1
|
Liu D, Wang J, Zhang S, Jiang H, Wu Y, Wang C, Chen W. The potential of ARL4C and its-mediated genes in atherosclerosis and agent development. Front Pharmacol 2025; 16:1513340. [PMID: 40176913 PMCID: PMC11961928 DOI: 10.3389/fphar.2025.1513340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Foam cells are the risk factors for atherosclerosis. Recently, ARL4C, a member of the ADP-ribosylation factor family of GTP-binding proteins, was found to promote cholesterol efflux to decrease foam cell formation, suggesting that ARL4C may be a new promising target for the treatment of atherosclerosis. In fact, ARL4C regulated the expression of multiple atherosis-related genes, including ABCA1, ALDH1A3, ARF6, ENHO, FLNA, LRP6, OSBPL5, Snail2, and SOX2. Many agents, including ABCA1 agonists (CS-6253, IMM-H007, RG7273, and R3R-01), FLNA antagonist sumifilam, LRP6 inhibitor BI-905677 and agonist SZN-1326, and SOX2 inhibitor STEMVAC, were investigated in clinical trials. Targeting these genes could improve the success rate of drug development in clinical trials. Indeed, many agents could regulate ARL4C expression, including LXR/RXR agonists, Ac-LDL, sucrose, T9-t11-CLA, and miR-26. Downregulation of ARL4C with siRNA and anti-sense oligonucleotide (ASO), such as ASO-1316, is developing in preclinical research for the treatment of lung adenocarcinoma, liver cancer, and colorectal cancer. Thus, ARL4C and its regulated genes may be a potential target for drug development. Thus, we focus on the role of ARL4C and its-mediated genes in atherosclerosis and agent development, which provide insights for the identification, research, and drug development of novel targets.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shuangshuang Zhang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Yudong Wu
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Chao Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Wujun Chen
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Wassaifi S, Kaeffer B, Zarrouk S. Cellular Phenotypic Transformation During Atherosclerosis: The Potential Role of miRNAs as Biomarkers. Int J Mol Sci 2025; 26:2083. [PMID: 40076710 PMCID: PMC11900927 DOI: 10.3390/ijms26052083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 03/14/2025] Open
Abstract
Cellular phenotypic transformation is a key process that occurs during the development and progression of atherosclerosis. Within the arterial wall, endothelial cells, vascular smooth muscle cells, and macrophages undergo phenotypic changes that contribute to the pathogenesis of atherosclerosis. miRNAs have emerged as potential biomarkers for cellular phenotypic changes during atherosclerosis. Monitoring miR-155-5p, miR-210-3p, and miR-126-3p or 5p levels could provide valuable insights into disease progression, risk of complications, and response to therapeutic interventions. Moreover, miR-92a-3p's elevated levels in atherosclerotic plaques present opportunities for predicting disease progression and related complications. Baseline levels of miR-33a/b hold the potential for predicting responses to cholesterol-lowering therapies, such as statins, and the likelihood of dyslipidemia-related complications. Additionally, the assessment of miR-122-5p levels may offer insights into the efficacy of low-density-lipoprotein-lowering therapies. Understanding the specific miRNA-mediated regulatory mechanisms involved in cellular phenotypic transformations can provide valuable insights into the pathogenesis of atherosclerosis and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Souhir Wassaifi
- LR99E10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Bertrand Kaeffer
- UMR 1280, PhAN, INRAE, Nantes Université, F-44000 Nantes, France;
| | - Sinda Zarrouk
- LR99E10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
- Institut Pasteur Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
3
|
Zidan EF, El-Mezayen NS, Elrewini SH, Afify EA, Ali MA. Memantine/Rosuvastatin Therapy Abrogates Cognitive and Hippocampal Injury in an Experimental Model of Alzheimer's Disease in Rats: Role of TGF-β1/Smad Signaling Pathway and Amyloid-β Clearance. J Neuroimmune Pharmacol 2024; 20:4. [PMID: 39708240 DOI: 10.1007/s11481-024-10159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder of complex pathogenesis and multiple interacting signaling pathways where amyloidal-β protein (Aβ) clearance plays a crucial role in cognitive decline. Herein, the current study investigated the possible modulatory effects of memantine/ rosuvastatin therapy on TGF-β1/p-Smad/p21 signaling pathway and their correlation to the blood brain barrier transporters involved in Aβ-clearance and microRNAs as a novel molecular mechanism in AD treatment. AD was induced by a single intracerebroventricular streptozotocin injection (ICV-STZ, 3 mg/kg) in rats and drug therapy was continued for 28 days after AD induction. Efficacy was monitored by applying a battery of behavioral assessments, as well as biochemical, histopathological, molecular and gene expression techniques. The upregulated TGF-β1-signaling in the untreated rats was found to be highly correlated to transporters and microRNAs governing Aβ-efflux; ABCA1/miRNA-26 and LRP1/miRNA-205 expressions, rather than RAGE/miRNA-185 controlling Aβ-influx; an effect that was opposed by the tested drugs and was found to be correlated with the abolished TGF-β1-signaling as well. Combined memantine/rosuvastatin therapy ameliorated the STZ evoked decreases in escape latency and number of crossovers in the Morris water maze test, % spontaneous alternation in the Y-maze test, and discrimination and recognition indices in the object recognition test. The evoked behavioral responses were directly related to the β-amyloid accumulation and the alteration in its clearance. Additionally, drug treatment increased brain glutathione and decreased malondialdehyde levels. These findings were histopathologically confirmed by a marked reduction of gliosis and restoration of neuronal integrity in the CA1 region of the hippocampus of the AD rats. These findings implicated that the memantine/rosuvastatin combination could offer a new therapeutic potential for AD management by abrogating the TGF-β1/p-Smad2/p21 pathway and regulating Aβ-clearance.
Collapse
Affiliation(s)
- Esraa F Zidan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Safaa H Elrewini
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Toxicology, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| |
Collapse
|
4
|
Ulas E, Brodsky I, Burakov A. Small GTPase ARL4C Associated with Various Cancers Affects Microtubule Nucleation. Biomedicines 2024; 12:2872. [PMID: 39767779 PMCID: PMC11673753 DOI: 10.3390/biomedicines12122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The changes in the level of small GTPase ARL4C are associated with the initiation and progression of many different cancers. The content of ARL4C varies greatly between different tissues, and the induction of ARL4C expression leads to changes in cell morphology and proliferation. Although ARL4C can bind alpha-tubulin and affect intracellular transport, the role of ARL4C in the functioning of the tubulin cytoskeleton remained unclear. The aim of the present work is to study this role; Methods: The cells of the following lines were used for the experiments: HeLa (human cervical carcinoma), MCF7 (human breast cancer), U2OS (human osteosarcoma), Vero, BS-C-1, and COS7 (African green monkey kidney). The receptor activation by agonists followed by the preparation of cell lysates, electrophoresis, and immunoblotting, as well as cell fixation and immunofluorescent staining, were used to assess endogenous ARL4C/ABCA1 levels and the microtubule network morphology. The microtubule regrowth technique was performed to estimate the rate of microtubule nucleation, and the overexpression of different ARL4C constructs was used to affect ARL4C activity in the cells; Results: We showed that the changes in the endogenous ARL4C level or the ARL4C activity alter the microtubule nucleation process in the cells; Conclusions: small GTPase ARL4C may serve as one of the regulators of the microtubule nucleation process both in normal and cancer cells.
