1
|
Mirinezhad MR, Mirzaei F, Salmaninejad A, Esfehani RJ, Seyedtaghia MR, Farahmand S, Toosi MB, Hashemian S, Lewis MES. Reporting a Homozygous Case of Neurodevelopmental Disorder Associated With a Novel PRPF8 Variant. Mol Genet Genomic Med 2025; 13:e70084. [PMID: 40066647 PMCID: PMC11894437 DOI: 10.1002/mgg3.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND While recently identified heterozygous PRPF8 variants have been linked to various human diseases, their role in neurodevelopmental disorders (NDDs) remains ambiguous. This study investigates the potential association between homozygous PRPF8 variants and NDDs. Most PRPF8 variants are primarily associated with retinal diseases; however, we analyze a family with multiple members diagnosed with NDDs. METHODS Using exome sequencing (ES), the cause of behavioral problems and intellectual disabilities (IDs) of two sisters from a consanguineous parents was solved, and the results confirmed by direct sanger sequencing method likewise protein modeling to assess the structural impact of the identified variant on the PRPF8 protein has been done. RESULTS ES identified a novel homozygous variant, PRPF8 c.257G>T, p.R86M. To the best of our knowledge at the time of writing this manuscript, the mentioned variant has not been reported in relation to NDDs. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. CONCLUSION Our findings indicate that the p.R86M variant may disrupt normal protein function by changing its structure and probably its interaction, potentially leading to the observed neurodevelopmental phenotypes. This study highlights the first link between the PRPF8 variant and NDDs, suggesting a distinct role for specific PRPF8 variants in the etiology of NDDs. These results warrant further investigation into the mechanisms by which PRPF8 variants contribute to NDDs, emphasizing the need for comprehensive genetic screening in families with unexplained neurodevelopmental conditions.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Farzaneh Mirzaei
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Reza Jafarzadeh Esfehani
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Blood Borne Infections Research Center, Academic Center for Education, Culture & Research (ACECR)Razavi Khorasan BranchMashhadIran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Sheyda Farahmand
- Department of BiologyMashhad Branch, Islamic Azad UniversityMashhadIran
| | - Mehran Beiraghi Toosi
- Pediatric WardSchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Pediatric Neurology Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - M. E. Suzzane Lewis
- Department of Medical GeneticsUniversity of British Columbia (UBC)VancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Huang G, Wang D, Xue J. Research Progress on the Relationship Between PRPF8 and Cancer. Curr Issues Mol Biol 2025; 47:150. [PMID: 40136404 PMCID: PMC11941625 DOI: 10.3390/cimb47030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression and protein diversity, influencing both normal cellular function and pathological conditions, including cancer. Protein pre-mRNA processing factor 8 (PRPF8), a core component of the spliceosome, is integral to the splicing process, ensuring accurate gene transcription and spliceosome assembly. Disruptions in PRPF8 function are linked to a variety of cancers, as mutations in this gene can induce abnormal splicing events that contribute to tumorigenesis, metastasis, and drug resistance. This review provides an in-depth analysis of the mechanisms by which PRPF8 regulates tumorigenesis through AS, exploring its role in diverse cancer types, including breast, liver, myeloid, and colorectal cancers. Furthermore, we examine the molecular pathways associated with PRPF8 dysregulation and their impact on cancer progression. We also discuss the emerging potential of targeting PRPF8 in cancer therapy, highlighting challenges in drug development.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | | | | |
Collapse
|
3
|
Koljonen L, Salonen P, Rusanen S, Mäyränpää MK, Pekkinen M, Mäkitie O. A de novo PRPF8 Pathogenic Variant in Transient Severe Hypophosphatemia with Delayed Puberty and Growth Failure. Horm Res Paediatr 2024:1-11. [PMID: 38976971 DOI: 10.1159/000540249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
INTRODUCTION Childhood hypophosphatemia is a rare condition and may be caused by malabsorption, malignancies, or genetic factors. Prolonged hypophosphatemia leads to impaired growth and radiographic signs of rickets. METHODS We performed a detailed clinical and genetic evaluation of an adolescent boy with repeatedly low plasma phosphate concentrations (below 0.60 mmol/L) and growth failure. RESULTS At 14 years, the patient presented with decelerating growth and delayed puberty. Biochemistry showed hypophosphatemia due to increased urinary phosphate loss; kidney function and vitamin D status were normal. Radiographs showed mild metaphyseal changes. A gene panel for known genetic hypophosphatemia was negative. Trio exome analysis followed by Sanger sequencing identified a pathogenic heterozygous de novo stop-gain variant in PRPF8 gene, c.5548C>T p.(Arg1850*), in the conserved RNase H homology domain. PRPF8 encodes the pre-RNA protein 8, which has a role in RNA processing. Heterozygous PRPF8 variants have been associated with retinitis pigmentosa and neurodevelopmental disorders but not with phosphate metabolism. The patient underwent growth hormone (GH) stimulation tests which confirmed GH deficiency. Head MRI indicated partially empty sella. GH treatment was started at 15 years. Surprisingly, phosphate metabolism normalized during GH treatment, suggesting that hypophosphatemia was at least partly secondary to GH deficiency. CONCLUSION The evaluation of an adolescent with profound long-term hypophosphatemia revealed a pituitary developmental defect associated with a stop-gain variant in PRPF8. Hypophosphatemia alleviated with GH treatment. The pathological PRPF8 variant may contribute to abnormal pituitary development; however, its role in phosphate metabolism remains uncertain.
Collapse
Affiliation(s)
- Laura Koljonen
- Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Salonen
- Department of Pediatrics, Central Hospital of Päijät-Häme, Lahti, Finland
| | | | - Mervi K Mäyränpää
- Department of Radiology, HUS Diagnostic Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Pekkinen
- Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Stanković D, Tain LS, Uhlirova M. Xrp1 governs the stress response program to spliceosome dysfunction. Nucleic Acids Res 2024; 52:2093-2111. [PMID: 38303573 PMCID: PMC10954486 DOI: 10.1093/nar/gkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Luke S Tain
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
5
|
Lv Y, Li J, Yu S, Zhang Y, Hu H, Sun K, Jia D, Han Y, Tu J, Huang Y, Liu X, Zhang X, Gao P, Chen X, Shaw Williams MT, Tang Z, Shu X, Liu M, Ren X. The splicing factor Prpf31 is required for hematopoietic stem and progenitor cell expansion during zebrafish embryogenesis. J Biol Chem 2024; 300:105772. [PMID: 38382674 PMCID: PMC10959673 DOI: 10.1016/j.jbc.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.
Collapse
Affiliation(s)
- Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mark Thomas Shaw Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Li Z, He Z, Wang J, Kong G. RNA splicing factors in normal hematopoiesis and hematologic malignancies: novel therapeutic targets and strategies. J Leukoc Biol 2023; 113:149-163. [PMID: 36822179 DOI: 10.1093/jleuko/qiac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/18/2023] Open
Abstract
RNA splicing, a crucial transesterification-based process by which noncoding regions are removed from premature RNA to create mature mRNA, regulates various cellular functions, such as proliferation, survival, and differentiation. Clinical and functional studies over the past 10 y have confirmed that mutations in RNA splicing factors are among the most recurrent genetic abnormalities in hematologic neoplasms, including myeloid malignancies, chronic lymphocytic leukemia, mantle cell lymphoma, and clonal hematopoiesis. These findings indicate an important role for splicing factor mutations in the development of clonal hematopoietic disorders. Mutations in core or accessory components of the RNA spliceosome complex alter splicing sites in a manner of change of function. These changes can result in the dysregulation of cancer-associated gene expression and the generation of novel mRNA transcripts, some of which are not only critical to disease development but may be also serving as potential therapeutic targets. Furthermore, multiple studies have revealed that hematopoietic cells bearing mutations in splicing factors depend on the expression of the residual wild-type allele for survival, and these cells are more sensitive to reduced expression of wild-type splicing factors or chemical perturbations of the splicing machinery. These findings suggest a promising possibility for developing novel therapeutic opportunities in tumor cells based on mutations in splicing factors. Here, we combine current knowledge of the mechanistic and functional effects of frequently mutated splicing factors in normal hematopoiesis and the effects of their mutations in hematologic malignancies. Moreover, we discuss the development of potential therapeutic opportunities based on these mutations.
