderophores to capture ferric ions under deficiency conditions. Tripartite efflux systems are involved in the secretion of siderophores, which are also important for antibiotic resistance. For one of these efflux systems, the resistance-nodulation-cell division transporter ParXY from the model organism Pseudomonas putida KT2440, we show that it influences the secretion of the siderophore pyoverdine in addition to its already known involvement in antibiotic resistance. Phenotypically, its role in pyoverdine secretion is only apparent when other pyoverdine secretion systems are inactive. The results confirm that the different tripartite efflux systems have overlapping substrate specificities and can at least partially functionally substitute for each other, especially in important physiological activities such as supplying the cell with iron ions. This fact must be taken into account when developing specific inhibitors for tripartite efflux systems.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabienne Burr
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Sarah Stoss
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Lorenz Holzner
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
8
|
Rivera M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J Inorg Biochem 2023; 247:112306. [PMID: 37451083 PMCID: PMC11642381 DOI: 10.1016/j.jinorgbio.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Stein NV, Eder M, Brameyer S, Schwenkert S, Jung H. The ABC transporter family efflux pump PvdRT-OpmQ of Pseudomonas putida KT2440: purification and initial characterization. FEBS Lett 2023; 597:1403-1414. [PMID: 36807028 DOI: 10.1002/1873-3468.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Tripartite efflux systems of the ABC-type family transport a variety of substrates and contribute to the antimicrobial resistance of Gram-negative bacteria. PvdRT-OpmQ, a member of this family, is thought to be involved in the secretion of the newly synthesized and recycled siderophore pyoverdine in Pseudomonas species. Here, we purified and characterized the inner membrane component PvdT and the periplasmic adapter protein PvdR of the plant growth-promoting soil bacterium Pseudomonas putida KT2440. We show that PvdT possesses an ATPase activity that is stimulated by the addition of PvdR. In addition, we provide the first biochemical evidence for direct interactions between pyoverdine and PvdRT.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sophie Brameyer
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany.,Service Unit Bioanalytics, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Serena Schwenkert
- Service Unit Mass Spectrometry of Biomolecules, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| |
Collapse
|
10
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
11
|
A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. BIOLOGY 2022; 11:biology11121711. [PMID: 36552220 PMCID: PMC9774294 DOI: 10.3390/biology11121711] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. aeruginosa produces secondary metabolites such as metallophores that play an important role in their virulence. Metallophores are metal ions chelating molecules secreted by bacteria, thus allowing them to survive in the host under metal scarce conditions. Pyoverdine, pyochelin and pseudopaline are the three metallophores secreted by P. aeruginosa. Pyoverdines are the primary siderophores that acquire iron from the surrounding medium. These molecules scavenge and transport iron to the bacterium intracellular compartment. Pyochelin is another siderophore produced by this bacterium, but in lower quantities and its affinity for iron is less than that of pyoverdine. The third metallophore, pseudopaline, is an opine narrow spectrum ion chelator that enables P. aeruginosa to uptake zinc in particular but can transport nickel and cobalt as well. This review describes all the aspects related to these three metallophore, including their main features, biosynthesis process, secretion and uptake when loaded by metals, in addition to the genetic regulation responsible for their synthesis and secretion.
Collapse
|
12
|
Wu CJ, Chen Y, Li LH, Wu CM, Lin YT, Ma CH, Yang TC. Roles of SmeYZ, SbiAB, and SmeDEF Efflux Systems in Iron Homeostasis of Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0244821. [PMID: 35647692 PMCID: PMC9241820 DOI: 10.1128/spectrum.02448-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/30/2022] [Indexed: 11/28/2022] Open
Abstract
Stenotrophomonas maltophilia, a nonfermenting Gram-negative rod, is frequently isolated from the environment and is emerging as a multidrug-resistant global opportunistic pathogen. S. maltophilia harbors eight RND-type efflux pumps that contribute to multidrug resistance and physiological functions. Among the eight efflux pumps, SmeYZ pump is constitutively highly expressed. In our previous study, we demonstrated that loss-of-function of the SmeYZ pump results in pleiotropic phenotypes, including abolished swimming motility, decreased secreted protease activity, and compromised tolerance to oxidative stress and antibiotics. In this study, we attempted to elucidate the underlying mechanisms responsible for ΔsmeYZ-mediated pleiotropic phenotypes. RNA-seq transcriptome analysis and subsequent confirmation with qRT-PCR revealed that smeYZ mutant experienced an iron starvation response because the genes involved in the synthesis and uptake of stenobactin, the sole siderophore of S. maltophilia, were significantly upregulated. We further verified that smeYZ mutant had low intracellular iron levels via inductively coupled plasma mass spectrometry (ICP-MS). Also, KJΔYZ was more sensitive to 2,2'-dipyridyl (DIP), a ferrous iron chelator, in comparison with the wild type. The contribution of SmeYZ, SmeDEF, and SbiAB pumps to stenobactin secretion was suggested by qRT-PCR and further verified by Chrome Azurol S (CAS) activity, iron source utilization, and cell viability assays. We also demonstrated that loss-of-function of SmeYZ led to the compensatory upregulation of SbiAB and SmeDEF pumps for stenobactin secretion. The overexpression of the SbiAB pump resulted in a reduction in intracellular iron levels, which may be the key factor responsible for the ΔsmeYZ-mediated pleiotropic phenotypes, except for antibiotic extrusion. IMPORTANCE Efflux pumps display high efficiency of drug extrusion, which underlies their roles in multidrug resistance. In addition, efflux pumps have physiological functions, and their expression is tightly regulated by various environmental and physiological signals. Functional redundancy of efflux pumps is commonly observed, and mutual regulation occurs among these functionally redundant pumps in a bacterium. Stenotrophomonas maltophilia is an opportunistic pathogen that shows intrinsic multi-drug resistance. In this study, we demonstrated that SmeYZ, SbiAB, and SmeDEF efflux pumps of S. maltophilia display functional redundancy in siderophore secretion. Inactivation of smeYZ led to the upregulation of smeDEF and sbiAB. Unexpectedly, sbiAB overexpression resulted in the reduction of intracellular iron levels, which led to pleiotropic defects in smeYZ mutant. This study demonstrates a previously unidentified connection between efflux pumps, siderophore secretion, and intracellular iron levels in S. maltophilia.