Collapse
Affiliation(s)
- Evgeniia Ulas
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (E.U.); (I.B.)
- Institute of Protein Research of Russian Academy of Sciences, Pushchino 142290, Russia
| | - Ilya Brodsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (E.U.); (I.B.)
| | - Anton Burakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (E.U.); (I.B.)
| |
Collapse
|
5
|
Torres-Paz YE, Gamboa R, Fuentevilla-Álvarez G, Cardoso-Saldaña G, Martínez-Alvarado R, Soto ME, Huesca-Gómez C. Involvement of Expression of miR33-5p and ABCA1 in Human Peripheral Blood Mononuclear Cells in Coronary Artery Disease. Int J Mol Sci 2024; 25:8605. [PMID: 39201292 PMCID: PMC11354752 DOI: 10.3390/ijms25168605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression post-transcriptionally and are crucial in lipid metabolism. ATP-binding cassette transporter A1 (ABCA1) is essential for cholesterol efflux from cells to high-density lipoprotein (HDL). Dysregulation of miRs targeting ABCA1 can affect cholesterol homeostasis and contribute to coronary artery disease (CAD). This study aimed to investigate the expression of miRs targeting ABCA1 in human monocytes, their role in cholesterol efflux, and their relationship with CAD. We included 50 control and 50 CAD patients. RT-qPCR examined the expression of miR-33a-5p, miR-26a-5p, and miR-144-3p in monocytes. Logistic regression analysis explored the association between these miRs and CAD. HDL's cholesterol acceptance was analyzed using the J774A.1 cell line. Results showed that miR-26a-5p (p = 0.027) and ABCA1 (p = 0.003) expression levels were higher in CAD patients, while miR-33a-5p (p < 0.001) levels were lower. Downregulation of miR-33a-5p and upregulation of ABCA1 were linked to a lower CAD risk. Atorvastatin upregulated ABCA1 mRNA, and metformin downregulated miR-26a-5p in CAD patients. Decreased cholesterol efflux correlated with higher CAD risk and inversely with miRs in controls. Reduced miR-33a-5p expression and increased ABCA1 expression are associated with decreased CAD risk. miR deregulation in monocytes may influence atherosclerotic plaque formation by regulating cholesterol efflux. Atorvastatin and metformin could offer protective effects by modulating miR-33a-5p, miR-26a-5p, and ABCA1, suggesting potential therapeutic strategies for CAD prognosis and treatment.
Collapse
Affiliation(s)
- Yazmín Estela Torres-Paz
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico; (Y.E.T.-P.); (R.G.); (G.F.-Á.)
| | - Ricardo Gamboa
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico; (Y.E.T.-P.); (R.G.); (G.F.-Á.)
| | - Giovanny Fuentevilla-Álvarez
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico; (Y.E.T.-P.); (R.G.); (G.F.-Á.)
| | - Guillermo Cardoso-Saldaña
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico (R.M.-A.)
| | - Rocío Martínez-Alvarado
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico (R.M.-A.)
| | - María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico;
| | - Claudia Huesca-Gómez
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14380, Mexico; (Y.E.T.-P.); (R.G.); (G.F.-Á.)
| |
Collapse
|
6
|
Zailaie SA, Khoja BB, Siddiqui JJ, Mawardi MH, Heaphy E, Aljagthmi A, Sergi CM. Investigating the Role of Non-Coding RNA in Non-Alcoholic Fatty Liver Disease. Noncoding RNA 2024; 10:10. [PMID: 38392965 PMCID: PMC10891858 DOI: 10.3390/ncrna10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that do not code for protein but play key roles in regulating cellular processes. NcRNAs globally affect gene expression in diverse physiological and pathological contexts. Functionally important ncRNAs act in chromatin modifications, in mRNA stabilization and translation, and in regulation of various signaling pathways. Non-alcoholic fatty liver disease (NAFLD) is a set of conditions caused by the accumulation of triacylglycerol in the liver. Studies of ncRNA in NAFLD are limited but have demonstrated that ncRNAs play a critical role in the pathogenesis of NAFLD. In this review, we summarize NAFLD's pathogenesis and clinical features, discuss current treatment options, and review the involvement of ncRNAs as regulatory molecules in NAFLD and its progression to non-alcoholic steatohepatitis (NASH). In addition, we highlight signaling pathways dysregulated in NAFLD and review their crosstalk with ncRNAs. Having a thorough understanding of the disease process's molecular mechanisms will facilitate development of highly effective diagnostic and therapeutic treatments. Such insights can also inform preventive strategies to minimize the disease's future development.
Collapse
Affiliation(s)
- Samar A. Zailaie
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Basmah B. Khoja
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Jumana J. Siddiqui
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Mawardi
- Medicine Department, Gastroenterology Section, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia;
| | - Emily Heaphy
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Amjad Aljagthmi
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
7
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, Xu H, Zhao Y, Yu X, Shi S. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med 2023; 55:1982-1995. [PMID: 37653037 PMCID: PMC10545798 DOI: 10.1038/s12276-023-01079-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
Cholesterol is an essential structural component of membranes that contributes to membrane integrity and fluidity. Cholesterol homeostasis plays a critical role in the maintenance of cellular activities. Recently, increasing evidence has indicated that cholesterol is a major determinant by modulating cell signaling events governing the hallmarks of cancer. Numerous studies have shown the functional significance of cholesterol metabolism in tumorigenesis, cancer progression and metastasis through its regulatory effects on the immune response, ferroptosis, autophagy, cell stemness, and the DNA damage response. Here, we summarize recent literature describing cholesterol metabolism in cancer cells, including the cholesterol metabolism pathways and the mutual regulatory mechanisms involved in cancer progression and cholesterol metabolism. We also discuss various drugs targeting cholesterol metabolism to suggest new strategies for cancer treatment.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Hang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Dlouha D, Blaha M, Huckova P, Lanska V, Hubacek JA, Blaha V. Long-Term LDL-Apheresis Treatment and Dynamics of Circulating miRNAs in Patients with Severe Familial Hypercholesterolemia. Genes (Basel) 2023; 14:1571. [PMID: 37628623 PMCID: PMC10454435 DOI: 10.3390/genes14081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Lipoprotein apheresis (LA) is a therapeutic option for patients with severe hypercholesterolemia who have persistently elevated LDL-C levels despite attempts at drug therapy. MicroRNAs (miRNAs), important posttranscriptional gene regulators, are involved in the pathogenesis of atherosclerosis. Our study aimed to monitor the dynamics of twenty preselected circulating miRNAs in patients under long-term apheresis treatment. Plasma samples from 12 FH patients (men = 50%, age = 55.3 ± 12.2 years; mean LA overall treatment time = 13.1 ± 7.8 years) were collected before each apheresis therapy every sixth month over the course of four years of treatment. Eight complete follow-up (FU) samples were measured in each patient. Dynamic changes in the relative quantity of 6 miRNAs (miR-92a, miR-21, miR-126, miR-122, miR-26a, and miR-185; all p < 0.04) during FU were identified. Overall apheresis treatment time influenced circulating miR-146a levels (p < 0.04). In LDLR mutation homozygotes (N = 5), compared to heterozygotes (N = 7), we found higher plasma levels of miR-181, miR-126, miR-155, and miR-92a (all p < 0.03). Treatment with PCSK9 inhibitors (N = 6) affected the plasma levels of 7 miRNAs (miR-126, miR-122, miR-26a, miR-155, miR-125a, miR-92a, and miR-27a; all p < 0.04). Long-term monitoring has shown that LA in patients with severe familial hypercholesterolemia influences plasma circulating miRNAs involved in endothelial dysfunction, cholesterol homeostasis, inflammation, and plaque development. The longer the treatment using LA, the better the miRNA milieu depicting the potential cardiovascular risk.