Collapse
Affiliation(s)
- Zhenzhen Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710003, China
| | - Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710004, China
| |
Collapse
|
7
|
Yi ZN, Chen XK, Ma ACH. Modeling leukemia with zebrafish (Danio rerio): Towards precision medicine. Exp Cell Res 2022; 421:113401. [PMID: 36306826 DOI: 10.1016/j.yexcr.2022.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Leukemia is a type of blood cancer characterized by high genetic heterogeneity and fatality. While chemotherapy remains the primary form of treatment for leukemia, its effectiveness was profoundly diminished by the genetic heterogeneity and cytogenetic abnormalities of leukemic cells. Therefore, there is an unmet need to develop precision medicine for leukemia with distinct genetic backgrounds. Zebrafish (Danio rerio), a freshwater fish with exceptional feasibility in genome editing, is a powerful tool for rapid human cancer modeling. In the past decades, zebrafish have been adopted in modeling human leukemia, exploring the molecular mechanisms of underlying genetic abnormalities, and discovering novel therapeutic agents. Although many recurrent mutations of leukemia have been modeled in zebrafish for pathological study and drug discovery, its great potential in leukemia modeling was not yet fully exploited, particularly in precision medicine. In this review, we evaluated the current zebrafish models of leukemia/pre-leukemia and genetic techniques and discussed the potential of zebrafish models with novel techniques, which may contribute to the development of zebrafish as a disease model for precision medicine in treating leukemia.
Collapse
Affiliation(s)
- Zhen-Ni Yi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
8
|
Potts KS, Cameron RC, Metidji A, Ghazale N, Wallace L, Leal-Cervantes AI, Palumbo R, Barajas JM, Gupta V, Aluri S, Pradhan K, Myers JA, McKinstry M, Bai X, Choudhary GS, Shastri A, Verma A, Obeng EA, Bowman TV. Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition. Cell Rep 2022; 41:111825. [PMID: 36516770 PMCID: PMC9994853 DOI: 10.1016/j.celrep.2022.111825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/01/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rosannah C Cameron
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amina Metidji
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Noura Ghazale
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - LaShanale Wallace
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Ana I Leal-Cervantes
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Reid Palumbo
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Juan Martin Barajas
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Srinivas Aluri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jacquelyn A Myers
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA
| | - Mia McKinstry
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoying Bai
- Department of Obstetrics and Gynecology, University of Texas, Dallas, TX, USA
| | - Gaurav S Choudhary
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Aditi Shastri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude's Children Research Hospital, Memphis, TN 38105, USA.
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
O'Grady L, Schrier Vergano SA, Hoffman TL, Sarco D, Cherny S, Bryant E, Schultz-Rogers L, Chung WK, Sacharow S, Immken LL, Holder S, Blackwell RR, Buchanan C, Yusupov R, Lecoquierre F, Guerrot AM, Rodan L, de Vries BBA, Kamsteeg EJ, Santos Simarro F, Palomares-Bralo M, Brown N, Pais L, Ferrer A, Klee EW, Babovic-Vuksanovic D, Rhodes L, Person R, Begtrup A, Keller-Ramey J, Santiago-Sim T, Schnur RE, Sweetser DA, Gold NB. Heterozygous variants in PRPF8 are associated with neurodevelopmental disorders. Am J Med Genet A 2022; 188:2750-2759. [PMID: 35543142 DOI: 10.1002/ajmg.a.62772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 01/25/2023]
Abstract
The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Lauren O'Grady
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, USA.,MGH Institute of Health Professions, Charlestown, Massachusetts, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughter, Norfolk, Virginia, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Trevor L Hoffman
- Department of Genetics, Southern California Kaiser Permanente Medical Group, Anaheim, California, USA
| | - Dean Sarco
- Department of Neurology, Kaiser Permanente-Los Angeles Medical Center, Los Angeles, California, USA
| | - Sara Cherny
- Division of Cardiology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Emily Bryant
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Laura Schultz-Rogers
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ladonna L Immken
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Susan Holder
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Rebecca R Blackwell
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Catherine Buchanan
- Department of Clinical & Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Roman Yusupov
- Division of Pediatric Genetics, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Normandie University, UNIROUEN, Inserm U1245, CHU Rouen, Rouen, France
| | - Anne-Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Normandie University, UNIROUEN, Inserm U1245, CHU Rouen, Rouen, France
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Erik Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Fernando Santos Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Maria Palomares-Bralo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Natasha Brown
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Lynn Pais
- Broad Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Center for Individualized Medicine, Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - David A Sweetser
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Nina B Gold
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
11
|
Bertrand RE, Wang J, Li Y, Cheng X, Wang K, Stoilov P, Chen R. Cwc27, associated with retinal degeneration, functions as a splicing factor in vivo. Hum Mol Genet 2022; 31:1278-1292. [PMID: 34726245 PMCID: PMC9029344 DOI: 10.1093/hmg/ddab319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Previous in vitro studies indicate that CWC27 functions as a splicing factor in the Bact spliceosome complex, interacting with CWC22 to form a landing platform for eIF4A3, a core component of the exon junction complex. However, the function of CWC27 as a splicing factor has not been validated in any in vivo systems. CWC27 variants have been shown to cause autosomal recessive retinal degeneration, in both syndromic and non-syndromic forms. The Cwc27K338fs/K338fs mouse model was shown to have significant retinal dysfunction and degeneration by 6 months of age. In this report, we have taken advantage of the Cwc27K338fs/K338fs mouse model to show that Cwc27 is involved in splicing in vivo in the context of the retina. Bulk RNA and single cell RNA-sequencing of the mouse retina showed that there were gene expression and splicing pattern changes, including alternative splice site usage and intron retention. Positive staining for CHOP suggests that ER stress may be activated in response to the splicing pattern changes and is a likely contributor to the disease mechanism. Our results provide the first evidence that CWC27 functions as a splicing factor in an in vivo context. The splicing defects and gene expression changes observed in the Cwc27K338fs/K338fs mouse retina provide insight to the potential disease mechanisms, paving the way for targeted therapeutic development.
Collapse
Affiliation(s)
- Renae Elaine Bertrand
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Ren Y, Huo Y, Li W, He M, Liu S, Yang J, Zhao H, Xu L, Guo Y, Si Y, Zhao H, Rao S, Wang J, Ma Y, Wang X, Yu J, Wang F. A global screening identifies chromatin-enriched RNA-binding proteins and the transcriptional regulatory activity of QKI5 during monocytic differentiation. Genome Biol 2021; 22:290. [PMID: 34649616 PMCID: PMC8518180 DOI: 10.1186/s13059-021-02508-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cellular RNA-binding proteins (RBPs) have multiple roles in post-transcriptional control, and some are shown to bind DNA. However, the global localization and the general chromatin-binding ability of RBPs are not well-characterized and remain undefined in hematopoietic cells. RESULTS We first provide a full view of RBPs' distribution pattern in the nucleus and screen for chromatin-enriched RBPs (Che-RBPs) in different human cells. Subsequently, by generating ChIP-seq, CLIP-seq, and RNA-seq datasets and conducting combined analysis, the transcriptional regulatory potentials of certain hematopoietic Che-RBPs are predicted. From this analysis, quaking (QKI5) emerges as a potential transcriptional activator during monocytic differentiation. QKI5 is over-represented in gene promoter regions, independent of RNA or transcription factors. Furthermore, DNA-bound QKI5 activates the transcription of several critical monocytic differentiation-associated genes, including CXCL2, IL16, and PTPN6. Finally, we show that the differentiation-promoting activity of QKI5 is largely dependent on CXCL2, irrespective of its RNA-binding capacity. CONCLUSIONS Our study indicates that Che-RBPs are versatile factors that orchestrate gene expression in different cellular contexts, and identifies QKI5, a classic RBP regulating RNA processing, as a novel transcriptional activator during monocytic differentiation.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Manman He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiabin Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hongmei Zhao
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Lingjie Xu
- Emergency Department of West China Hospital, Sichuan University, Chengdu, 610014, China
| | - Yuehong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Medical Epigenetic Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
13
|
Dong G, Zhang R, Huang H, Lu C, Xia Y, Wang X, Du G. Exploration of the developmental toxicity of TCS and PFOS to zebrafish embryos by whole-genome gene expression analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56032-56042. [PMID: 34046830 DOI: 10.1007/s11356-021-14527-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) and perfluorooctane sulfonate (PFOS) are known to have both endocrine disrupting and developmental toxicity effects on zebrafish embryos. Currently, potential molecular mechanisms underlying these toxicological phenomena require further studies. To address this gap in the literature, we used whole transcriptome microarrays to being to address the potential molecular mechanisms underlying developmental toxicity of TCS and PFOS on zebrafish embryos. Zebrafish embryos were exposed to 300 μg/L TCS and 500 μg/L PFOS from 4 to 120 h post fertilization (hpf). Phenotypically, the hatching rate of zebrafish embryos was significantly reduced after TCS exposure at 72 hpf. Additionally, body length was significantly decreased in the TCS treatment group at 120 hpf. Gene ontology analysis of differentially expressed genes revealed that lipid metabolism, steroid metabolism, and organ development-related biological processes were significantly enriched in TCS- and PFOS-treated zebrafish embryos. Furthermore, signaling network analysis indicated that the steroid biosynthesis process was the most significant biological process disrupted by TCS in 120 hpf zebrafish embryos, while organ development was the most significant biological process disrupted by PFOS exposure. Our findings enhance the understanding of the specific types of embryotoxicity elicited by TCS and PFOS, and also provide information that can be used to inform future mechanistic studies.