Collapse
Affiliation(s)
- Chao-Jung Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hua Ma
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Grove A. Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species. Front Microbiol 2022; 13:851011. [PMID: 35283809 PMCID: PMC8908255 DOI: 10.3389/fmicb.2022.851011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria respond to changing environments by modulating their gene expression programs. One of the mechanisms by which this may be accomplished is by substituting the primary σ factor with an alternative σ factor belonging to the family of extracytoplasmic function (ECF) σ factors. ECF σ factors are activated only in presence of specific signals, and they direct the RNA polymerase (RNAP) to transcribe a defined subset of genes. One condition, which may trigger the activation of an ECF σ factor, is iron limitation. To overcome iron starvation, bacteria produce and secrete siderophores, which chelate iron and facilitate its cellular uptake. In the genus Burkholderia, which includes several serious human pathogens, uptake of iron is critical for virulence, and expression of biosynthetic gene clusters encoding proteins involved in synthesis and transport of the primary siderophores are under control of an ECF σ factor. This review summarizes mechanisms involved in regulation of these gene clusters, including the role of global transcriptional regulators. Since siderophore-mediated iron acquisition is important for virulence, interference with this process constitutes a viable approach to the treatment of bacterial infections.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
15
|
Robin B, Nicol M, Le H, Tahrioui A, Schaumann A, Vuillemenot JB, Vergoz D, Lesouhaitier O, Jouenne T, Hardouin J, Potron A, Perrot V, Dé E. MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid–Liquid Interface. Front Microbiol 2022; 12:785161. [PMID: 35095797 PMCID: PMC8792954 DOI: 10.3389/fmicb.2021.785161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.
Collapse
Affiliation(s)
- Brandon Robin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marion Nicol
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Hung Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Ali Tahrioui
- Normandie Univ, UNIROUEN, LMSM EA4312, Evreux, France
| | - Annick Schaumann
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - Delphine Vergoz
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | | | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Anaïs Potron
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Valérie Perrot
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- *Correspondence: Valérie Perrot,
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- Emmanuelle Dé,
| |
Collapse
|
16
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Transporter Gene-mediated Typing for Detection and Genome Mining of Lipopeptide-producing Pseudomonas. Appl Environ Microbiol 2021; 88:e0186921. [PMID: 34731056 PMCID: PMC8788793 DOI: 10.1128/aem.01869-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas lipopeptides (LPs) are involved in diverse ecological functions and have biotechnological application potential associated with their antimicrobial and/or antiproliferative activities. They are synthesized by multimodular nonribosomal peptide synthetases which, together with transport and regulatory proteins, are encoded by large biosynthetic gene clusters (BGCs). These secondary metabolites are classified in distinct families based on the sequence and length of the oligopeptide and size of the macrocycle, if present. The phylogeny of PleB, the MacB-like transporter that is part of a dedicated ATP-dependent tripartite efflux system driving export of Pseudomonas LPs, revealed a strong correlation with LP chemical diversity. As each LP BGC carries its cognate pleB, PleB is suitable as a diagnostic sequence for genome mining, allowing assignment of the putative metabolite to a particular LP family. In addition, pleB proved to be a suitable target gene for an alternative PCR method for detecting LP-producing Pseudomonas sp. and did not rely on amplification of catalytic domains of the biosynthetic enzymes. Combined with amplicon sequencing, this approach enabled typing of Pseudomonas strains as potential producers of a LP belonging to one of the known LP families, underscoring its value for strain prioritization. This finding was validated by chemical characterization of known LPs from three different families secreted by novel producers isolated from the rice or maize rhizosphere, namely, the type strains of Pseudomonas fulva (putisolvin), Pseudomonas zeae (tensin), and Pseudomonas xantholysinigenes (xantholysin). In addition, a new member of the Bananamide family, prosekin, was discovered in the type strain of Pseudomonas prosekii, which is an Antarctic isolate. IMPORTANCEPseudomonas spp. are ubiquitous bacteria able to thrive in a wide range of ecological niches, and lipopeptides often support their lifestyle but also their interaction with other micro- and macro-organisms. Therefore, the production of lipopeptides is widespread among Pseudomonas strains. Consequently, Pseudomonas lipopeptide research not only affects chemists and microbiologists but also touches a much broader audience, including biochemists, ecologists, and plant biologists. In this study, we present a reliable transporter gene-guided approach for the detection and/or typing of Pseudomonas lipopeptide producers. Indeed, it allows us to readily assess the lipopeptide diversity among sets of Pseudomonas isolates and differentiate strains likely to produce known lipopeptides from producers of potentially novel lipopeptides. This work provides a valuable tool that can also be integrated in a genome mining strategy and adapted for the typing of other specialized metabolites.