Collapse
Affiliation(s)
- Dana Dlouha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
| | - Milan Blaha
- 4th Department of Internal Medicine—Hematology, University Hospital Hradec Králové, 50005 Hradec Králové, Czech Republic;
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic;
| | - Pavlina Huckova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
| | - Vera Lanska
- Statistical Unit, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Jaroslav Alois Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
- 1st Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Vladimir Blaha
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic;
- 3rd Department of Internal Medicine—Metabolism and Gerontology, University Hospital Hradec Králové, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
10
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
12
|
Chen H, Zhang S, Yu B, Xu Y, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Circulating microRNAs as putative mediators in the association between short-term exposure to ambient air pollution and cardiovascular biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113604. [PMID: 35576800 PMCID: PMC9167781 DOI: 10.1016/j.ecoenv.2022.113604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with increased cardiovascular morbidity and mortality. Circulating microRNAs (miRNAs) may mediate cardiovascular effects of exposure to air pollution. This study aims to investigate whether circulating miRNAs mediate the associations between short-term human exposure to ambient air pollution and cardiovascular biomarkers. METHODS Twenty-four healthy adults residing in the Research Triangle area of North Carolina, USA were enrolled between December 2016 and July 2019. Circulating miRNAs, protein, and lipid biomarkers were assessed repeatedly for 3 sessions separated by at least 7 days. Linear mixed-effects models were used to assess the associations between air pollutant concentrations obtained from nearby air quality monitoring stations and miRNAs controlling for covariates including omega-3 index, relative humidity, and temperature. miRNAs that were significantly altered were then matched with protein or blood lipid biomarkers using either Ingenuity Pathway Analysis or a literature search. A mediation analysis was performed to test the statistical significance of miRNA's mediating effects between exposure to air pollution and cardiovascular biomarkers. RESULTS Short-term exposure to ambient fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) was associated with changes in 11, 9, and 24 circulating miRNAs, respectively. Pathway analysis showed that several miRNAs including miR-125b-5p, miR-144-5p, miR-26a-5p, and miR-34a-5p may mediate the effects of air pollutant exposure on the changes of downstream protein / lipid biomarkers including serum amyloid A (SAA), C-reactive protein (CRP), soluble vascular adhesive molecules 1 (sICAM1), total cholesterol, and high-density lipoproteins (HDL). Mediation analysis showed that only miR-26a-5p significantly mediated air pollutant (PM2.5 and NO2)-induced effects on blood CRP and total cholesterol levels. For example, 34.1% of PM2.5-associated changes in CRP were significantly mediated by miR-26a-5p at lag4 [indirect effects, 0.06 (0.02, 0.10), P = 0.005]. Similarly, the proportions of indirect effects of miR-26a-5p on the association between NO2 exposure and CRP were 46.8% at lag2 [0.06 (0.02, 0.11), P = 0.003], 61.2% at lag3 [0.05 (0.00, 0.09), P = 0.04], and 30.8% at 5-day moving average [0.06 (0.02, 0.10), P = 0.01]. In addition, omega-3 index may be a significant modifying factor of the mediated effects of miRNAs. CONCLUSIONS This study demonstrates that short-term exposure to ambient PM2.5, O3, and NO2 was associated with specific circulating miRNAs, and some of which may mediate their effects on the downstream inflammation and blood lipid markers.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bin Yu
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Yunan Xu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Bonek K, Kuca Warnawin E, Kornatka A, Plebańczyk M, Burakowski T, Maśliński W, Wisłowska M, Głuszko P, Ciechomska M. Circulating miRNA Correlates with Lipid Profile and Disease Activity in Psoriatic Arthritis, Rheumatoid Arthritis, and Ankylosing Spondylitis Patients. Biomedicines 2022; 10:biomedicines10040893. [PMID: 35453643 PMCID: PMC9024741 DOI: 10.3390/biomedicines10040893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the associations of microRNA (miRs) signatures with cytokines, serum lipids, and disease activity in patients with psoriatic arthritis (PsA), ankylosing spondylitis (AS), and rheumatoid arthritis (RA). In total, 65 patients (PsA n = 25, AS n = 25, RA n = 15) and 25 healthy controls (HC) were enrolled into the study. The expression of miR-223-5p, miR-92b-3p, miR-485-3p, miR-10b-5p, let-7d-5p, miR-26a-2-3p, miR-146b-3p, and cytokines levels were measured in sera. DIANA-mirPath analysis was used to predict pathways targeted by the dysregulated miRs. Disease activity scores were calculated. Lipid profile, uric acid, glucose level, and C-reactive protein (CRP) concentrations were determined in the blood. Based on lipid profiles, the PsA group had hypertriglyceridaemia, and RA patients revealed mixed dyslipidaemia, while in AS, no specific changes were found. miR expression analysis revealed upregulation of miR-26a-2-3p and miR-10b-5p in PsA, miR-485-3p in AS, and let-7d-5p in RA. Several correlations between disease activity indexes, metabolites levels, and expression of miRs were observed in PsA, RA, and AS patients. Finally, in ROC analysis, miR-26a-2-3p/miR-485-3p, and let-7d-5p/miR-146b-3p tandems revealed high sensitivity and specificity in distinguishing between PsA, AS, and RA. Our study illustrates the superiority of miR expressions in distinguishing between RA, PsA, and AS. In PsA, a unique regulatory pathway exists through miR-26a-2-3p, miR-223-5p, miR-10b-5p, and miR-92b-3p that converges proatherogenic metabolism and disease activity.
Collapse
Affiliation(s)
- Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.W.); (P.G.)
- Correspondence: (K.B.); (M.C.)
| | - Ewa Kuca Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Anna Kornatka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Tomasz Burakowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Włodzimierz Maśliński
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
| | - Małgorzata Wisłowska
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.W.); (P.G.)
| | - Piotr Głuszko
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.W.); (P.G.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (E.K.W.); (A.K.); (M.P.); (T.B.); (W.M.)