Collapse
Affiliation(s)
- Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyu Huang
- Department of Infection Management, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Li Y, Wang D, Wang H, Huang X, Wen Y, Wang B, Xu C, Gao J, Liu J, Tong J, Wang M, Su P, Ren S, Ma F, Li H, Bresnick EH, Zhou J, Shi L. A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells. EMBO Rep 2021; 22:e50535. [PMID: 33319461 PMCID: PMC7788460 DOI: 10.15252/embr.202050535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS) leads to transcriptome diversity in eukaryotic cells and is one of the key regulators driving cellular differentiation. Although AS is of crucial importance for normal hematopoiesis and hematopoietic malignancies, its role in early hematopoietic development is still largely unknown. Here, by using high-throughput transcriptomic analyses, we show that pervasive and dynamic AS takes place during hematopoietic development of human pluripotent stem cells (hPSCs). We identify a splicing factor switch that occurs during the differentiation of mesodermal cells to endothelial progenitor cells (EPCs). Perturbation of this switch selectively impairs the emergence of EPCs and hemogenic endothelial progenitor cells (HEPs). Mechanistically, an EPC-induced alternative spliced isoform of NUMB dictates EPC specification by controlling NOTCH signaling. Furthermore, we demonstrate that the splicing factor SRSF2 regulates splicing of the EPC-induced NUMB isoform, and the SRSF2-NUMB-NOTCH splicing axis regulates EPC generation. The identification of this splicing factor switch provides a new molecular mechanism to control cell fate and lineage specification.
Collapse
Affiliation(s)
- Yapu Li
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Ding Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Hongtao Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Xin Huang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Yuqi Wen
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - BingRui Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jie Gao
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jinhua Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Jingyuan Tong
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Mengge Wang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Pei Su
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Sirui Ren
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Feng Ma
- Institute of Blood TransfusionChinese Academy of Medical Sciences & Peking Union Medical CollegeChengduChina
| | - Hong‐Dong Li
- School of Computer Science and EngineeringCentral South UniversityChangshaHunanChina
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research InstituteDepartment of Cell and Regenerative BiologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
16
|
Stanković D, Claudius AK, Schertel T, Bresser T, Uhlirova M. A Drosophila model to study retinitis pigmentosa pathology associated with mutations in the core splicing factor Prp8. Dis Model Mech 2020; 13:dmm043174. [PMID: 32424050 PMCID: PMC7328144 DOI: 10.1242/dmm.043174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Retinitis pigmentosa (RP) represents genetically heterogeneous and clinically variable disease characterized by progressive degeneration of photoreceptors resulting in a gradual loss of vision. The autosomal dominant RP type 13 (RP13) has been linked to the malfunction of PRPF8, an essential component of the spliceosome. Over 20 different RP-associated PRPF8 mutations have been identified in human patients. However, the cellular and molecular consequences of their expression in vivo in specific tissue contexts remain largely unknown. Here, we establish a Drosophila melanogaster model for RP13 by introducing the nine distinct RP mutations into the fly PRPF8 ortholog prp8 and express the mutant proteins in precise spatiotemporal patterns using the Gal4/UAS system. We show that all nine RP-Prp8 mutant proteins negatively impact developmental timing, albeit to a different extent, when expressed in the endocrine cells producing the primary insect moulting hormone. In the developing eye primordium, uncommitted epithelial precursors rather than differentiated photoreceptors appeared sensitive to Prp8 malfunction. Expression of the two most pathogenic variants, Prp8S>F and Prp8H>R, induced apoptosis causing alterations to the adult eye morphology. The affected tissue mounted stress and cytoprotective responses, while genetic programs underlying neuronal function were attenuated. Importantly, the penetrance and expressivity increased under prp8 heterozygosity. In contrast, blocking apoptosis alleviated cell loss but not the redox imbalance. Remarkably, the pathogenicity of the RP-Prp8 mutations in Drosophila correlates with the severity of clinical phenotypes in patients carrying the equivalent mutations, highlighting the suitability of the Drosophila model for in-depth functional studies of the mechanisms underlying RP13 etiology.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Thomas Schertel
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
17
|
Feng J, Zhou Q, Gao W, Wu Y, Mu R. Seeking for potential pathogenic genes of major depressive disorder in the Gene Expression Omnibus database. Asia Pac Psychiatry 2020; 12:e12379. [PMID: 31889427 DOI: 10.1111/appy.12379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Major depressive disorder (MDD) is one of the most common mental disorders worldwide. The aim of this study was to identify potential pathological genes in MDD. METHODS We searched and downloaded gene expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) in MDD. Then, Kyoto Encyclopedia of Genes and Genomes pathway, Gene Ontology analysis, and protein-protein interaction (PPI) network were applied to investigate the biological function of identified DEGs. The quantitative real-time polymerase chain reaction and a published dataset were used to validate the result of bioinformatics analysis. RESULTS A total of 514 DEGs were identified in MDD. In the PPI network, some hub genes with high degrees were identified, such as EEF2, RPL26L1, RPLP0, PRPF8, LSM3, DHX9, RSRC1, and AP2B1. The result of in vitro validation of RPL26L1, RSRC1, TOMM20L, RPLPO, PRPF8, AP2B1, STIP1, and C5orf45 was consistent with the bioinformatics analysis. Electronic validation of C5orf45, STIP1, PRPF8, AP2B1, and SLC35E1 was consistent with the bioinformatics analysis. DISCUSSION The deregulated genes could be used as potential pathological factors of MDD. In addition, EEF2, RPL26L1, RPLP0, PRPF8, LSM3, DHX9, RSRC1, and AP2B1 might be therapeutic targets for MDD.
