1
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Xu L, Jiang H, Xie J, Xu Q, Zhou J, Lu X, Wang M, Dong L, Zuo D. Mannan-binding lectin ameliorates renal fibrosis by suppressing macrophage-to-myofibroblast transition. Heliyon 2023; 9:e21882. [PMID: 38034794 PMCID: PMC10685189 DOI: 10.1016/j.heliyon.2023.e21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Mannan-binding lectin (MBL) is a pattern-recognition molecule that plays a crucial role in innate immunity. MBL deficiency correlates with an increased risk of chronic kidney disease (CKD). However, the molecular mechanisms are not fully defined. Here, we established a CKD model in wild-type (WT) and MBL-deficient (MBL-/-) mice via unilateral ureteral obstruction (UUO). The result showed that MBL deficiency aggravated the pathogenesis of renal fibrosis in CKD mice. Strikingly, the in vivo macrophage depletion investigation revealed that macrophages play an essential role in the MBL-mediated suppression of renal fibrosis. We found that MBL limited the progression of macrophage-to-myofibroblast transition (MMT) in kidney tissues of UUO mice. Further in vitro study showed that MBL-/- macrophages exhibited significantly increased levels of fibrotic-related molecules compared with WT cells upon transforming growth factor beta (TGF-β) stimulation. We demonstrated that MBL inhibited the MMT process by suppressing the production of matrix metalloproteinase 9 (MMP-9) and activation of Akt signaling. In summary, our study revealed an expected role of MBL on macrophage transition during renal fibrosis, thus offering new insight into the potential of MBL as a therapeutic target for CKD.
Collapse
Affiliation(s)
- Li Xu
- Clinical Research Institute of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong Province, 524045, China
| | - Honglian Jiang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510030, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jingwen Xie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qishan Xu
- Clinical Research Institute of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong Province, 524045, China
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100, China
| | - Lijun Dong
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
4
|
Queiroz MAF, Santiago AM, Brito WRDS, Pereira KAS, de Brito WB, Torres MKDS, Lopes JDC, dos Santos EF, da Costa FP, de Sarges KML, Cantanhede MHD, de Brito MTFM, da Silva ALS, Leite MDM, Viana MDNDSDA, Rodrigues FBB, da Silva R, Viana GMR, Chaves TDSS, Veríssimo ADOL, Carvalho MDS, Henriques DF, dos Santos CP, Nunes JAL, Costa IB, Amoras EDSG, Lima SS, Cayres-Vallinoto IMV, Brasil-Costa I, Quaresma JAS, Falcão LFM, dos Santos EJM, Vallinoto ACR. Polymorphisms in the MBL2 gene are associated with the plasma levels of MBL and the cytokines IL-6 and TNF-α in severe COVID-19. Front Immunol 2023; 14:1151058. [PMID: 37138871 PMCID: PMC10149935 DOI: 10.3389/fimmu.2023.1151058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Mannose-binding lectin (MBL) promotes opsonization, favoring phagocytosis and activation of the complement system in response to different microorganisms, and may influence the synthesis of inflammatory cytokines. This study investigated the association of MBL2 gene polymorphisms with the plasma levels of MBL and inflammatory cytokines in COVID-19. Methods Blood samples from 385 individuals (208 with acute COVID-19 and 117 post-COVID-19) were subjected to real-time PCR genotyping. Plasma measurements of MBL and cytokines were performed by enzyme-linked immunosorbent assay and flow cytometry, respectively. Results The frequencies of the polymorphic MBL2 genotype (OO) and allele (O) were higher in patients with severe COVID-19 (p< 0.05). The polymorphic genotypes (AO and OO) were associated with lower MBL levels (p< 0.05). IL-6 and TNF-α were higher in patients with low MBL and severe COVID-19 (p< 0.05). No association of polymorphisms, MBL levels, or cytokine levels with long COVID was observed. Discussion The results suggest that, besides MBL2 polymorphisms promoting a reduction in MBL levels and therefore in its function, they may also contribute to the development of a more intense inflammatory process responsible for the severity of COVID-19.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- *Correspondence: Maria Alice Freitas Queiroz,
| | - Angélica Menezes Santiago
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Wandrey Roberto dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Keise Adrielle Santos Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - William Botelho de Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Jeferson da Costa Lopes
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Erika Ferreira dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Pará, Brazil
| | | | | | - Daniele Freitas Henriques
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ananindeua, Brazil
| | - Carla Pinheiro dos Santos
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ananindeua, Brazil
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Iran Barros Costa
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Igor Brasil-Costa