- Correspondence: (K.B.); (M.C.)
| |
Collapse
|
14
|
HDL and microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:153-161. [DOI: 10.1007/978-981-19-1592-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Yang J, Peng S, Zhang K. ARL4C depletion suppresses the resistance of ovarian cancer to carboplatin by disrupting cholesterol transport and autophagy via notch-RBP-Jκ-H3K4Me3-OSBPL5. Hum Exp Toxicol 2022; 41:9603271221135064. [DOI: 10.1177/09603271221135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing studies indicate that cholesterol plays an important role in drug resistance. ARL4C is implicated in the export and import of cholesterol, therefore this study aimed to explore the effect of ARL4C on the resistance of ovarian cancer (OVC) to Carboplatin. This study collected OVC tissue samples from patients who are sensitive or resistant to carboplatin, and established Carboplatin-resistant OVC cell lines, OVCAR3(R) and SKOV3(R) using OVCAR3 and SKOV3. High throughput sequencing was conducted to find genes that regulated by ARL4C. Cholesterol esterification was performed to evaluate the transport of cholesterol from Lysosome (LY) to Endoplasmic reticulum (ER). The fluorescence of LC3-GFP-mRFP was used to evaluate the function of autophagy flux. As indicated by PCR, western blot and Immunohistochemistry, ARL4C was increased in the Carboplatin-resistant OVC tissues and cells. Knockdown of ARL4C attenuated the resistance of OVCAR3(R) and SKOV3(R) to Carboplatin. By suppressing Notch signal, ARL4C knockdown inhibited the transcriptional function of RBP-Jκ and RBP-Jκ-induced H3K4Me3, which collectively reduced OSBPL5 expression. OSBPL5 deficiency inhibited the transport of cholesterol from LYs to ER, which led to the accumulation of cholesterol in LYs and the dysfunction of autophagy. In summary, ARL4C knockdown attenuated the resistance of OVC to Carboplatin by disrupting cholesterol transport and autophagy. This study revealed a promising target to attenuate the resistance of OVC to Carboplatin and elucidated the potential mechanism.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Keqiang Zhang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
17
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
18
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
19
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and circular RNAs (circRNAs) are pivotal regulators of mRNA and protein expression that critically contribute to cardiovascular pathophysiology. Although little is known about the origin and function of such ncRNAs, they have been suggested as promising biomarkers with powerful therapeutic value in cardiovascular disease (CVD). In this review, we summarize the most recent findings on ncRNAs biology and their implication on cholesterol homeostasis and lipoprotein metabolism that highlight novel therapeutic avenues for treating dyslipidemia and atherosclerosis. RECENT FINDINGS Clinical and experimental studies have elucidated the underlying effects that specific miRNAs impose both directly and indirectly regulating circulating high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) metabolism and cardiovascular risk. Some of these relevant miRNAs include miR-148a, miR-128-1, miR-483, miR-520d, miR-224, miR-30c, miR-122, miR-33, miR-144, and miR-34. circRNAs are known to participate in a variety of physiological and pathological processes due to their abundance in tissues and their stage-specific expression activation. Recent studies have proven that circRNAs may be considered targets of CVD as well. Some of these cirRNAs are circ-0092317, circ_0003546, circ_0028198, and cirFASN that have been suggested to be strongly involved in lipoprotein metabolism; however, their relevance in CVD is still unknown. MicroRNA and cirRNAs have been proposed as powerful therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field of lipid and lipoprotein metabolism underscoring the novel mechanisms by which some of these ncRNAs influence lipoprotein metabolism and CVD.
Collapse
|
21
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
22
|
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:2529. [PMID: 33802600 PMCID: PMC7961492 DOI: 10.3390/ijms22052529] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.
Collapse
Affiliation(s)
- Amin Javadifar
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Sahar Rastgoo
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93338 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
23
|
Juan CC, Li LH, Hou SK, Liu PS, Kao WF, Chiu YH, How CK. Expression of ABC transporter and scavenger receptor mRNAs in PBMCs in 100-km ultramarathon runners. Eur J Clin Invest 2021; 51:e13365. [PMID: 32725886 DOI: 10.1111/eci.13365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cholesterol metabolism is tightly regulated at the cellular level. This study was to measure the expression levels of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1), scavenger receptor class B type I (SR-BI) and class A (SRA), and CD36 mRNAs in peripheral blood mononuclear cells (PBMCs) in response to 100-km ultramarathon event and determine any correlation between these ABC transporters/scavenger receptor expression levels and plasma cholesterol homeostasis. MATERIALS AND METHODS Twenty-six participants were enrolled. Blood was drawn from each individual 1 week prior, immediately after, and 24 hours after the race. The expression levels of ABCA1, ABCG1, SR-BI, SRA and CD36 in PBMCs were measured by using real-time quantitative reverse transcription polymerase chain reaction. RESULTS Plasma triglyceride levels were significantly increased immediately after the race and dropped at 24-hour post-race compared with pre-race values. The 100-km ultramarathon boosted high-density lipoprotein cholesterol (HDL-C) levels and decreased low-density lipoprotein cholesterol (LDL-C) levels 24-hour post-race. The expression levels of ABCA1, ABCG1 and SR-BI were markedly decreased, whereas that of CD36 was slightly but significantly upregulated in runners' PBMCs immediately after the race. Ultramarathon resulted in immediate large-scale stimulation of inflammatory cytokines with increased plasma interleukin-6 and tumour necrosis factor-alpha levels. Moreover, by using in vitro models with human monocytic cell lines, incubation of runners' plasma immediately after the race significantly downregulated ABCA1 and ABCG1, and upregulated CD36 expression in these cells. CONCLUSIONS ABCA1, ABCG1 and CD36 gene expressions in PBMCS might be associated with endurance exercise-induced plasma cholesterol homeostasis and systemic inflammatory response.
Collapse
Affiliation(s)
- Chi-Chang Juan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Ph.D. Program of Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Sen-Kuang Hou
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ping-Shiou Liu
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Fong Kao
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Hui Chiu
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| |
Collapse
|
24
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Implications for MicroRNA involvement in the prognosis and treatment of atherosclerosis. Mol Cell Biochem 2021; 476:1327-1336. [PMID: 33389489 DOI: 10.1007/s11010-020-03992-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are important molecules which implicated in various processes, such as differentiation, development, cell survival, cell apoptosis and also cell metabolism. Investigations over decades have revealed that various genes and signaling pathways are implicated in beginning and development of atherosclerosis, several miRNAs being involved in these dysregulated genes and pathways. miRNAs have provided new molecular vision in the context of atherosclerosis. miRNAs are considered as important regulators of cellular migration, differentiation, proliferation, lipid uptake and efflux, as well as cytokine production. Application of miRNAs as a biomarker in diagnosis, prognosis and even therapy is quiet exciting. Although animal researches showed promising results, still some practical difficulties and technical challenges need to be addressed before translation from researches into clinical practices. In this review, we present important data about three critical cells endothelial cell (EC), vascular smooth muscle cell (VSMC), and monocyte/macrophage and regulation of these cells through miRNAs. Furthermore, we discuss about the potential of miRNAs as a prognostic and diagnostic biomarkers, therapeutic opportunities and challenges, and also future perspective.