Collapse
Affiliation(s)
- Jianfei Feng
- Department of Cardiology, Pizhou Dongda Hospital, Pizhou, China
| | - Qing Zhou
- Department of Cardiology, Pizhou Dongda Hospital, Pizhou, China
| | - Wenquan Gao
- Department of Cardiology, Pizhou Dongda Hospital, Pizhou, China
| | - Yanying Wu
- Department of Cardiology, Pizhou Dongda Hospital, Pizhou, China
| | - Ruibin Mu
- Department of Cardiology, Pizhou Dongda Hospital, Pizhou, China
| |
Collapse
|
18
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
19
|
Visconte V, O. Nakashima M, J. Rogers H. Mutations in Splicing Factor Genes in Myeloid Malignancies: Significance and Impact on Clinical Features. Cancers (Basel) 2019; 11:E1844. [PMID: 31766606 PMCID: PMC6966670 DOI: 10.3390/cancers11121844] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
Components of the pre-messenger RNA splicing machinery are frequently mutated in myeloid malignancies. Mutations in LUC7L2, PRPF8, SF3B1, SRSF2, U2AF1, and ZRSR2 genes occur at various frequencies ranging between 40% and 85% in different subtypes of myelodysplastic syndrome (MDS) and 5% and 10% of acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). In some instances, splicing factor (SF) mutations have provided diagnostic utility and information on clinical outcomes as exemplified by SF3B1 mutations associated with increased ring sideroblasts (RS) in MDS-RS or MDS/MPN-RS with thrombocytosis. SF3B1 mutations are associated with better survival outcomes, while SRSF2 mutations are associated with a shorter survival time and increased AML progression, and U2AF1 mutations with a lower remission rate and shorter survival time. Beside the presence of mutations, transcriptomics technologies have shown that one third of genes in AML patients are differentially expressed, leading to altered transcript stability, interruption of protein function, and improper translation compared to those of healthy individuals. The detection of SF mutations demonstrates the importance of splicing abnormalities in the hematopoiesis of MDS and AML patients given the fact that abnormal splicing regulates the function of several transcriptional factors (PU.1, RUNX1, etc.) crucial in hematopoietic function. This review provides a summary of the significance of the most frequently mutated SF genes in myeloid malignancies and an update on novel targeted therapies in experimental and clinical trial stages.
Collapse
Affiliation(s)
- Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Megan O. Nakashima
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Heesun J. Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
20
|
Konantz M, Schürch C, Hanns P, Müller JS, Sauteur L, Lengerke C. Modeling hematopoietic disorders in zebrafish. Dis Model Mech 2019; 12:12/9/dmm040360. [PMID: 31519693 PMCID: PMC6765189 DOI: 10.1242/dmm.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish offer a powerful vertebrate model for studies of development and disease. The major advantages of this model include the possibilities of conducting reverse and forward genetic screens and of observing cellular processes by in vivo imaging of single cells. Moreover, pathways regulating blood development are highly conserved between zebrafish and mammals, and several discoveries made in fish were later translated to murine and human models. This review and accompanying poster provide an overview of zebrafish hematopoiesis and discuss the existing zebrafish models of blood disorders, such as myeloid and lymphoid malignancies, bone marrow failure syndromes and immunodeficiencies, with a focus on how these models were generated and how they can be applied for translational research. Summary: This At A Glance article and poster summarize the last 20 years of research in zebrafish models for hematopoietic disorders, highlighting how these models were created and are being applied for translational research.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel 4031, Switzerland.,Division of Hematology, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
21
|
Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, O'Toole SA, Ballinger ML, Gill D, Thomas DM, Mercer TR, Blackburn J. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun 2019; 10:1388. [PMID: 30918253 PMCID: PMC6437215 DOI: 10.1038/s41467-019-09374-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
Fusion genes are a major cause of cancer. Their rapid and accurate diagnosis can inform clinical action, but current molecular diagnostic assays are restricted in resolution and throughput. Here, we show that targeted RNA sequencing (RNAseq) can overcome these limitations. First, we establish that fusion gene detection with targeted RNAseq is both sensitive and quantitative by optimising laboratory and bioinformatic variables using spike-in standards and cell lines. Next, we analyse a clinical patient cohort and improve the overall fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted RNAseq while demonstrating high concordance for patient samples with previous diagnoses. Finally, we show that targeted RNAseq offers additional advantages by simultaneously measuring gene expression levels and profiling the immune-receptor repertoire. We anticipate that targeted RNAseq will improve clinical fusion gene detection, and its increasing use will provide a deeper understanding of fusion gene biology. Rapid and accurate detection of fusion genes is important in cancer diagnostics. Here, the authors demonstrate that targeted RNA sequencing provides fast, sensitive and quantitative gene fusion detection and overcomes the limitations of approaches currently in clinical use.
Collapse
Affiliation(s)
- Erin E Heyer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Danson Wooi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Christina I Selinger
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, 0727, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, 0002, South Africa.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia
| | - Sandra A O'Toole
- St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia.,The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,Australian Clinical Labs, Sydney, 2010, NSW, Australia
| | - Mandy L Ballinger
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Devinder Gill
- Department of Haematology, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia. .,Altius Institute for Biomedical Sciences, Seattle, 98121, WA, USA.
| | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.
| |
Collapse
|
22
|
Fernández-Espartero CH, Rizzo A, Fulford AD, Falo-Sanjuan J, Goutte-Gattat D, Ribeiro PS. Prp8 regulates oncogene-induced hyperplastic growth in Drosophila. Development 2018; 145:dev.162156. [PMID: 30333215 PMCID: PMC6262796 DOI: 10.1242/dev.162156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
Although developmental signalling pathways control tumourigenic growth, the cellular mechanisms that abnormally proliferating cells rely on are still largely unknown. Drosophila melanogaster is a genetically tractable model that is used to study how specific genetic changes confer advantageous tumourigenic traits. Despite recent efforts, the role of deubiquitylating enzymes in cancer is particularly understudied. We performed a Drosophila in vivo RNAi screen to identify deubiquitylating enzymes that modulate RasV12-induced hyperplastic growth. We identified the spliceosome core component Prp8 as a crucial regulator of Ras-, EGFR-, Notch- or RET-driven hyperplasia. Loss of prp8 function alone decreased cell proliferation, increased cell death, and affected cell differentiation and polarity. In hyperplasia, Prp8 supported tissue overgrowth independently of caspase-dependent cell death. The depletion of prp8 efficiently blocked Ras-, EGFR- and Notch-driven tumours but, in contrast, enhanced tumours that were driven by oncogenic RET, suggesting a context-specific role in hyperplasia. These data show, for the first time, that Prp8 regulates hyperplasia, and extend recent observations on the potential role of the spliceosome in cancer. Our findings suggest that targeting Prp8 could be beneficial in specific tumour types. Summary: Prp8 has been identified as a modulator of oncogenic growth in multiple Drosophila cancer models, which suggests the spliceosome as a potential context-dependent target in cancers.
Collapse
Affiliation(s)
- Cecilia H Fernández-Espartero
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alberto Rizzo
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Damien Goutte-Gattat
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
23
|
Sun L, Lin C, Li X, Xing L, Huo D, Sun J, Zhang L, Yang H. Comparative Phospho- and Acetyl Proteomics Analysis of Posttranslational Modifications Regulating Intestine Regeneration in Sea Cucumbers. Front Physiol 2018; 9:836. [PMID: 30018572 PMCID: PMC6037860 DOI: 10.3389/fphys.2018.00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers exposed to stressful circumstances eviscerate most internal organs, and then regenerate them rapidly under favorable environments. Reversible protein phosphorylation and acetylation are major modifications regulating protein function. Herein, for the first time, we perform quantitative phospho- and acetyl proteomics analyses of intestine regeneration in a sea cucumber species Apostichopus japonicus. We identified 1,862 phosphorylation sites in 1,169 proteins, and 712 acetylation sites in 470 proteins. Of the 147 and 251 proteins differentially modified by phosphorylation and acetylation, respectively, most were related to cytoskeleton biogenesis, protein synthesis and modification, signal recognition and transduction, energy production and conversion, or substance transport and metabolism. Phosphorylation appears to play a more important role in signal recognition and transduction than acetylation, while acetylation is of greater importance in posttranslational modification, protein turnover, chaperones; energy production and conversion; amino acid and lipid transport and metabolism. These results expanded our understanding of the regulatory mechanisms of posttranslational modifications in intestine regeneration of sea cucumbers after evisceration.