Collapse
|
18
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
19
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
20
|
Mobilization of Iron Stored in Bacterioferritin Is Required for Metabolic Homeostasis in Pseudomonas aeruginosa. Pathogens 2020; 9:pathogens9120980. [PMID: 33255203 PMCID: PMC7760384 DOI: 10.3390/pathogens9120980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Iron homeostasis offers a significant bacterial vulnerability because pathogens obtain essential iron from their mammalian hosts, but host-defenses maintain vanishingly low levels of free iron. Although pathogens have evolved mechanisms to procure host-iron, these depend on well-regulated iron homeostasis. To disrupt iron homeostasis, our work has targeted iron mobilization from the iron storage protein bacterioferritin (BfrB) by blocking a required interaction with its cognate ferredoxin partner (Bfd). The blockade of the BfrB–Bfd complex by deletion of the bfd gene (Δbfd) causes iron to irreversibly accumulate in BfrB. In this study we used mass spectrometry and NMR spectroscopy to compare the proteomic response and the levels of key intracellular metabolites between wild type (wt) and isogenic ΔbfdP. aeruginosa strains. We find that the irreversible accumulation of unusable iron in BfrB leads to acute intracellular iron limitation, even if the culture media is iron-sufficient. Importantly, the iron limitation and concomitant iron metabolism dysregulation trigger a cascade of events that lead to broader metabolic homeostasis disruption, which includes sulfur limitation, phenazine-mediated oxidative stress, suboptimal amino acid synthesis and altered carbon metabolism.
Collapse
|
21
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
23
|
Bonneau A, Roche B, Schalk IJ. Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: an intricate interacting network including periplasmic and membrane proteins. Sci Rep 2020; 10:120. [PMID: 31924850 PMCID: PMC6954188 DOI: 10.1038/s41598-019-56913-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023] Open
Abstract
Pyoverdine (PVDI) has been reported to act both as a siderophore for scavenging iron (a key nutrient) and a signaling molecule for the expression of virulence factors. This compound is itself part of a core set of virulence factors produced by Pseudomonas aeruginosa during infections. Once secreted into the bacterial environment and having scavenged ferric iron, PVDI-Fe3+ is taken back into the P. aeruginosa periplasm via the outer membrane transporters FpvAI and FpvB. Iron release from PVDI in the bacterial periplasm involves numerous proteins encoded by the fpvGHJKCDEF genes and a mechanism of iron reduction. Here, we investigated the global interacting network between these various proteins using systematic bacterial two-hybrid screening. We deciphered a network of five interacting proteins composed of two inner-membrane proteins, FpvG (iron reductase) and FpvH (unknown function), and three periplasmic proteins, FpvJ (unknown function), FpvF (periplasmic PVDI-binding protein), and FpvC (iron periplasmic-binding protein). This interacting network strongly suggests the existence of a large protein machinery composed of these five proteins, all playing a role in iron acquisition by PVDI. Furthermore, we discovered an interaction between the periplasmic siderophore binding protein FpvF and the PvdRT-OpmQ efflux pump, also suggesting a role for FpvF in apo-PVDI recycling and secretion after iron delivery. These results highlight a multi-protein complex that drives iron release from PVDI in the periplasm of P. aeruginosa.
Collapse
Affiliation(s)
- Anne Bonneau
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Béatrice Roche
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France. .,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France.
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France. .,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France.
| |
Collapse
|
24
|
El-Shorbagi AN, Chaudhary S. Monobactams: A Unique Natural Scaffold of Four-Membered Ring Skeleton, Recent Development to Clinically Overcome Infections by Multidrug- Resistant Microbes. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190516113202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Monobactam antibiotics have been testified to demonstrate significant antibacterial
activity especially the treatment of infections by superbug microbes. Recently, research has
been focused on the structural modifications, and new generation of this privileged natural scaffold.
Objective:
Efforts have been made to discover the structure-antibacterial relationship of monbactams
in order to avoid the aimless work involving the ongoing generated analogues. This review aims to
summarize the current knowledge and development of monobactams as a broad-spectrum antibacterial
scaffolds. The recent structural modifications that expand the activity, especially in the infections
by resistant-strains, combinational therapies and dosing, as well as the possibility of crosshypersensitivity/
reactivity/tolerability with penicillins and cephalosporins will also be summarized
and inferred. Different approaches will be covered with emphasis on chemical methods and Structure-
Activity Relationship (SAR), in addition to the proposed mechanisms of action. Clinical investigation
of monobactams tackling various aspects will not be missed in this review.
Conclusion:
The conclusion includes the novels approaches, that could be followed to design new
research projects and reduce the pitfalls in the future development of monobactams.