Collapse
|
26
|
Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 2020; 61:1764-1775. [PMID: 33008925 PMCID: PMC7707179 DOI: 10.1194/jlr.ra120001121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiayan Guo
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Hanbing Mei
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Zhen Sheng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Qingyuan Meng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Hong Yin
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
27
|
Chen C, Wang S, Hu Y, Zhang M, He X, You C, Wen X, Monroig Ó, Tocher DR, Li Y. miR-26a mediates LC-PUFA biosynthesis by targeting the Lxrα-Srebp1 pathway in the marine teleost Siganus canaliculatus. J Biol Chem 2020; 295:13875-13886. [PMID: 32759307 DOI: 10.1074/jbc.ra120.014858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs have been recently shown to be important regulators of lipid metabolism. However, the mechanisms of microRNA-mediated regulation of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis in vertebrates remain largely unknown. Herein, we for the first time addressed the role of miR-26a in LC-PUFA biosynthesis in the marine rabbitfish Siganus canaliculatus The results showed that miR-26a was significantly down-regulated in liver of rabbitfish reared in brackish water and in S. canaliculatus hepatocyte line (SCHL) incubated with the LC-PUFA precursor α-linolenic acid, suggesting that miR-26a may be involved in LC-PUFA biosynthesis because of its abundance being regulated by factors affecting LC-PUFA biosynthesis. Opposite patterns were observed in the expression of liver X receptor α (lxrα) and sterol regulatory element-binding protein-1 (srebp1), as well as the LC-PUFA biosynthesis-related genes (Δ4 fads2, Δ6Δ5 fads2, and elovl5) in SCHL cells incubated with α-linolenic acid. Luciferase reporter assays revealed rabbitfish lxrα as a target of miR-26a, and overexpression of miR-26a in SCHL cells markedly reduced protein levels of Lxrα, Srebp1, and Δ6Δ5 Fads2 induced by the agonist T0901317. Moreover, increasing endogenous Lxrα by knockdown of miR-26a facilitated Srebp1 activation and concomitant increased expression of genes involved in LC-PUFA biosynthesis and consequently promoted LC-PUFA biosynthesis both in vitro and in vivo These results indicate a critical role of miR-26a in regulating LC-PUFA biosynthesis through targeting the Lxrα-Srebp1 pathway and provide new insights into the regulatory network controlling LC-PUFA biosynthesis and accumulation in vertebrates.
Collapse
Affiliation(s)
- Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Yu Hu
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Xiaobo Wen
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal-Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
28
|
Decreasing Arl4c expression by inhibition of AKT signal in human lung adenocarcinoma cells. Life Sci 2020; 246:117428. [DOI: 10.1016/j.lfs.2020.117428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022]
|
29
|
Shao D, Di Y, Lian Z, Zhu B, Xu X, Guo D, Huang Q, Jiang C, Kong J, Shi J. Grape seed proanthocyanidins suppressed macrophage foam cell formation by miRNA-9 via targeting ACAT1 in THP-1 cells. Food Funct 2020; 11:1258-1269. [PMID: 31967154 DOI: 10.1039/c9fo02352f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abnormal lipid metabolism in macrophages leads to atherosclerosis (AS). Excessive LDL cholesterol uptake by macrophages in the aortic endothelium leads to formation of foam cells. Previous studies suggested that proanthocyanidins effectively suppress this process, while the in-depth mechanism has not been elucidated. In mononuclear THP-1 cells, we found that the oligomeric fraction of proanthocyanidins was more effective in suppressing foam cell formation and 25 μg ml-1 for 48 h were the optimum conditions. Under these model conditions, we investigated gene expression and for the first time reported expression of regulatory microRNA (miRNA). It was found that the proanthocyanidins restrained macrophage foaming mainly by lowering the expression levels of cholesterol influx-related receptors CD36 and SR-A, and promoting the expression of cholesterol efflux-related receptor ABCA1. Further, it was latest revealed that proanthocyanidins could notably inhibit the expression of ACAT1, a key gene for intracellular cholesterol esterification. Further investigation was performed on the expression of regulatory miRNAs (miR-134 for CD36, miR-134, miR-155 for SR-A, miR-155, let-7g for LOX-1, miR-9 for ACAT1, miR-27a, miR-19b, miR-10b and miR-33a for ABCA1). The relative expression of miR-9, a miRNA targeting ACAT1, was decreased after the treatment of proanthocyanidins. It was most likely that proanthocyanidins suppressed the expression of ACAT1 via up-regulating the expression of miR-9, thus lessening the intracellular lipid accumulation and eventually inhibiting macrophage foam cell formation. This assumption was further verified by use of miR-9 mimic and its inhibitor.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
D'Ardes D, Santilli F, Guagnano MT, Bucci M, Cipollone F. From Endothelium to Lipids, Through microRNAs and PCSK9: A Fascinating Travel Across Atherosclerosis. High Blood Press Cardiovasc Prev 2020; 27:1-8. [PMID: 31925708 DOI: 10.1007/s40292-019-00356-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Lipids and endothelium are pivotal players on the scene of atherosclerosis and their interaction is crucial for the establishment of the pathological processes. The endothelium is not only the border of the arterial wall: it plays a key role in regulating circulating fatty acids and lipoproteins and vice versa it is regulated by these lipidic molecules thereby promoting atherosclerosis. Inflammation is another important element in the relationship between lipids and endothelium. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a fundamental regulator of LDL-C and anti-PCSK9 monoclonal antibodies have been approved for therapeutic use in hypercholesterolemia, with the promise to subvert the natural history of the disease. Moreover, growing experimental and clinical evidence is enlarging our understanding of the mechanisms through which this protein may facilitate the genesis of atherosclerosis, independently of its impact on lipid metabolism. In addition, environmental stimuli may affect the post-transcriptional regulation of genes through micro-RNAs, which in turn play a key role in orchestrating the crosstalk between endothelium and cholesterol. Advances in experimental research, with development of high throughput techniques, have led, over the last century, to a tremendous progress in the understanding and fine tuning of the molecular mechanisms leading to atherosclerosis. Identification of pivotal keystone molecules bridging lipid metabolism, endothelial dysfunction and atherogenesis will provide the mechanistic substrate to test valuable targets for prediction, prevention and treatment of atherosclerosis-related disease.
Collapse
Affiliation(s)
- D D'Ardes
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Santilli
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M T Guagnano
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M Bucci
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Cipollone
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy.
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy.
| |
Collapse
|
31
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
32
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
34
|
Wen X, Zhao WH, Chen LZ, Qu W, Liu HX, Yan HY, Hou LF, Ping J. Attenuated cholesterol metabolism pathway suppresses regulatory T cell development in prenatal nicotine exposed female mice. Toxicology 2019; 428:152309. [PMID: 31629012 DOI: 10.1016/j.tox.2019.152309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
Abstract
The recession of regulatory T cells (Tregs) contributes to development of autoimmune disease. Our previous study suggested that prenatal nicotine exposure (PNE) inhibited Tregs frequency in offspring, but the mechanisms are still uncertain. This study aimed to explore the molecular mechanisms of PNE-induced Tregs inhibition from the perspective of cellular cholesterol homeostasis both in vivo and in vitro. PNE mice model were established by 3 mg/kg/d nicotine administration in Balb/c strain from gestational day (GD) 9 to GD 18. The results showed that PNE significantly decreased thymic Tregs frequency in neonatal offspring. The activation of mTOR and downregulation of p-STAT5/Foxp3 pathway of Tregs were observed in PNE offspring. Mechanism study found that PNE elevated ATP-binding cassette transporter G1 (ABCG1) expression and decreased intracellular cholesterol content of Tregs in offspring, indicating impaired intracellular cholesterol homeostasis. Similar results were observed in 1 μM nicotine-treated primary thymocytes in vitro. Further, cholesterol-replenishment can abrogate nicotine-induced mTOR activation and the following suppression of p-STAT5/Foxp3 pathway and Tregs frequency. In addition, Abcg1 siRNA transfection can partly reverse the nicotine-decreased intracellular cholesterol content and cell frequency of Tregs. In conclusion, this study showed that PNE could suppress Tregs development in female mice by up-regulating ABCG1-dependent cholesterol efflux, and suggested that PNE-induced thymic Tregs recession of offspring at early life was the developmental origin mechanism of immune dysfunction in later life.