Collapse
Affiliation(s)
- Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Fernandez JP, Moreno-Mateos MA, Gohr A, Miao L, Chan SH, Irimia M, Giraldez AJ. RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genet 2018; 14:e1007473. [PMID: 29969449 PMCID: PMC6047831 DOI: 10.1371/journal.pgen.1007473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/16/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA splicing is a critical step of gene expression in eukaryotes. Transcriptome-wide splicing patterns are complex and primarily regulated by a diverse set of recognition elements and associated RNA-binding proteins. The retention and splicing (RES) complex is formed by three different proteins (Bud13p, Pml1p and Snu17p) and is involved in splicing in yeast. However, the importance of the RES complex for vertebrate splicing, the intronic features associated with its activity, and its role in development are unknown. In this study, we have generated loss-of-function mutants for the three components of the RES complex in zebrafish and showed that they are required during early development. The mutants showed a marked neural phenotype with increased cell death in the brain and a decrease in differentiated neurons. Transcriptomic analysis of bud13, snip1 (pml1) and rbmx2 (snu17) mutants revealed a global defect in intron splicing, with strong mis-splicing of a subset of introns. We found these RES-dependent introns were short, rich in GC and flanked by GC depleted exons, all of which are features associated with intron definition. Using these features, we developed and validated a predictive model that classifies RES dependent introns. Altogether, our study uncovers the essential role of the RES complex during vertebrate development and provides new insights into its function during splicing.
Collapse
Affiliation(s)
- Juan Pablo Fernandez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Andre Gohr
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
25
|
Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One 2018; 13:e0197246. [PMID: 29775471 PMCID: PMC5959063 DOI: 10.1371/journal.pone.0197246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations. In an effort to develop a universally efficacious therapeutic strategy with limited potential for the emergence of resistance, this study was performed to investigate the effect of combinatorial RNA interference (RNAi) on inhibiting the replication of diverse influenza A virus subtypes and strains. Candidate genes were selected for targeting based on the results of multiple previous independent genome-wide studies. The effect of single and combinatorial RNAi on the replication of 12 diverse influenza A viruses, including three strains isolated from birds and one strain isolated from seals, was then evaluated in primary normal human bronchial epithelial cells. After excluding overly toxic siRNA, two siRNA combinations were identified that reduced mean viral replication by greater than 79 percent in all mammalian strains, and greater than 68 percent in all avian strains. Host-directed combinatorial RNAi effectively prevents growth of a broad range of influenza virus strains in vitro, and is a potential therapeutic candidate for further development and future in vivo studies.
Collapse
|
26
|
Splicing dysfunction and disease: The case of granulopoiesis. Semin Cell Dev Biol 2018; 75:23-39. [DOI: 10.1016/j.semcdb.2017.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
27
|
Minor spliceosome and disease. Semin Cell Dev Biol 2017; 79:103-112. [PMID: 28965864 DOI: 10.1016/j.semcdb.2017.09.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.
Collapse
|
28
|
Potts KS, Bowman TV. Modeling Myeloid Malignancies Using Zebrafish. Front Oncol 2017; 7:297. [PMID: 29255698 PMCID: PMC5722844 DOI: 10.3389/fonc.2017.00297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS) and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.
Collapse
Affiliation(s)
- Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
29
|
Wang X, Jin Y. Predicted networks of protein-protein interactions in Stegodyphus mimosarum by cross-species comparisons. BMC Genomics 2017; 18:716. [PMID: 28893204 PMCID: PMC5594591 DOI: 10.1186/s12864-017-4085-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stegodyphus mimosarum is a candidate model organism belonging to the class Arachnida in the phylum Arthropoda. Studies on the biology of S. mimosarum over the past several decades have consisted of behavioral research and comparison of gene sequences based on the assembled genome sequence. Given the lack of systematic protein analyses and the rich source of information in the genome, we predicted the relationships of proteins in S. mimosarum by bioinformatics comparison with genome-wide proteins from select model organisms using gene mapping. RESULTS The protein-protein interactions (PPIs) of 11 organisms were integrated from four databases (BioGrid, InAct, MINT, and DIP). Here, we present comprehensive prediction and analysis of 3810 proteins in S. mimosarum with regard to interactions between proteins using PPI data of organisms. Interestingly, a portion of the protein interactions conserved among Saccharomyces cerevisiae, Homo sapiens, Arabidopsis thaliana, and Drosophila melanogaster were found to be associated with RNA splicing. In addition, overlap of predicted PPIs in reference organisms, Gene Ontology, and topology models in S. mimosarum are also reported. CONCLUSIONS Addition of Stegodyphus, a spider representative of interactomic research, provides the possibility of obtaining deeper insights into the evolution of PPI networks among different animal species. This work largely supports the utility of the "stratus clouds" model for predicted PPIs, providing a roadmap for integrative systems biology in S. mimosarum.
Collapse
Affiliation(s)
- Xiu Wang
- Institute of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, People's Republic of China.,Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, People's Republic of China
| | - Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, People's Republic of China.
| |
Collapse
|
30
|
Mutations of RNA splicing factors in hematological malignancies. Cancer Lett 2017; 409:1-8. [PMID: 28888996 DOI: 10.1016/j.canlet.2017.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023]
Abstract
Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition.
Collapse
|
31
|
Lei L, Yan SY, Yang R, Chen JY, Li Y, Bu Y, Chang N, Zhou Q, Zhu X, Li CY, Xiong JW. Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic Acids Res 2017; 45:3422-3436. [PMID: 27899647 PMCID: PMC5389467 DOI: 10.1093/nar/gkw1043] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Haploinsufficiency of EFTUD2 (Elongation Factor Tu GTP Binding Domain Containing 2) is linked to human mandibulofacial dysostosis, Guion-Almeida type (MFDGA), but the underlying cellular and molecular mechanisms remain to be addressed. We report here the isolation, cloning and functional analysis of the mutated eftud2 (snu114) in a novel neuronal mutant fn10a in zebrafish. This mutant displayed abnormal brain development with evident neuronal apoptosis while the development of other organs appeared less affected. Positional cloning revealed a nonsense mutation such that the mutant eftud2 mRNA encoded a truncated Eftud2 protein and was subjected to nonsense-mediated decay. Disruption of eftud2 led to increased apoptosis and mitosis of neural progenitors while it had little effect on differentiated neurons. Further RNA-seq and functional analyses revealed a transcriptome-wide RNA splicing deficiency and a large amount of intron-retaining and exon-skipping transcripts, which resulted in inadequate nonsense-mediated RNA decay and activation of the p53 pathway in fn10a mutants. Therefore, our study has established that eftud2 functions in RNA splicing during neural development and provides a suitable zebrafish model for studying the molecular pathology of the neurological disease MFDGA.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Shou-Yu Yan
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ran Yang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jia-Yu Chen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Yumei Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ye Bu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Qinchao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Chuan-Yun Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Keightley MC, Carradice DP, Layton JE, Pase L, Bertrand JY, Wittig JG, Dakic A, Badrock AP, Cole NJ, Traver D, Nutt SL, McCoey J, Buckle AM, Heath JK, Lieschke GJ. The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger. Nat Commun 2017; 8:14911. [PMID: 28382966 PMCID: PMC5384227 DOI: 10.1038/ncomms14911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1–ZBTB11–TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs. Neutrophils are increased in response to injury and infection but how they form from a common granulocyte-macrophage progenitor is unclear. Here, the authors identify a role for the transcriptional repressor ZBTB11 in zebrafish, which is regulated by master myeloid regulators and represses TP53.
Collapse
Affiliation(s)
- Maria-Cristina Keightley
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Duncan P Carradice
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Judith E Layton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva-CMU, 1211 Geneva 4, Switzerland
| | - Johannes G Wittig
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Andrew P Badrock
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Nicholas J Cole
- Motor Neuron Disease Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Julia McCoey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.,Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
33
|
A GCSFR/CSF3R zebrafish mutant models the persistent basal neutrophil deficiency of severe congenital neutropenia. Sci Rep 2017; 7:44455. [PMID: 28281657 PMCID: PMC5345067 DOI: 10.1038/srep44455] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 01/17/2023] Open
Abstract
Granulocyte colony-stimulating factor (GCSF) and its receptor (GCSFR), also known as CSF3 and CSF3R, are required to maintain normal neutrophil numbers during basal and emergency granulopoiesis in humans, mice and zebrafish. Previous studies identified two zebrafish CSF3 ligands and a single CSF3 receptor. Transient antisense morpholino oligonucleotide knockdown of both these ligands and receptor reduces neutrophil numbers in zebrafish embryos, a technique widely used to evaluate neutrophil contributions to models of infection, inflammation and regeneration. We created an allelic series of zebrafish csf3r mutants by CRISPR/Cas9 mutagenesis targeting csf3r exon 2. Biallelic csf3r mutant embryos are viable and have normal early survival, despite a substantial reduction of their neutrophil population size, and normal macrophage abundance. Heterozygotes have a haploinsufficiency phenotype with an intermediate reduction in neutrophil numbers. csf3r mutants are viable as adults, with a 50% reduction in tissue neutrophil density and a substantial reduction in the number of myeloid cells in the kidney marrow. These csf3r mutants are a new animal model of human CSF3R-dependent congenital neutropenia. Furthermore, they will be valuable for studying the impact of neutrophil loss in the context of other zebrafish disease models by providing a genetically stable, persistent, reproducible neutrophil deficiency state throughout life.