Collapse
Affiliation(s)
- Abdel Nasser El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
25
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
26
|
Chen C, Hooper DC. Intracellular accumulation of staphylopine impairs the fitness of Staphylococcus aureus cntE mutant. FEBS Lett 2019; 593:1213-1222. [PMID: 31045247 DOI: 10.1002/1873-3468.13396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus exports staphylopine (StP), a broad-spectrum metallophore, via the CntE efflux pump. Here, the mechanism of the fitness defect in the ΔcntE mutant under metal depletion was investigated. Deletion of the StP exporter CntE results in a substantial growth defect, and disrupting the StP biosynthesis gene cntL restores growth of the ΔcntE mutant in metal-depleted media. High-resolution mass spectrometry revealed cytoplasmic accumulation of StP and the absence of extracellular StP in the ΔcntE mutant. The fitness defect of the ΔcntE mutant in mouse subcutaneous abscesses is largely due to StP accumulation. Expression of StP biosynthesis genes are upregulated in the ΔcntE mutant under metal starvation induction. In conclusion, failure to efflux StP results in intracellular StP accumulation and substantially impairs the fitness of S. aureus.
Collapse
Affiliation(s)
- Chunhui Chen
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Henríquez T, Stein NV, Jung H. PvdRT-OpmQ and MdtABC-OpmB efflux systems are involved in pyoverdine secretion in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:98-106. [PMID: 30346656 DOI: 10.1111/1758-2229.12708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent pseudomonads produce and secrete a siderophore termed pyoverdine to capture iron when it becomes scarce. The molecular basis of pyoverdine secretion is only partially understood. Here, we investigate the role of the putative PvdRT-OpmQ and MdtABC-OpmB efflux systems in pyoverdine secretion in the soil bacterium Pseudomonas putida KT2440. Expression from the respective promoters is stimulated by iron limitation albeit to varying degrees. Deletion of pvdRT-opmQ leads to reduced amounts of pyoverdine in the medium and decreased growth under iron limitation. Deletion of mdtABC-opmB does not affect growth. However, when both systems are deleted, strong effects on growth and pyoverdine secretion (yellow colony phenotype, less pyoverdine in medium, more pyoverdine in the periplasm) are observed. Overexpression of pvdRT-opmQ causes the opposite effect. These results provide first evidence for an involvement of the multidrug efflux system MdtABC-OpmB in pyoverdine secretion. In addition, the PvdRT-OpmQ system was shown to contribute to pyoverdine secretion in P. putida KT2440, extending previous investigations on its role in Pseudomonas species. Since the double deletion mutant still secrets pyoverdine, at least one additional efflux system participates in the transport of the siderophore. Furthermore, our results suggest a contribution of both efflux systems to ampicillin resistance.
Collapse
Affiliation(s)
- Tania Henríquez
- Ludwig-Maximilians-Universität München, Biozentrum, Martinsried, Germany
| | | | - Heinrich Jung
- Ludwig-Maximilians-Universität München, Biozentrum, Martinsried, Germany
| |
Collapse
|
28
|
Ringel MT, Brüser T. The biosynthesis of pyoverdines. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:424-437. [PMID: 30386787 PMCID: PMC6206403 DOI: 10.15698/mic2018.10.649] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023]
Abstract
Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions.
Collapse
Affiliation(s)
- Michael T. Ringel
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
29
|
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front Microbiol 2018; 9:950. [PMID: 29892271 PMCID: PMC5985334 DOI: 10.3389/fmicb.2018.00950] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elise Kaplan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Rivera GSM, Beamish CR, Wencewicz TA. Immobilized FhuD2 Siderophore-Binding Protein Enables Purification of Salmycin Sideromycins from Streptomyces violaceus DSM 8286. ACS Infect Dis 2018; 4:845-859. [PMID: 29460625 DOI: 10.1021/acsinfecdis.8b00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Siderophores are a structurally diverse class of natural products common to most bacteria and fungi as iron(III)-chelating ligands. Siderophores, including trihydroxamate ferrioxamines, are used clinically to treat iron overload diseases and show promising activity against many other iron-related human diseases. Here, we present a new method for the isolation of ferrioxamine siderophores from complex mixtures using affinity chromatography based on resin-immobilized FhuD2, a siderophore-binding protein (SBP) from Staphylococcus aureus. The SBP-resin enabled purification of charge positive, charge negative, and neutral ferrioxamine siderophores. Treatment of culture supernatants from Streptomyces violaceus DSM 8286 with SBP-resin provided an analytically pure sample of the salmycins, a mixture of structurally complex glycosylated sideromycins (siderophore-antibiotic conjugates) with potent antibacterial activity toward human pathogenic Staphylococcus aureus (minimum inhibitory concentration (MIC) = 7 nM). Siderophore affinity chromatography could enable the rapid discovery of new siderophore and sideromycin natural products from complex mixtures to aid drug discovery and metabolite identification efforts in a broad range of therapeutic areas.