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
5
|
Liu Y, Zhao N, Xu Q, Deng F, Wang P, Dong L, Lu X, Xia L, Wang M, Chen Z, Zhou J, Zuo D. MBL Binding with AhR Controls Th17 Immunity in Silicosis-Associated Lung Inflammation and Fibrosis. J Inflamm Res 2022; 15:4315-4329. [PMID: 35923908 PMCID: PMC9342710 DOI: 10.2147/jir.s357453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Mannan-binding lectin (MBL), a soluble pattern recognition molecule of the innate immune system, is primarily synthesized in the liver and secreted into the circulation. Low serum level of MBL has been reported to be related to an increased risk of lung diseases. Herein, we aimed to investigate the function of MBL in silicosis-associated pulmonary inflammation. Methods Serum collected from silicosis patients was tested for correlation between serum MBL levels and Th17 immunity. In vitro studies were performed to further demonstrated the effect of MBL on Th17 polarization. Silica was intratracheally injected in wild type (WT) or MBL-deficient (MBL–/–) mice to induce silicosis-associated lung inflammation and fibrosis. Th17 response was evaluated to explore the effect of MBL on silicosis in vivo. Results Silicosis patients with high serum MBL levels displayed ameliorative lung function. We demonstrated that serum MBL levels negatively correlated to Th17 cell frequency in silicosis patients. MBL protein markedly reduced expression of IL-17 but enhanced expression of Foxp3 in CD4+ T cells in vitro when subjected to Th17 or Treg polarizing conditions, respectively. The presence of MBL during Th17 cell polarization significantly limited aryl hydrocarbon receptor (AhR) expression and suppressed the signal transducer and activator of transcription 3 (STAT3) phosphorylation. Treatment with the AhR antagonist abolished the effect of MBL on Th17 response. Strikingly, MBL directly bound to AhR and affected its nuclear translocation. Furthermore, MBL–/– mice displayed elevated Th17 cell levels compared with WT mice in response to the silica challenge. The CD4+ T lymphocytes from silica-administrated MBL–/– mice exhibited more AhR expression than the wild-type counterparts. Conclusion Our study suggested that MBL limited the Th17 immunity via controlling the AhR/STAT3 pathway, thus providing new insight into silicosis and other inflammatory diseases in patients with MBL deficiency.
Collapse
Affiliation(s)
- Yunzhi Liu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Na Zhao
- Department of Medical Laboratory, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510399, People’s Republic of China
| | - Qishan Xu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Fan Deng
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Ping Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Lijun Dong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Lihua Xia
- Department of Medical Laboratory, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510399, People’s Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
| | - Zhengliang Chen
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Correspondence: Jia Zhou, Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China, Tel +86-20-61648220, Fax +86-20-61648221, Email
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People’s Republic of China
- Daming Zuo, Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China, Tel +86-20-61648552, Fax + 86-20-61648221, Email
| |
Collapse
|
6
|
Grote K, Nicolai M, Schubert U, Schieffer B, Troidl C, Preissner KT, Bauer S, Fischer S. Extracellular Ribosomal RNA Acts Synergistically with Toll-like Receptor 2 Agonists to Promote Inflammation. Cells 2022; 11:cells11091440. [PMID: 35563745 PMCID: PMC9103112 DOI: 10.3390/cells11091440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Self-extracellular RNA (eRNA), which is released under pathological conditions from damaged tissue, has recently been identified as a new alarmin and synergistic agent together with toll-like receptor (TLR)2 ligands to induce proinflammatory activities of immune cells. In this study, a detailed investigation of these interactions is reported. The macrophage cell line J774 A.1 or C57 BL/6 J wild-type mice were treated with 18S rRNA and different TLR2 agonists. Gene and protein expression of tumor necrosis factor (Tnf)-α; interleukin (Il)-1β, Il-6; or monocyte chemoattractant protein (Mcp)-1 were analyzed and furthermore in vitro binding studies to TLR2 were performed. The TLR2/TLR6-agonist Pam2 CSK4 (Pam2) together with 18S rRNA significantly increased the mRNA expression of inflammatory genes and the release of TNF-α from macrophages in a TLR2- and nuclear factor kappa B (NF-κB)-dependent manner. The injection of 18S rRNA/Pam2 into mice increased the cytokine levels of TNF-α, IL-6, and MCP-1 in the peritoneal lavage. Mechanistically, 18S rRNA built complexes with Pam2 and thus enhanced the affinity of Pam2 to TLR2. These results indicate that the alarmin eRNA, mainly consisting of rRNA, sensitizes TLR2 to enhance the innate immune response under pathological conditions. Thus, rRNA might serve as a new target for the treatments of bacterial and viral infections.