Collapse
Affiliation(s)
- Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lan-Zhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University School of Resource and Environmental Sciences, Wuhan, 430079, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
35
|
Mehraban MH, Motovali-Bashi M, Ghasemi Y. MiR-26a and miR-26b downregulate the expression of sucrase-isomaltase enzyme: A new chapter in diabetes treatment. Biochem Biophys Res Commun 2019; 519:192-197. [PMID: 31493868 DOI: 10.1016/j.bbrc.2019.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022]
Abstract
Type II diabetes is a metabolic disease that has affected 460 million people around the globe and become a heavy burden on health care system. Diabetic patients suffer from hyperglycemia and hyperinsulinemia which can damage vital organs in body like heart, kidneys, eyes and nervous system. Different strategies have been introduced to control or lessen these diabetic complications in which one of the most promising approaches is the inhibition of intestinal sucrase-isomaltase (SI). Inhibition of this enzyme will block the release of glucose into bloodstream and lead to reduced postprandial hyperglycemia. MicroRNAs are small regulatory molecules that play critical roles in different cellular pathways and molecular mechanisms. It is proved that microRNAs have significant effects on cellular mechanisms involved in diabetes and can be used as biomarkers for diagnosis of this metabolic disease. Based on bioinformatics analysis miR-26a and miR-26b can interact with a conserved 3'-UTR region of SI mRNA which lead to a hypothesis that these miRs may have negative regulatory effect on this enzyme. In this study, we investigated the impact of high glucose conditions on expression of sucrase-isomaltase, miR-26a and miR-26b in caco-2 cell line. It is proved that in a simulated diabetic condition there is a reverse correlation between the expression pattern of these miRs and SI. QRT-PCR method was used to evaluate the expression of our target molecules. Interestingly, transfection of miR-26a and miR-26b in caco-2 cell line reduced the transcription of SI mRNA and decreased the sucrase and maltase activity of its active sites. To sum up, our results demonstrate the first evidence of the significant effect of miR-26a and miR-26b on SI expression and activity. We proved that these microRNAs may directly inhibit this enzyme and can be used as a new scaffold in search of finding novel treatments for type II diabetes.
Collapse
Affiliation(s)
| | - Majid Motovali-Bashi
- Genetics Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Li Y, Sun T, Shen S, Wang L, Yan J. LncRNA DYNLRB2-2 inhibits THP-1 macrophage foam cell formation by enhancing autophagy. Biol Chem 2019; 400:1047-1057. [PMID: 30903747 DOI: 10.1515/hsz-2018-0461] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/13/2019] [Indexed: 01/17/2023]
Abstract
The aim of this study was to investigate whether long non-coding RNA (lncRNA) DYNLRB2-2 can inhibit foam cell formation by activating autophagy. The location of DYNLRB2-2 in THP-1-derived macrophages was analyzed by fluorescence in situ hybridization (FISH). Oxidized-low-density lipoprotein (ox-LDL) was used to induce the formation of foam cells, Oil Red O (ORO) staining and high-performance liquid chromatography (HPLC) were performed to detect accumulation of lipid droplets and the level of cholesterol concentration, respectively. The mRNA and protein level of ATP-binding cassette transporter A1 (ABCA1) were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Relative protein levels of (p-) liver kinase B1 (LKB1), (p-) AMP-activated protein kinase (AMPK), (p-) the mammalian target of rapamycin (mTOR) and autophagy markers (LC3 II, Beclin-1 and p62) in THP-1 macrophage-derived foam cells were analyzed by Western blotting. The levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β] in THP-1 macrophage-derived foam cells were detected by enzyme-linked immunosorbent assay (ELISA). 3-MA and compound C were used to block autophagy. Our data show that DYNLRB2-2 inhibited the formation of THP-1 macrophage-derived foam cells and promotes cholesterol efflux (CE) by activating autophagy. DYNLRB2-2 caused autophagy by activating the signaling pathway of LKB1/AMPK/mTOR in foam cells. DYNLRB2-2 activated the LKB1/AMPK/mTOR signaling pathway via the miR-298/Sirtuin 3 (SIRT3) axis. Our data indicated that DYNLRB2-2 enhanced CE by regulating the LKB1/AMPK/mTOR autophagy signaling pathway through the miR-298/SIRT3 axis, thereby blocking the formation of foam cells from THP-1 macrophages.
Collapse
Affiliation(s)
- Yongqiang Li
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Tao Sun
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuxin Shen
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Lixia Wang
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Jifeng Yan
- Department of Cardiology, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, School of Clinical Medicine, Henan University, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| |
Collapse
|
37
|
Sharma B, Agnihotri N. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J Steroid Biochem Mol Biol 2019; 191:105377. [PMID: 31063804 DOI: 10.1016/j.jsbmb.2019.105377] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Tumor cells show high avidity for cholesterol in order to support their inherent nature to divide and proliferate. This results in the rewiring of cholesterol homeostatic pathways by influencing not only de novo synthesis but also uptake or efflux pathways of cholesterol. Recent findings have pointed towards the importance of cholesterol efflux in tumor pathogenesis. Cholesterol efflux is the first and foremost step in reverse cholesterol transport and any perturbation in this pathway may lead to the accumulation of intracellular cholesterol, thereby altering the cellular equilibrium. This review addresses the different mechanisms of cholesterol efflux from the cell and highlights their role and regulation in context to tumor development. There are four different routes by which cholesterol can be effluxed from the cell namely, 1) passive diffusion of cholesterol to mature HDL particles, 2) SR-B1 mediated facilitated diffusion, 3) Active efflux to apo A1 via ABCA1 and 4) ABCG1 mediated efflux to mature HDL. These molecular players facilitating cholesterol efflux are engaged in a complex interplay with different signaling pathways. Thus, an understanding of the efflux pathways, their regulation and cross-talk with signaling molecules may provide novel prognostic markers and therapeutic targets to combat the onset of carcinogenesis.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
38
|
Liu C, Zhang L, Xu R, Zheng H. miR-26b Inhibits Virus Replication Through Positively Regulating Interferon Signaling. Viral Immunol 2018; 31:676-682. [DOI: 10.1089/vim.2018.0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chang Liu
- Institutes of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu Province, China
- Department of Biology, South University of Sciences and Technology, Shenzhen, Guangdong Province, China
| | - Liting Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu Province, China
| | - Rui Xu
- Institutes of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu Province, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu Province, China
| |
Collapse
|
39
|
Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH. Targeting Non-coding RNA in Vascular Biology and Disease. Front Physiol 2018; 9:1655. [PMID: 30524312 PMCID: PMC6262071 DOI: 10.3389/fphys.2018.01655] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Only recently have we begun to appreciate the importance and complexity of the non-coding genome, owing in some part to truly significant advances in genomic technology such as RNA sequencing and genome-wide profiling studies. Previously thought to be non-functional transcriptional “noise,” non-coding RNAs (ncRNAs) are now known to play important roles in many diverse biological pathways, not least in vascular disease. While microRNAs (miRNA) are known to regulate protein-coding gene expression principally through mRNA degradation, long non-coding RNAs (lncRNAs) can activate and repress genes by a variety of mechanisms at both transcriptional and translational levels. These versatile molecules, with complex secondary structures, may interact with chromatin, proteins, and other RNA to form complexes with an array of functional consequences. A body of emerging evidence indicates that both classes of ncRNAs regulate multiple physiological and pathological processes in vascular physiology and disease. While dozens of miRNAs are now implicated and described in relative mechanistic depth, relatively fewer lncRNAs are well described. However, notable examples include ANRIL, SMILR, and SENCR in vascular smooth muscle cells; MALAT1 and GATA-6S in endothelial cells; and mitochondrial lncRNA LIPCAR as a powerful biomarker. Due to such ubiquitous involvement in pathology and well-known biogenesis and functional genetics, novel miRNA-based therapies and delivery methods are now in development, including some early stage clinical trials. Although lncRNAs may hold similar potential, much more needs to be understood about their relatively complex molecular behaviours before realistic translation into novel therapies. Here, we review the current understanding of the mechanism and function of ncRNA, focusing on miRNAs and lncRNAs in vascular disease and atherosclerosis. We discuss existing therapies and current delivery methods, emphasising the importance of miRNAs and lncRNAs as effectors and biomarkers in vascular pathology.