Collapse
Affiliation(s)
- Gerry Sann M. Rivera
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Catherine R. Beamish
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
31
|
Li Y, Ma Q. Iron Acquisition Strategies of Vibrio anguillarum. Front Cell Infect Microbiol 2017; 7:342. [PMID: 28791260 PMCID: PMC5524678 DOI: 10.3389/fcimb.2017.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
The hemorrhagic septicemic disease vibriosis caused by Vibrio anguillarum shows noticeable similarities to invasive septicemia in humans, and in this case, the V. anguillarum–host system has the potential to serve as a model for understanding native eukaryotic host–pathogen interactions. Iron acquisition, as a fierce battle occurring between pathogenic V. anguillarum and the fish host, is a pivotal step for virulence. In this article, advances in defining the roles of iron uptake pathways in growth and virulence of V. anguillarum have been summarized, divided into five aspects, including siderophore biosynthesis and secretion, iron uptake, iron release, and regulation of iron uptake. Understanding the molecular mechanisms of iron acquisition will have important implications for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
32
|
|
33
|
Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227-3246. [PMID: 27632589 DOI: 10.1111/1462-2920.13525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions. Therefore, during infection, bacteria need to acquire biological metal ions from the host such that there is competition for these ions between the bacterium and the host. Evidence is increasingly emerging of "nutritional immunity" against pathogens in the hosts; this includes strategies making access to metals difficult for infecting bacteria. It is clear that biological metals play key roles during infection and in the battle between the pathogens and the host. Here, we summarize current knowledge about the strategies used by Pseudomonas aeruginosa to access the various biological metals it requires. P. aeruginosa is a medically significant Gram-negative bacterial opportunistic pathogen that can cause severe chronic lung infections in cystic fibrosis patients and that is responsible for nosocomial infections worldwide.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France.
| | - Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France
| |
Collapse
|
34
|
Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, Lai YM, Liu JR, Yang YL, Shih MC. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 2016; 6:32950. [PMID: 27605490 PMCID: PMC5015096 DOI: 10.1038/srep32950] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion.
Collapse
Affiliation(s)
- Wen-Jen Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Yen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Chia Hsieh
- Biopesticide Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, 41358, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Mi Lai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Je-Ruei Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
35
|
Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14. Appl Environ Microbiol 2016; 81:1274-85. [PMID: 25501476 DOI: 10.1128/aem.02832-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. APA4398 mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398 mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398 mutant to the wildtype strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P<0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes,we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398 mutant in addition to elevated c-di-GMP levels.
Collapse
|
36
|
Calcott MJ, Ackerley DF. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. BMC Microbiol 2015; 15:162. [PMID: 26268580 PMCID: PMC4535683 DOI: 10.1186/s12866-015-0496-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-ribosomal peptide synthetase (NRPS) enzymes govern the assembly of amino acids and related monomers into peptide-like natural products. A key goal of the field is to develop methods to effective recombine NRPS domains or modules, and thereby generate modified or entirely novel products. We previously showed that substitution of the condensation (C) and adenylation (A) domains in module 2 of the pyoverdine synthetase PvdD from Pseudomonas aeruginosa led to synthesis of modified pyoverdines in a minority of cases, but that more often the recombinant enzymes were non-functional. One possible explanation was that the majority of introduced C domains were unable to effectively communicate with the thiolation (T) domain immediately upstream, in the first module of PvdD. RESULTS To test this we first compared the effectiveness of C-A domain substitution relative to T-C-A domain substitution using three different paired sets of domains. Having previously demonstrated that the PvdD A/T domain interfaces are tolerant of domain substitution, we hypothesised that T-C-A domain substitution would lead to more functional recombinant enzymes, by maintaining native T/C domain interactions. Although we successfully generated two recombinant pyoverdines, having a serine or a N5-formyl-N5-hydroxyornithine residue in place of the terminal threonine of wild type pyoverdine, in neither case did the T-C-A domain substitution strategy lead to substantially higher product yield. To more comprehensively examine the abilities of non-native T domains to communicate effectively with the C domain of PvdD module 2 we then substituted the module 1 T domain with 18 different T domains sourced from other pyoverdine NRPS enzymes. In 15/18 cases the recombinant NRPS was functional, including 6/6 cases where the introduced T domain was located upstream of a C domain in its native context. CONCLUSIONS Our data indicate that T domains are generally able to interact effectively with non-native C domains, contrasting with previous findings that they are not generally portable upstream of epimerisation (E) or thioesterase (TE) domains. This offers promise for NRPS recombination efforts, but also raises the possibility that some C domains are unable to efficiently accept non-native peptides at their donor site due to steric constraints or other limitations.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. .,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
37
|
Bouvier B, Cézard C, Sonnet P. Selectivity of pyoverdine recognition by the FpvA receptor of Pseudomonas aeruginosa from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:18022-34. [PMID: 26098682 DOI: 10.1039/c5cp02939b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa, a ubiquitous human opportunistic pathogen, has developed resistances to multiple antibiotics. It uses its primary native siderophore, pyoverdine, to scavenge the iron essential to its growth in the outside medium and transport it back into its cytoplasm. The FpvA receptor on the bacterial outer membrane recognizes and internalizes pyoverdine bearing its iron payload, but can also bind pyoverdines from other Pseudomonads or synthetic analogues. Pyoverdine derivatives could therefore be used as vectors to deliver antibiotics into the bacterium. In this study, we use molecular dynamics and free energy calculations to characterize the mechanisms and thermodynamics of the recognition of the native pyoverdines of P. aeruginosa and P. fluorescens by FpvA. Based on these results, we delineate the features that pyoverdines with high affinity for FpvA should possess. In particular, we show that (i) the dynamics and interaction of the unbound pyoverdines with water should be optimized with equal care as the interface contacts in the complex with FpvA; (ii) the C-terminal extremity of the pyoverdine chain, which appears to play no role in the bound complex, is involved in the intermediate stages of recognition; and (iii) the length and cyclicity of the pyoverdine chain can be used to fine-tune the kinetics of the recognition mechanism.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS FRE3517/Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens Cedex 1, France.
| | | | | |
Collapse
|
38
|
Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. FEBS Lett 2015; 589:730-7. [PMID: 25680529 DOI: 10.1016/j.febslet.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
A paucity of information exists concerning the mechanism(s) by which bacteria secrete siderophores into the extracellular compartment. We investigated the role of SfaA and SbnD, two major facilitator superfamily (MFS)-type efflux proteins, in the secretion of the Staphylococcus aureus siderophores staphyloferrin A (SA) and staphyloferrin B (SB), respectively. Deletion of sfaA resulted in a drastic reduction of SA secreted into the supernatant with a corresponding accumulation of SA in the cytoplasm and a significant growth defect in cells devoid of SB synthesis. In contrast, sbnD mutants showed transiently lowered levels of secreted SB, suggesting the involvement of additional efflux mechanisms.