Collapse
Affiliation(s)
- Karsten Grote
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Marina Nicolai
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Uwe Schubert
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Bernhard Schieffer
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Christian Troidl
- Medical Clinic I, Cardiology/Angiology, Campus Kerckhoff, Justus-Liebig-University, 61231 Bad Nauheim, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Klaus T. Preissner
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Stefan Bauer
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
7
|
Abstract
The recognition of microbial or danger-associated molecular patterns by complement proteins initiates a cascade of events that culminates in the activation of surface complement receptors on immune cells. Such signalling pathways converge with those activated downstream of pattern recognition receptors to determine the type and magnitude of the immune response. Intensive investigation in the field has uncovered novel pathways that link complement-mediated signalling with homeostatic and pathological T cell responses. More recently, the observation that complement proteins also act in the intracellular space to shape T cell fates has added a new layer of complexity. Here, we consider fundamental mechanisms and novel concepts at the interface of complement biology and immunity and discuss how these affect the maintenance of homeostasis and the development of human pathology.
Collapse
|
8
|
Mannan-Binding Lectin Regulates Inflammatory Cytokine Production, Proliferation, and Cytotoxicity of Human Peripheral Natural Killer Cells. Mediators Inflamm 2019; 2019:6738286. [PMID: 31915415 PMCID: PMC6930792 DOI: 10.1155/2019/6738286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells represent the founding members of innate lymphoid cells (ILC) and play critical roles in inflammation and the immune response. NK cell effector functions are regulated and fine-tuned by various immune modulators. Mannan (or mannose)-binding lectin (MBL), a soluble C-type lectin, is traditionally recognized as an initiator of the complement pathway. Recently, it is also considered as an immunomodulator by its interaction with kinds of immune cells. However, the effect of MBL on NK cell function remains unexplored. In this study, we found that human plasma MBL could interact directly with peripheral NK cells partially via its collagen-like region (CLR). This MBL binding markedly suppressed the interleukin-2- (IL-2-) induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) production but increased the IL-10 production in NK cells. In addition, the expression of activation surface markers such as CD25 and CD69 declined after MBL treatment. Also, MBL impaired the proliferation and lymphokine-activated killing (LAK) of NK cells. Moreover, we demonstrated that MBL inhibited IL-2-induced signal transducers and activators of transcription 5 (STAT5) activation in NK cells. In conclusion, we have uncovered a far unknown regulatory role of MBL on NK cells, a new clue that could be important in the immunomodulatory networks of immune responses.