Collapse
Affiliation(s)
- John Hung
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.,Deanery of Clinical Sciences, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Vladislav Miscianinov
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David E Newby
- Deanery of Clinical Sciences, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Liu J, Ning C, Li B, Li R, Wu W, Liu H. Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:1458-1468. [PMID: 30208692 PMCID: PMC6722318 DOI: 10.5713/ajas.18.0438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
Objective As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biological repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing technology on HiSeq 2500 platform. Results As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through adipocytokine signaling pathway, mitogen-activated protein kinase, AMP-activated protein kinase, cyclic adenosine monophosphate, phosphatidylinositol 3 kinase/protein kinase B, and Notch signaling pathway. The four most abundantly expressed miRNAs were miR-122, miR-26a and miR-30a-5p (miR-122 only in P70), which play important roles in lipid metabolism. Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p, and miR-98) might be critical regulators in lipid metabolic process, including acyl-CoA synthetase long chain family member 4, ATP-binding casette A4, and stearyl-CoA desaturase. Thus, these miRNAs were the promising candidates for lipid metabolism. Conclusion Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.
Collapse
Affiliation(s)
- Jingge Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caibo Ning
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
41
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
42
|
Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR, Zhang Y, Kong J, Jiang C, Shi J. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food 2018; 2:13. [PMID: 31304263 PMCID: PMC6550192 DOI: 10.1038/s41538-018-0022-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis (AS) is a typical example of a widespread fatal cardiovascular disease. Accumulation of cholesterol-laden macrophages in the artery wall forms the starting point of AS. Increased influx of oxidized low-density lipoprotein to macrophages and decreased efflux of free cholesterol out of macrophages constitute major factors promoting the development of AS. Inflammation further aggravates the development of AS along or via interaction with the cholesterol metabolism. Many microRNAs (miRNAs) are related to the regulation of macrophage in AS in aspects of cholesterol metabolism and inflammation signaling. Dietary compounds perform AS inhibitory effects via miRNAs in the cholesterol metabolism (miR-19b, miR-378, miR-10b, miR-33a, and miR-33b) and two miRNAs in the inflammation signaling (miR-155 and miR-146a). The targeted miRNAs in the cholesterol metabolism vary greatly among different food compounds; however, in inflammation signaling, most food compounds target miR-155. Many receptors are involved in macrophages via miRNAs, including ABCA1 and ABCG1 as major receptors in the cholesterol metabolism, while nuclear factor-κB (NF-κB) and Nrf2 signaling and PI3K/AKT signaling pathways are targeted during inflammation. This article reviews current literature to investigate possible AS therapy with dietary compounds via targeting miRNAs. Currently existing problems were also discussed to guide further studies.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yichao Di
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Lei Zhang
- Department of Microbiology and Pathogeny Biology, Xi’an Medical University, 1 Xinwang Road, Xi’an, 710072 Shaanxi China
| | - Muhammad shahid riaz Rajoka
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yudan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| |
Collapse
|
43
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
44
|
Zhang X, Price NL, Fernández-Hernando C. Non-coding RNAs in lipid metabolism. Vascul Pharmacol 2018; 114:93-102. [PMID: 29929012 DOI: 10.1016/j.vph.2018.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD), the leading cause of death and morbidity in the Western world, begins with lipid accumulation in the arterial wall, which is the initial step in atherogenesis. Alterations in lipid metabolism result in increased risk of cardiometabolic disorders, and treatment of lipid disorders remains the most common strategy aimed at reducing the incidence of CVD. Work done over the past decade has identified numerous classes of non-coding RNA molecules including microRNAs (miRNAs) and long-non-coding RNAs (lncRNAs) as critical regulators of gene expression involved in lipid metabolism and CVD, mostly acting at post-transcriptional level. A number of miRNAs, including miR-33, miR-122 and miR-148a, have been demonstrated to play important role in controlling the risk of CVD through regulation of cholesterol homeostasis and lipoprotein metabolism. lncRNAs are recently emerging as important regulators of lipid and lipoprotein metabolism. However, much additional work will be required to fully understand the impact of lncRNAs on CVD and lipid metabolism, due to the high abundance of lncRNAs and the poor-genetic conservation between species. This article reviews the role of miRNAs and lncRNAs in lipid and lipoprotein metabolism and their potential implications for the treatment of CVD.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA.
| |
Collapse
|
45
|
Zaiou M, Bakillah A. Epigenetic Regulation of ATP-Binding Cassette Protein A1 ( ABCA1) Gene Expression: A New Era to Alleviate Atherosclerotic Cardiovascular Disease. Diseases 2018; 6:34. [PMID: 29751497 PMCID: PMC6023542 DOI: 10.3390/diseases6020034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
The most important function of high density lipoprotein (HDL) is its ability to remove cholesterol from cells and tissues involved in the early stages of atherosclerosis back to the liver for excretion. The ATP-binding cassette transporters ABCA1 and ABCG1 are responsible for the major part of cholesterol efflux to HDL in macrophage foam cells. Thus, promoting the process of reverse cholesterol transport (RCT) by upregulating mainly ABCA1 remains one of the potential targets for the development of new therapeutic agents against atherosclerosis. Growing evidence suggests that posttranscriptional regulation of HDL biogenesis as well as modulation of ABCA1 expression are under the control of several genetic and epigenetic factors such as transcription factor (TFs), microRNAs (miRNAs) and RNA-binding proteins (RBPs).These factors may act either individually or in combination to orchestrate ABCA1 expression. Complementary to our recent work, we propose an exploratory model for the potential molecular mechanism(s) underlying epigenetic signature of ABCA1 gene regulation. Such a model may hopefully provide the basic framework for understanding the epigenetic regulation of RCT and contribute to the development of novel therapeutic strategies to alleviate the burden of cardiovascular diseases (CVD).