Collapse
|
39
|
Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: Evidence for siderosomes. J Inorg Biochem 2015; 148:27-34. [PMID: 25697961 DOI: 10.1016/j.jinorgbio.2015.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
Abstract
Pyoverdine I (PVDI) and pyochelin (PCH) are the two major siderophores produced by Pseudomonas aeruginosa PAO1 to import iron. The biochemistry of the biosynthesis of these two siderophores has been described in detail in the literature over recent years. PVDI assembly requires the coordinated action of seven cytoplasmic enzymes and is followed by a periplasmic maturation before secretion of the siderophore into the extracellular medium by the efflux system PvdRT-OpmQ. PCH biosynthesis also involves seven cytoplasmic enzymes but no periplasmic maturation. Recent findings indicate that the cytoplasmic enzymes involved in each of these two siderophore biosynthesis pathways can form siderophore-specific multi-enzymatic complexes called siderosomes associated with the inner leaflet of the cytoplasmic membrane. This organization may optimize the transfer of the siderophore precursors between the various participating enzymes and avoid the diffusion of siderophore precursors, able to chelate metals, throughout the cytoplasm. Here, we describe these recently published findings and discuss the existence of these siderosomes in P. aeruginosa.
Collapse
|
40
|
Potentiation of antibacterial activity of the MB-1 siderophore-monobactam conjugate using an efflux pump inhibitor. Antimicrob Agents Chemother 2015; 59:2439-42. [PMID: 25605364 DOI: 10.1128/aac.04172-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preliminary enthusiasm over the encouraging spectrum and in vitro activities of siderophore conjugates, such as MB-1, was recently tempered by unexpected variability in in vivo efficacy. The need for these conjugates to compete for iron with endogenously produced siderophores has exposed a significant liability for this novel antibacterial strategy. Here, we have exploited dependence on efflux for siderophore secretion in Pseudomonas aeruginosa and provide evidence that efflux inhibition may circumvent this in vivo-relevant resistance liability.
Collapse
|
41
|
Mohanty A, Liu Y, Yang L, Cao B. Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria. Appl Microbiol Biotechnol 2014; 99:1957-66. [DOI: 10.1007/s00253-014-6097-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022]
|
42
|
Abstract
![]()
Marine
bacteria produce an abundance of suites of acylated siderophores
characterized by a unique, species-dependent headgroup that binds
iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with
fatty acids ranging from saturated and unsaturated C12–C18
fatty acids. In the present study, we report that in the late log
phase of growth, the fatty acids are hydrolyzed by an amide hydrolase
producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the
same sample of open ocean water as Marinobacter sp.
DS40M6, produces the acyl aquachelins, also as a suite composed of
a peptidic headgroup distinct from that of the marinobactins. In contrast
to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins
is not detected, even when H. aquamarina str. DS40M3
is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active
toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin
C, as well as octanoyl homoserine lactone used in quorum sensing).
Further, when H. aquamarina str. DS40M3 is cultured
together with Marinobacter sp. DS40M6, the fatty
acids of both suites of siderophores are hydrolyzed, and the aquachelin
headgroup is also produced. The present study demonstrates that coculturing
bacteria leads to metabolically tailored metabolites compared to growth
in a single pure culture, which is interesting given the importance
of siderophore-mediated iron acquisition for bacterial growth and
that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater.
Collapse
Affiliation(s)
- Julia M Gauglitz
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9510, United States
| | | | | | | |
Collapse
|
43
|
Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc Natl Acad Sci U S A 2014; 111:1945-50. [PMID: 24497493 DOI: 10.1073/pnas.1311402111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Siderophores are small iron-binding molecules secreted by bacteria to scavenge iron. Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, produces the siderophores mycobactin and carboxymycobactin. Complexes of the mycobacterial membrane proteins MmpS4 and MmpS5 with the transporters MmpL4 and MmpL5 are required for siderophore export and virulence in Mtb. Here we show that, surprisingly, mycobactin or carboxymycobactin did not rescue the low-iron growth defect of the export mutant but severely impaired growth. Exogenous siderophores were taken up by the export mutant, and siderophore-delivered iron was used, but the deferrated siderophores accumulated intracellularly, indicating a blockade of siderophore recycling. This hypothesis was confirmed by the observation that radiolabeled carboxymycobactin was taken up and secreted again by Mtb. Addition of iron salts to an Mtb siderophore biosynthesis mutant stimulated more growth in the presence of a limiting amount of siderophores than iron-loaded siderophores alone. Thus, recycling enables Mtb to acquire iron at lower metabolic cost because Mtb cannot use iron salts without siderophores. Exogenous siderophores were bactericidal for the export mutant in submicromolar quantities. High-resolution mass spectrometry revealed that endogenous carboxymycobactin also accumulated in the export mutant. Toxic siderophore accumulation is prevented by a drug that inhibits siderophore biosynthesis. Intracellular accumulation of siderophores was toxic despite the use of an alternative iron source such as hemin, suggesting an additional inhibitory mechanism independent of iron availability. This study indicates that targeting siderophore export/recycling would deliver a one-two punch to Mtb: restricting access to iron and causing toxic intracellular siderophore accumulation.