Collapse
|
34
|
Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig 2017; 4:6. [PMID: 28217708 PMCID: PMC5313292 DOI: 10.21037/sci.2017.01.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore 119228, Singapore
| |
Collapse
|
35
|
Myung JK, Yeo SG, Kim KH, Baek KS, Shin D, Kim JH, Cho JY, Yoo BC. Proteins that interact with calgranulin B in the human colon cancer cell line HCT-116. Oncotarget 2017; 8:6819-6832. [PMID: 28036279 PMCID: PMC5351672 DOI: 10.18632/oncotarget.14301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022] Open
Abstract
Calgranulin B is released from immune cells and can be internalized into colon cancer cells to prevent proliferation. The present study aimed to identify proteins that interact with calgranulin B to suppress the proliferation of colon cancer cells, and to obtain information on the underlying anti-tumor mechanism(s) of calgranulin B. Calgranulin B expression was induced in colon cancer cell line HCT-116 by infection with calgranulin B-FLAG expressing lentivirus, and it led to a significant suppression of cell proliferation. Proteins that interacted with calgranulin B were obtained by immunoprecipitation using whole homogenate of lentivirus-infected HCT-116 cells which expressing calgranulin B-FLAG, and identified using liquid chromatography-mass spectrometry/mass spectrometry analysis. A total of 454 proteins were identified that potentially interact with calgranulin B, and most identified proteins were associated with RNA processing, post-transcriptional modifications and the EIF2 signaling pathway. Direct interaction of calgranulin B with flotillin-1, dynein intermediate chain 1, and CD59 glycoprotein has been confirmed, and the molecules N-myc proto-oncogene protein, rapamycin-insensitive companion of mTOR, and myc proto-oncogene protein were shown to regulate calgranulin B-interacting proteins. Our results provide new insight and useful information to explain the possible mechanism(s) underlying the role of calgranulin B as an anti-tumor effector in colon cancer cells.
Collapse
Affiliation(s)
- Jae Kyung Myung
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kyung Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Korea
- Omics Core, Research Institute, National Cancer Center, Goyang, Korea
| | - Kwang-Soo Baek
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Korea
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Daye Shin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Jong Heon Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
36
|
Garcez PP, Nascimento JM, de Vasconcelos JM, Madeiro da Costa R, Delvecchio R, Trindade P, Loiola EC, Higa LM, Cassoli JS, Vitória G, Sequeira PC, Sochacki J, Aguiar RS, Fuzii HT, de Filippis AMB, da Silva Gonçalves Vianez Júnior JL, Tanuri A, Martins-de-Souza D, Rehen SK. Zika virus disrupts molecular fingerprinting of human neurospheres. Sci Rep 2017; 7:40780. [PMID: 28112162 PMCID: PMC5256095 DOI: 10.1038/srep40780] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
Zika virus (ZIKV) has been associated with microcephaly and other brain abnormalities; however, the molecular consequences of ZIKV to human brain development are still not fully understood. Here we describe alterations in human neurospheres derived from induced pluripotent stem (iPS) cells infected with the strain of Zika virus that is circulating in Brazil. Combining proteomics and mRNA transcriptional profiling, over 500 proteins and genes associated with the Brazilian ZIKV infection were found to be differentially expressed. These genes and proteins provide an interactome map, which indicates that ZIKV controls the expression of RNA processing bodies, miRNA biogenesis and splicing factors required for self-replication. It also suggests that impairments in the molecular pathways underpinning cell cycle and neuronal differentiation are caused by ZIKV. These results point to biological mechanisms implicated in brain malformations, which are important to further the understanding of ZIKV infection and can be exploited as therapeutic potential targets to mitigate it.
Collapse
Affiliation(s)
- Patricia P. Garcez
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Minardi Nascimento
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Rodrigo Delvecchio
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Trindade
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Luiza M. Higa
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana S. Cassoli
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Jaroslaw Sochacki
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Renato S. Aguiar
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Amilcar Tanuri
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
De La Garza A, Cameron RC, Nik S, Payne SG, Bowman TV. Spliceosomal component Sf3b1 is essential for hematopoietic differentiation in zebrafish. Exp Hematol 2016; 44:826-837.e4. [PMID: 27260753 DOI: 10.1016/j.exphem.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
SF3B1 (Splicing factor 3b, subunit 1) is one of the most commonly mutated factors in myelodysplastic syndrome (MDS). Although the genetic correlation between SF3B1 mutations and MDS etiology are quite strong, no in vivo model currently exists to explore how SF3B1 loss alters blood cell development. Using zebrafish mutants, we show here that proper function of Sf3b1 is required for all hematopoietic lineages. As in MDS patients, zebrafish sf3b1 mutants develop a macrocytic-anemia-like phenotype due to a block in maturation at a late progenitor stage. The mutant embryos also develop neutropenia, because their primitive myeloid cells fail to mature and turn on differentiation markers such as l-plastin and myeloperoxidase. In contrast, production of definitive hematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelial cells within the dorsal aorta is greatly diminished, whereas arterial endothelial cells are correctly fated. Notch signaling, imperative for the endothelial-to-hematopoietic transition, is also normal, indicating that HSPC induction is blocked in sf3b1 mutants downstream or independent of Notch signaling. The data demonstrate that Sf3b1 function is necessary during key differentiation fate decisions in multiple blood cell types. Zebrafish sf3b1 mutants offer a novel animal model with which to explore the role of splicing in hematopoietic development and provide an excellent in vivo system with which to delve into the question of why and how Sf3b1 dysfunction is detrimental to hematopoietic differentiation, which could improve MDS diagnosis and treatment.
Collapse
Affiliation(s)
- Adriana De La Garza
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rosannah C Cameron
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara Nik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara G Payne
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods Cell Biol 2016; 135:259-88. [PMID: 27443930 DOI: 10.1016/bs.mcb.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From a fixed number of genes carried in all cells, organisms create considerable diversity in cellular phenotype through differential regulation of gene expression. One prevalent source of transcriptome diversity is alternative pre-mRNA splicing, which is manifested in many different forms. Zebrafish models of splicing dysfunction due to mutated spliceosome components provide opportunity to link biochemical analyses of spliceosome structure and function with whole organism phenotypic outcomes. Drawing from experience with two zebrafish mutants: cephalophŏnus (a prpf8 mutant, isolated for defects in granulopoiesis) and caliban (a rnpc3 mutant, isolated for defects in digestive organ development), we describe the use of glycerol gradient sedimentation and native gel electrophoresis to resolve components of aberrant splicing complexes. We also describe how RNAseq can be employed to examine relatively rare alternative splicing events including intron retention. Such experimental approaches in zebrafish can promote understanding of how splicing variation and dysfunction contribute to phenotypic diversity and disease pathogenesis.