Collapse
Affiliation(s)
- Mohamed Zaiou
- School of Pharmacy, University of Lorraine, 5 rue Albert Lebrun, 54000 Nancy, France.
| | - Ahmed Bakillah
- Department of Medicine, Downstate Medical Center, State University of New York, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| |
Collapse
|
46
|
Chu M, Zhao Y, Yu S, Hao Y, Zhang P, Feng Y, Zhang H, Ma D, Liu J, Cheng M, Li L, Shen W, Cao H, Li Q, Min L. MicroRNA-221 may be involved in lipid metabolism in mammary epithelial cells. Int J Biochem Cell Biol 2018; 97:118-127. [PMID: 29474925 DOI: 10.1016/j.biocel.2018.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/27/2022]
Abstract
Milk lipids, important for infant growth and development, are produced and secreted by mammary gland under the regulation of steroid hormones, growth factors, and microRNAs (miRNAs). miR-221 has been identified in milk and adipocytes and it plays important roles in regulating normal mammary epithelial hierarchy and breast cancer stem cells; however, its roles in lipid metabolism in mammary epithelial cells (MECs), the cells of lipid synthesis and secretion, are as yet unknown. Through overexpression or inhibition of miR-221 expression, we found that it regulated lipid metabolism in MECs and was expressed differentially at various stages during murine mammary gland development. Inhibition of miR-221 expression increased lipid content in MECs through elevation of the lipid synthesis enzyme FASN, while overexpression of miR-221 reduced MEC lipid content. Moreover, the steroid hormones estradiol and progesterone decreased miR-221 expression with a subsequent increase in lipid formation in MECs. The expression of miR-221 was lower during lactation, which suggests that it may be involved in milk production. Therefore, miR-221 might be a useful target for influencing milk lipid production.
Collapse
Affiliation(s)
- Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuai Yu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanan Hao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pengfei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Dongxue Ma
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration, Qingdao, 266000, PR China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfang Cao
- Laiwu Veterinary and Livestock Administration, Laiwu, 271100, PR China
| | - Qiang Li
- Laiwu Veterinary and Livestock Administration, Laiwu, 271100, PR China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
47
|
Oliveira GB, Regitano LCA, Cesar ASM, Reecy JM, Degaki KY, Poleti MD, Felício AM, Koltes JE, Coutinho LL. Integrative analysis of microRNAs and mRNAs revealed regulation of composition and metabolism in Nelore cattle. BMC Genomics 2018; 19:126. [PMID: 29415651 PMCID: PMC5804041 DOI: 10.1186/s12864-018-4514-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The amount of intramuscular fat can influence the sensory characteristics and nutritional value of beef, thus the selection of animals with adequate fat deposition is important to the consumer. There is growing knowledge about the genes and pathways that control the biological processes involved in fat deposition in muscle. MicroRNAs (miRNAs) belong to a well-conserved class of non-coding small RNAs that modulate gene expression across a range of biological functions in animal development and physiology. The aim of this study was to identify differentially expressed (DE) miRNAs, regulatory candidate genes and co-expression networks related to intramuscular fat (IMF) deposition. To achieve this, we used mRNA and miRNA expression data from the Longissimus dorsi muscle of 30 Nelore steers with high (H) and low (L) genomic estimated breeding values (GEBV) for IMF deposition. RESULTS Differential miRNA expression analysis between animals with extreme GEBV values for IMF identified six DE miRNAs (FDR 10%). Functional annotation of the target genes for these microRNAs indicated that the PPARs signaling pathway is involved with IMF deposition. Candidate regulatory genes such as SDHAF4, FBXO17, ALDOA and PKM were identified by partial correlation with information theory (PCIT), phenotypic impact factor (PIF) and regulatory impact factor (RIF) co-expression approaches from integrated miRNA-mRNA expression data. Two DE miRNAs (FDR 10%), bta-miR-143 and bta-miR-146b, which were upregulated in the Low IMF group, were correlated with regulatory candidate genes, which were functionally enriched for fatty acid oxidation GO terms. Co-expression patterns obtained by weighted correlation network analysis (WGCNA), which showed possible interaction and regulation between mRNAs and miRNAs, identified several modules related to immune system function, protein metabolism, energy metabolism and glucose catabolism according to in silico analysis performed herein. CONCLUSION In this study, several genes and miRNAs were identified as candidate regulators of IMF by analyzing DE miRNAs using two different miRNA-mRNA co-expression network methods. This study contributes to the understanding of potential regulatory mechanisms of gene signaling networks involved in fat deposition processes measured in muscle. Glucose metabolism and inflammation processes were the main pathways found in silico to influence intramuscular fat deposition in beef cattle in the integrative mRNA-miRNA co-expression analysis.
Collapse
Affiliation(s)
- Gabriella B. Oliveira
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | - Aline S. M. Cesar
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Karina Y. Degaki
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mirele D. Poleti
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Andrezza M. Felício
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - James E. Koltes
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Luiz L. Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| |
Collapse
|
48
|
Chu M, Zhao Y, Feng Y, Zhang H, Liu J, Cheng M, Li L, Shen W, Cao H, Li Q, Min L. MicroRNA-126 participates in lipid metabolism in mammary epithelial cells. Mol Cell Endocrinol 2017; 454:77-86. [PMID: 28599789 DOI: 10.1016/j.mce.2017.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Lipids are a major component of milk and are important for infant growth and development. MicroRNA-126 (miR-126) has previously been observed in mammary glands and adipocytes and is known to be involved in lipid metabolism during the process of atherosclerosis. However, it remains unknown whether miR-126 also participates in lipid metabolism in mammary luminal epithelial cells (MECs). In the current investigation, miR-126-3p inhibition stimulated lipid synthesis in MECs in part through increasing levels of the lipid synthesis enzymes FASN, ACSL1, and Insig1. Overexpression of miR-126-3p decreased lipid content in MECs with a reduction in FASN and Insig1. Furthermore, the expression of miR-126-3p was diminished by the steroid hormones estradiol and progesterone with a subsequent elevation of lipid formation in MECs. We also noted that miR-126-3p was expressed differentially at various stages of murine mammary gland development, exhibiting a negative correlation with FASN. Together these findings suggest that miR-126-3 might be involved in lipid metabolism in mammary gland.
Collapse
Affiliation(s)
- Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration, Qingdao 266000, PR China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Hongfang Cao
- Laiwu Veterinary and Livestock Administration, Laiwu 271100, PR China
| | - Qiang Li
- Laiwu Veterinary and Livestock Administration, Laiwu 271100, PR China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
49
|
de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, Rengo G. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Front Med (Lausanne) 2017; 4:74. [PMID: 28660188 PMCID: PMC5466994 DOI: 10.3389/fmed.2017.00074] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
Collapse
Affiliation(s)
- Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Work over the past decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity, and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) metabolism. RECENT FINDINGS A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the past 2 years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single-nucleotide polymorphisms in the proximity of miRNA genes associated with abnormal levels of circulating lipids in humans. Several of these miRNAs, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the LDL receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). SUMMARY MicroRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field, highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis, and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important noncoding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Abhishek K. Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding author: Carlos Fernández-Hernando. Phone: +1 (203)-737-4615.
| |
Collapse
|