Collapse
|
44
|
Guillon L, Altenburger S, Graumann PL, Schalk IJ. Deciphering protein dynamics of the siderophore pyoverdine pathway in Pseudomonas aeruginosa. PLoS One 2013; 8:e79111. [PMID: 24205369 PMCID: PMC3813593 DOI: 10.1371/journal.pone.0079111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa produces the siderophore, pyoverdine (PVD), to obtain iron. Siderophore pathways involve complex mechanisms, and the machineries responsible for biosynthesis, secretion and uptake of the ferri-siderophore span both membranes of Gram-negative bacteria. Most proteins involved in the PVD pathway have been identified and characterized but the way the system functions as a whole remains unknown. By generating strains expressing fluorescent fusion proteins, we show that most of the proteins are homogeneously distributed throughout the bacterial cell. We also studied the dynamics of these proteins using fluorescence recovery after photobleaching (FRAP). This led to the first diffusion coefficients ever determined in P. aeruginosa. Cytoplasmic and periplamic diffusion appeared to be slower than in Escherichia coli but membrane proteins seemed to behave similarly in the two species. The diffusion of cytoplasmic and periplasmic tagged proteins involved in the PVD pathway was dependent on the interaction network to which they belong. Importantly, the TonB protein, motor of the PVD-Fe uptake process, was mostly immobile but its mobility increased substantially in the presence of PVD-Fe.
Collapse
Affiliation(s)
| | - Stephan Altenburger
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Peter L. Graumann
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | | |
Collapse
|
45
|
Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc Natl Acad Sci U S A 2013; 110:12577-82. [PMID: 23858453 DOI: 10.1073/pnas.1301428110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maintenance of cooperation in populations where public goods are equally accessible to all but inflict a fitness cost on individual producers is a long-standing puzzle of evolutionary biology. An example of such a scenario is the secretion of siderophores by bacteria into their environment to fetch soluble iron. In a planktonic culture, these molecules diffuse rapidly, such that the same concentration is experienced by all bacteria. However, on solid substrates, bacteria form dense and packed colonies that may alter the diffusion dynamics through cell-cell contact interactions. In Pseudomonas aeruginosa microcolonies growing on solid substrate, we found that the concentration of pyoverdine, a secreted iron chelator, is heterogeneous, with a maximum at the center of the colony. We quantitatively explain the formation of this gradient by local exchange between contacting cells rather than by global diffusion of pyoverdine. In addition, we show that this local trafficking modulates the growth rate of individual cells. Taken together, these data provide a physical basis that explains the stability of public goods production in packed colonies.
Collapse
|
46
|
Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:4197-207. [PMID: 23774440 DOI: 10.1128/aac.00629-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug resistance in Gram-negative bacteria has become so threatening to human health that new antibacterial platforms are desperately needed to combat these deadly infections. The concept of siderophore conjugation, which facilitates compound uptake across the outer membrane by hijacking bacterial iron acquisition systems, has received significant attention in recent years. While standard in vitro MIC and resistance frequency methods demonstrate that these compounds are potent, broad-spectrum antibacterial agents whose activity should not be threatened by unacceptably high spontaneous resistance rates, recapitulation of these results in animal models can prove unreliable, partially because of the differences in iron availability in these different methods. Here, we describe the characterization of MB-1, a novel siderophore-conjugated monobactam that demonstrates excellent in vitro activity against Pseudomonas aeruginosa when tested using standard assay conditions. Unfortunately, the in vitro findings did not correlate with the in vivo results we obtained, as multiple strains were not effectively treated by MB-1 despite having low MICs. To address this, we also describe the development of new in vitro assays that were predictive of efficacy in mouse models, and we provide evidence that competition with native siderophores could contribute to the recalcitrance of some P. aeruginosa isolates in vivo.