Collapse
|
39
|
Liu S, Luo J, Chai J, Ren L, Zhou Y, Huang F, Liu X, Chen Y, Zhang C, Tao M, Lu B, Zhou W, Lin G, Mai C, Yuan S, Wang J, Li T, Qin Q, Feng H, Luo K, Xiao J, Zhong H, Zhao R, Duan W, Song Z, Wang Y, Wang J, Zhong L, Wang L, Ding Z, Du Z, Lu X, Gao Y, Murphy RW, Liu Y, Meyer A, Zhang YP. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proc Natl Acad Sci U S A 2016; 113:1327-32. [PMID: 26768847 PMCID: PMC4747765 DOI: 10.1073/pnas.1512955113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyploidy is much rarer in animals than in plants but it is not known why. The outcome of combining two genomes in vertebrates remains unpredictable, especially because polyploidization seldom shows positive effects and more often results in lethal consequences because viable gametes fail to form during meiosis. Fortunately, the goldfish (maternal) × common carp (paternal) hybrids have reproduced successfully up to generation 22, and this hybrid lineage permits an investigation into the genomics of hybridization and tetraploidization. The first two generations of these hybrids are diploids, and subsequent generations are tetraploids. Liver transcriptomes from four generations and their progenitors reveal chimeric genes (>9%) and mutations of orthologous genes. Characterizations of 18 randomly chosen genes from genomic DNA and cDNA confirm the chimera. Some of the chimeric and differentially expressed genes relate to mutagenesis, repair, and cancer-related pathways in 2nF1. Erroneous DNA excision between homologous parental genes may drive the high percentage of chimeric genes, or even more potential mechanisms may result in this phenomenon. Meanwhile, diploid offspring show paternal-biased expression, yet tetraploids show maternal-biased expression. These discoveries reveal that fast and unstable changes are mainly deleterious at the level of transcriptomes although some offspring still survive their genomic abnormalities. In addition, the synthetic effect of genome shock might have resulted in greatly reduced viability of 2nF2 hybrid offspring. The goldfish × common carp hybrids constitute an ideal system for unveiling the consequences of intergenomic interactions in hybrid vertebrate genomes and their fertility.
Collapse
Affiliation(s)
- Shaojun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China;
| | - Jing Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jing Chai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Li Ren
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yi Zhou
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Feng Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaochuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Yubao Chen
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chun Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Min Tao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Bin Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wei Zhou
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Guoliang Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Chao Mai
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shuo Yuan
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jun Wang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tao Li
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Kaikun Luo
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Xiao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huan Zhong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rurong Zhao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Duan
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhenyan Song
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yanqin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jing Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Zhaoli Ding
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhenglin Du
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada M5S 2C6
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ya-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China;
| |
Collapse
|
40
|
Patil P, Uechi T, Kenmochi N. Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol 2016; 12:426-34. [PMID: 25849198 DOI: 10.1080/15476286.2015.1017240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Poikiloderma with neutropenia (PN) is a rare inherited disorder characterized by poikiloderma, facial dysmorphism, pachyonychia, short stature and neutropenia. The molecular testing of PN patients has identified mutations in the C16orf57 gene, which encodes a protein referred to as USB1 (U Six Biogenesis 1). In this study, we developed a zebrafish model of PN by the microinjection of morpholino antisense oligos to suppress usb1 gene function. Severe morphological defects, including a bent tail, thin yolk extension and reduced body length, were predominant in the Usb1-suppressed embryos (morphants). We also observed significantly decreased number of neutrophils in the morphants by Sudan Black staining. Interestingly, the splicing of genes involved in neutrophil differentiation and development, such as mpx, ncf1, ela3l and npsn, was aberrant in the morphants. However, the splicing of haematopoietic precursors and erythroid-specific genes was unaltered. Importantly, the neutrophil defects were almost completely rescued by co-injection of ela3l mRNA, the most markedly affected gene in the morphants. Our study demonstrated a possible role of USB1 in modulating the tissue-specific gene splicing that eventually leads to the impaired development of neutrophils. This zebrafish model could serve as a valuable tool to investigate the causative role of USB1 in PN pathogenesis.
Collapse
Affiliation(s)
- Prakash Patil
- a Frontier Science Research Center; University of Miyazaki; Miyazaki , Japan
| | | | | |
Collapse
|
41
|
Hahn CN, Venugopal P, Scott HS, Hiwase DK. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy. Immunol Rev 2015; 263:257-78. [PMID: 25510282 DOI: 10.1111/imr.12241] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differential splicing contributes to the vast complexity of mRNA transcripts and protein isoforms that are necessary for cellular homeostasis and response to developmental cues and external signals. The hematopoietic system provides an exquisite example of this. Recently, discovery of mutations in components of the spliceosome in various hematopoietic malignancies (HMs) has led to an explosion in knowledge of the role of splicing and splice factors in HMs and other cancers. A better understanding of the mechanisms by which alternative splicing and aberrant splicing contributes to the leukemogenic process will enable more efficacious targeted approaches to tackle these often difficult to treat diseases. The clinical implications are only just starting to be realized with novel drug targets and therapeutic strategies open to exploitation for patient benefit.
Collapse
Affiliation(s)
- Christopher N Hahn
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; Department of Molecular Pathology, SA Pathology, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA, Australia; Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
42
|
Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH, Malcovati L, Attwood M, Przychodzen B, Sahgal N, Kanapin AA, Lockstone H, Scifo L, Vandenberghe P, Papaemmanuil E, Smith CWJ, Campbell PJ, Ogawa S, Maciejewski JP, Cazzola M, Savage KI, Boultwood J. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015; 29:1092-103. [PMID: 25428262 PMCID: PMC4430703 DOI: 10.1038/leu.2014.331] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023]
Abstract
The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.
Collapse
Affiliation(s)
- H Dolatshad
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - A Pellagatti
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B H Yip
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - L Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - M Attwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B Przychodzen
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - N Sahgal
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A A Kanapin
- Department of Oncology, University of Oxford, Oxford, UK
| | - H Lockstone
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L Scifo
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - P Vandenberghe
- Center for Human Genetics, Katholieke Universiteit Leuven/University Hospital Leuven, Leuven, Belgium
| | - E Papaemmanuil
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - C W J Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - P J Campbell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - S Ogawa
- Cancer Genomics Projects, Graduate School of Medicine, Tokyo, Japan
| | - J P Maciejewski
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - K I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res 2014; 49:216-27. [PMID: 25548754 PMCID: PMC4278002 DOI: 10.5045/br.2014.49.4.216] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal disorders arising from hematopoietic stem cells generally characterized by inefficient hematopoiesis, dysplasia in one or more myeloid cell lineages, and variable degrees of cytopenias. Most MDS patients are diagnosed in their late 60s to early 70s. The estimated incidence of MDS in the United States and in Europe are 4.3 and 1.8 per 100,000 individuals per year, respectively with lower rates reported in some Asian countries and less well estimated in other parts of the world. Evolution to acute myeloid leukemia can occur in 10-15% of MDS patients. Three drugs are currently approved for the treatment of patients with MDS: immunomodulatory agents (lenalidomide), and hypomethylating therapy [HMT (decitabine and 5-azacytidine)]. All patients will eventually lose their response to therapy, and the survival outcome of MDS patients is poor (median survival of 4.5 months) especially for patients who fail (refractory/relapsed) HMT. The only potential curative treatment for MDS is hematopoietic cell transplantation. Genomic/chromosomal instability and various mechanisms contribute to the pathogenesis and prognosis of the disease. High throughput genetic technologies like single nucleotide polymorphism array analysis and next generation sequencing technologies have uncovered novel genetic alterations and increased our knowledge of MDS pathogenesis. We will review various genetic and non-genetic causes that are involved in the pathogenesis of MDS.