Collapse
|
47
|
Reid DW, Latham R, Lamont IL, Camara M, Roddam LF. Molecular analysis of changes in Pseudomonas aeruginosa load during treatment of a pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2013; 12:688-99. [PMID: 23706827 DOI: 10.1016/j.jcf.2013.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Intravenous antibiotics for pulmonary exacerbations (PEs) of cystic fibrosis (CF) usually target Pseudomonas aeruginosa. Insights into the CF lung microbiome have questioned this approach. We used RT-qPCR to determine whether intravenous antibiotics reduced P. aeruginosa numbers and whether this correlated with improved lung function. We also investigated antibiotic effects on other common respiratory pathogens in CF. METHODS Sputa were collected from patients when stable and again during a PE. Sputa were expectorated into a RNA preservation buffer for RNA extraction and preparation of cDNA. qPCR was used to enumerate viable P. aeruginosa as well as Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Burkholderia cepacia complex and Aspergillus fumigatus. RESULTS Fifteen CF patients were followed through 21 PEs. A complete set of serial sputum samples was unavailable for two patients (three separate PEs). P. aeruginosa numbers did not increase immediately prior to a PE, but numbers during intravenous antibiotic treatment were reduced ≥4-log in 6/18 and ≥1-log in 4/18 PEs. In 7/18 PEs, P. aeruginosa numbers changed very little with intravenous antibiotics and one patient demonstrated a ≥2-log increase in P. aeruginosa load. H. influenzae and S. pneumoniae were detected in ten and five PEs respectively, but with antibiotic treatment these bacteria rapidly became undetectable in 6/10 and 4/5 PEs, respectively. There was a negative correlation between P. aeruginosa numbers and FEV1 during stable phase (r(s)=0.75, p<0.05), and reductions in P. aeruginosa load with intravenous antibiotic treatment correlated with improved FEV1 (r(s)=0.52, p<0.05). CONCLUSIONS Exacerbations are not due to increased P. aeruginosa numbers in CF adults. However, lung function improvements correlate with reduced P. aeruginosa burden suggesting that current antibiotic treatment strategies remain appropriate in most patients. Improved understanding of PE characterised by unchanged P. aeruginosa numbers and minimal lung function improvement following treatment may allow better targeted therapies.
Collapse
Affiliation(s)
- D W Reid
- Menzies Research Institute Tasmania, Hobart, Tasmania, Australia; Queensland Institute of Medical Research, Brisbane, Queensland, Australia; The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
48
|
Kenney GE, Rosenzweig AC. Genome mining for methanobactins. BMC Biol 2013; 11:17. [PMID: 23442874 PMCID: PMC3621798 DOI: 10.1186/1741-7007-11-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/26/2013] [Indexed: 01/27/2023] Open
Abstract
Background Methanobactins (Mbns) are a family of copper-binding natural products involved in copper uptake by methanotrophic bacteria. The few Mbns that have been structurally characterized feature copper coordination by two nitrogen-containing heterocycles next to thioamide groups embedded in a peptidic backbone of varying composition. Mbns are proposed to derive from post-translational modification of ribosomally synthesized peptides, but only a few genes encoding potential precursor peptides have been identified. Moreover, the relevance of neighboring genes in these genomes has been unclear. Results The potential for Mbn production in a wider range of bacterial species was assessed by mining microbial genomes. Operons encoding Mbn-like precursor peptides, MbnAs, were identified in 16 new species, including both methanotrophs and, surprisingly, non-methanotrophs. Along with MbnA, the core of the operon is formed by two putative biosynthetic genes denoted MbnB and MbnC. The species can be divided into five groups on the basis of their MbnA and MbnB sequences and their operon compositions. Additional biosynthetic proteins, including aminotransferases, sulfotransferases and flavin adenine dinucleotide (FAD)-dependent oxidoreductases were also identified in some families. Beyond biosynthetic machinery, a conserved set of transporters was identified, including MATE multidrug exporters and TonB-dependent transporters. Additional proteins of interest include a di-heme cytochrome c peroxidase and a partner protein, the roles of which remain a mystery. Conclusions This study indicates that Mbn-like compounds may be more widespread than previously thought, but are not present in all methanotrophs. This distribution of species suggests a broader role in metal homeostasis. These data provide a link between precursor peptide sequence and Mbn structure, facilitating predictions of new Mbn structures and supporting a post-translational modification biosynthetic pathway. In addition, testable models for Mbn transport and for methanotrophic copper regulation have emerged. Given the unusual modifications observed in Mbns characterized thus far, understanding the roles of the putative biosynthetic proteins is likely to reveal novel pathways and chemistry.
Collapse
Affiliation(s)
- Grace E Kenney
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
49
|
Braun V, Hantke K. The Tricky Ways Bacteria Cope with Iron Limitation. IRON UPTAKE IN BACTERIA WITH EMPHASIS ON E. COLI AND PSEUDOMONAS 2013. [DOI: 10.1007/978-94-007-6088-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 2012; 15:1661-73. [PMID: 23126435 DOI: 10.1111/1462-2920.12013] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/17/2012] [Accepted: 09/26/2012] [Indexed: 02/03/2023]
Abstract
Pyoverdines are siderophores produced by fluorescent Pseudomonads to acquire iron. At least 60 different pyoverdines produced by diverse strains have been chemically characterized. They all consist of a dihydroquinoline-type chromophore linked to a peptide. These peptides are of various lengths and the sequences are strain specific. Pyoverdine biosynthesis in Pseudomonas aeruginosa and fluorescent Pseudomonads is a complex process involving at least 12 different proteins, starting in the cytoplasm and ending in the periplasm. The cellular localization of pyoverdine precursors was recently shown to be consistent with their biosynthetic enzymes. In the cytoplasm, pyoverdine appears to be assembled at the inner membrane and particularly at the old cell pole of the bacterium. Mature pyoverdine is uniformly distributed throughout the periplasm, like the periplasmic enzyme PvdQ. Secretion of pyoverdine involves a recently identified ATP-dependent efflux pump, PvdRT-OpmQ. This efflux system does not only secrete newly synthesized pyoverdine but also pyoverdine that already transported iron into the bacterial periplasm and any pyoverdine-metal complex other than ferri-pyoverdine present in the periplasm. This review considers how these new insights into pyoverdine biosynthesis and secretion contribute to our understanding of the role of pyoverdine in iron and metal homeostasis in fluorescent Pseudomonads.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|