Collapse
Affiliation(s)
- Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ramon V Tiu
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA. ; Department of Hematologic Oncology and Blood Disorders, Cleveland Clinic, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
44
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
45
|
Korir PK, Roberts L, Ramesar R, Seoighe C. A mutation in a splicing factor that causes retinitis pigmentosa has a transcriptome-wide effect on mRNA splicing. BMC Res Notes 2014; 7:401. [PMID: 24969741 PMCID: PMC4084799 DOI: 10.1186/1756-0500-7-401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Substantial progress has been made in the identification of sequence elements that control mRNA splicing and the genetic variants in these elements that alter mRNA splicing (referred to as splicing quantitative trait loci - sQTLs). Genetic variants that affect mRNA splicing in trans are harder to identify because their effects can be more subtle and diffuse, and the variants are not co-located with their targets. We carried out a transcriptome-wide analysis of the effects of a mutation in a ubiquitous splicing factor that causes retinitis pigmentosa (RP) on mRNA splicing, using exon microarrays. RESULTS Exon microarray data was generated from whole blood samples obtained from four individuals with a mutation in the splicing factor PRPF8 and four sibling controls. Although the mutation has no known phenotype in blood, there was evidence of widespread differences in splicing between cases and controls (affecting approximately 20% of exons). Most probesets with significantly different inclusion (defined as the expression intensity of the exon divided by the expression of the corresponding transcript) between cases and controls had higher inclusion in cases and corresponded to exons that were shorter than average, AT rich, located towards the 5' end of the gene and flanked by long introns. Introns flanking affected probesets were particularly depleted for the shortest category of introns, associated with splicing via intron definition. CONCLUSIONS Our results show that a mutation in a splicing factor, with a phenotype that is restricted to retinal tissue, acts as a trans-sQTL cluster in whole blood samples. Characteristics of the affected exons suggest that they are spliced co-transcriptionally and via exon definition. However, due to the small sample size available for this study, further studies are required to confirm the widespread impact of this PRPF8 mutation on mRNA splicing outside the retina.
Collapse
Affiliation(s)
- Paul K Korir
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| | - Lisa Roberts
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Republic of Ireland
| |
Collapse
|
46
|
Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK, Nakashima M, Hsi ED, Yoshida K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Boultwood J, Makishima H, Maciejewski JP, Padgett RA. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 2014; 29:126-36. [PMID: 24781015 PMCID: PMC4214909 DOI: 10.1038/leu.2014.144] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/07/2014] [Accepted: 04/21/2014] [Indexed: 11/26/2022]
Abstract
Mutations of spliceosome components are common in myeloid neoplasms. One of the affected genes, PRPF8, encodes the most evolutionarily conserved spliceosomal protein. We identified either recurrent somatic PRPF8 mutations or hemizygous deletions in 15/447 and 24/450 cases, respectively. 50% of PRPF8 mutant and del(17p) cases were found in AML and conveyed poor prognosis. PRPF8 defects correlated with increased myeloblasts and ring sideroblasts in cases without SF3B1 mutations. Knockdown of PRPF8 in K562 and CD34+ primary bone marrow cells increased proliferative capacity. Whole RNA deep sequencing of primary cells from patients with PRPF8 abnormalities demonstrated consistent missplicing defects. In yeast models, homologous mutations introduced into Prp8 abrogated a block experimentally produced in the second step of the RNA splicing process suggesting that the mutants have defects in proof-reading functions. In sum, the exploration of clinical and functional consequences suggests that PRPF8 is a novel leukemogenic gene in myeloid neoplasms with a distinct phenotype likely manifested through aberrant splicing.
Collapse
Affiliation(s)
- A Kurtovic-Kozaric
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - B Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - J Singh
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - M J Clemente
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Z K Otrock
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Nakashima
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - E D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - K Yoshida
- Cancer Genomics Project, Graduate School of Medicine, Tokyo, Japan
| | - Y Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - K Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - H Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- 1] Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan [2] Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Ogawa
- 1] Cancer Genomics Project, Graduate School of Medicine, Tokyo, Japan [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, John Radcliffe Hospital, Oxford, UK
| | - H Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - R A Padgett
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
47
|
Multiple components of the spliceosome regulate Mcl1 activity in neuroblastoma. Cell Death Dis 2014; 5:e1072. [PMID: 24556687 PMCID: PMC3944256 DOI: 10.1038/cddis.2014.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/16/2014] [Indexed: 12/21/2022]
Abstract
Cancer treatments induce cell stress to trigger apoptosis in tumor cells. Many cancers repress these apoptotic signals through alterations in the Bcl2 proteins that regulate this process. Therapeutics that target these specific survival biases are in development, and drugs that inhibit Bcl2 activities have shown clinical activity for some cancers. Mcl1 is a survival factor for which no effective antagonists have been developed, so it remains a principal mediator of therapy resistance, including to Bcl2 inhibitors. We used a synthetic-lethal screening strategy to identify genes that regulate Mcl1 survival activity using the pediatric tumor neuroblastoma (NB) as a model, as a large subset are functionally verified to be Mcl1 dependent and Bcl2 inhibitor resistant. A targeted siRNA screen identified genes whose knockdown restores sensitivity of Mcl1-dependent NBs to ABT-737, a small molecule inhibitor of Bcl2, BclXL and BclW. Three target genes that shifted the ABT-737 IC50 >1 log were identified and validated: PSMD14, UBL5 and PRPF8. The latter two are members of a recently characterized subcomplex of the spliceosome that along with SART1 is responsible for non-canonical 5′-splice sequence recognition in yeast. We showed that SART1 knockdown similarly sensitized Mcl1-dependent NB to ABT-737 and that triple knockdown of UBL5/PRPF8/SART1 phenocopied direct MCL1 knockdown, whereas having no effect on Bcl2-dependent NBs. Both genetic spliceosome knockdown or treatment with SF3b-interacting spliceosome inhibitors like spliceostatin A led to preferential pro-apoptotic Mcl1-S splicing and reduced translation and abundance of Mcl1 protein. In contrast, BN82865, which inhibits the second transesterification step in terminal spliceosome processing, did not have this effect. These findings demonstrate a prominent role for the spliceosome in mediating Mcl1 activity and suggest that drugs that target either the specific UBL5/PRPF8/SART1 subcomplex or SF3b functions may have a role as cancer therapeutics by attenuating the Mcl1 survival bias present in numerous cancers.
Collapse
|
48
|
Yoshida K, Ogawa S. Splicing factor mutations and cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:445-59. [PMID: 24523246 DOI: 10.1002/wrna.1222] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput sequencing technologies have unexpectedly revealed that somatic mutations of splicing factor genes frequently occurred in several types of hematological malignancies, including myelodysplastic syndromes, other myeloid neoplasms, and chronic lymphocytic leukemia. Splicing factor mutations have also been reported in solid cancers such as breast and pancreatic cancers, uveal melanomas, and lung adenocarcinomas. These mutations were heterozygous and mainly affected U2AF1 (U2AF35), SRSF2 (SC35), SF3B1 (SF3B155 or SAP155), and ZRSR2 (URP), which are engaged in the initial steps of RNA splicing, including 3' splice-site recognition, and occur in a large mutually exclusive pattern, suggesting a common impact of these mutations on RNA splicing. In this study, splicing factor mutations in various types of cancers, their functional/biological effects, and their potential as therapeutic targets have been reviewed.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
49
|
Minor class splicing shapes the zebrafish transcriptome during development. Proc Natl Acad Sci U S A 2014; 111:3062-7. [PMID: 24516132 DOI: 10.1073/pnas.1305536111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Minor class or U12-type splicing is a highly conserved process required to remove a minute fraction of introns from human pre-mRNAs. Defects in this splicing pathway have recently been linked to human disease, including a severe developmental disorder encompassing brain and skeletal abnormalities known as Taybi-Linder syndrome or microcephalic osteodysplastic primordial dwarfism 1, and a hereditary intestinal polyposis condition, Peutz-Jeghers syndrome. Although a key mechanism for regulating gene expression, the impact of impaired U12-type splicing on the transcriptome is unknown. Here, we describe a unique zebrafish mutant, caliban (clbn), with arrested development of the digestive organs caused by an ethylnitrosourea-induced recessive lethal point mutation in the rnpc3 [RNA-binding region (RNP1, RRM) containing 3] gene. rnpc3 encodes the zebrafish ortholog of human RNPC3, also known as the U11/U12 di-snRNP 65-kDa protein, a unique component of the U12-type spliceosome. The biochemical impact of the mutation in clbn is the formation of aberrant U11- and U12-containing small nuclear ribonucleoproteins that impair the efficiency of U12-type splicing. Using RNA sequencing and microarrays, we show that multiple genes involved in various steps of mRNA processing, including transcription, splicing, and nuclear export are disrupted in clbn, either through intron retention or differential gene expression. Thus, clbn provides a useful and specific model of aberrant U12-type splicing in vivo. Analysis of its transcriptome reveals efficient mRNA processing as a critical process for the growth and proliferation of cells during vertebrate development.
Collapse
|