Collapse
|
9
|
Kwak SY, Lee S, Han HD, Chang S, Kim KP, Ahn HJ. PLGA Nanoparticles Codelivering siRNAs against Programmed Cell Death Protein-1 and Its Ligand Gene for Suppression of Colon Tumor Growth. Mol Pharm 2019; 16:4940-4953. [DOI: 10.1021/acs.molpharmaceut.9b00826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seo Young Kwak
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | | | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | | | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
10
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
11
|
Mannan-Binding Lectin Suppresses Peptidoglycan-Induced TLR2 Activation and Inflammatory Responses. Mediators Inflamm 2019; 2019:1349784. [PMID: 30728747 PMCID: PMC6343158 DOI: 10.1155/2019/1349784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Peptidoglycan (PGN), as the major components of the bacterial cell wall, is known to cause excessive proinflammatory cytokine production. Toll-like receptor 2 (TLR2) is abundantly expressed on immune cells and has been shown to be involved in PGN-induced signaling. Although more and more evidences have indicated that PGN is recognized by TLR2, the role of TLR2 PGN recognition is controversial. Mannan-binding lectin (MBL), a plasma C-type lectin, plays a key role in innate immunity. More and more evidences show that MBL could suppress the amplification of inflammatory signals. Whether MBL can alter PGN-elicited cellular responses through TLR2 in macrophages is still unknown, and possible mechanism underlying it should be investigated. In this study, we found that MBL significantly attenuated PGN-induced inflammatory cytokine production, including TNF-α and IL-6, in PMA-stimulated THP-1 cells at both mRNA and protein levels. The expression of TLR2 was strongly induced by PGN stimulation. Furthermore, the administration of TLR2-neutralized antibody effectively suppressed PGN-induced TNF-α and IL-6 expression. These results supplied the evidence that PGN from Saccharomyces cerevisiae could be recognized by TLR2. In addition, we also found that MBL decreased PGN-induced TLR2 expression and suppressed TLR2-mediated downstream signaling, including the phosphorylation of IκBα, nuclear translocation of NF-κBp65, and phosphorylation of MAPK p38 and ERK1/2. Administration of MBL alone did not have an effect on the expression of TLR2. Finally, our data showed that PGN-mediated immune responses were more severely suppressed by preincubation with MBL and indicated that MBL can combine with both TLR2 and PGN to block the inflammation cytokine expression induced by PGN. All these data suggest that MBL could downregulate inflammation by modulating PGN/TLR2 signaling pathways. This study supports an important role for MBL in immune regulation and signaling pathways involved in inflammatory responses.
Collapse
|
12
|
Zhou J, Li J, Yu Y, Liu Y, Li H, Liu Y, Wang J, Zhang L, Lu X, Chen Z, Zuo D. Mannan-binding lectin deficiency exacerbates sterile liver injury in mice through enhancing hepatic neutrophil recruitment. J Leukoc Biol 2018; 105:177-186. [PMID: 30351498 DOI: 10.1002/jlb.3a0718-251r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
Noninfectious liver injury, including the effects of drugs and diet, is a major cause of liver diseases worldwide. The innate inflammatory response to hepatocyte death plays a crucial role in the outcome of liver injury. Mannan-binding lectin (MBL) is a pattern recognition molecule of the innate immune system, which is primarily produced by liver. MBL deficiency occurs with high frequency in the population and is reported associated with predisposition to infectious diseases. We here observed that genetic MBL ablation strongly sensitizes mice to sterile liver injury induced by carbon tetrachloride (CCl4 ). Aggravated liver damage was shown in CCl4 -administrated MBL-/- mice, as evidenced by severe hepatocyte death, elevated serum alanine aminotransferase and lactate dehydrogenase activity, and enhanced production of inflammatory cytokines. Mechanistic studies established that MBL deficiency caused increased chemokine CXCL2 production from liver macrophages upon CCl4 stimulation, thereby promoting the hepatic recruitment of neutrophils and subsequent liver damage. Furthermore, MBL-mediated protection from CCl4 -induced liver injury was validated by administration of an MBL-expressing liver-specific adeno-associated virus, which effectively ameliorated the hepatic damage in CCl4-treated MBL-/- mice. We propose that MBL may be exploited as a new therapeutic approach in the treatment of chemical-induced sterile liver injury in patients with MBL deficiency.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Li J, Li H, Yu Y, Liu Y, Liu Y, Ma Q, Zhang L, Lu X, Wang XY, Chen Z, Zuo D, Zhou J. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE 2 pathway. Oncoimmunology 2018; 8:e1527650. [PMID: 30713782 DOI: 10.1080/2162402x.2018.1527650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
Mannan binding lectin (MBL), initially known to activate the complement lectin pathway and defend against infection, was recently shown to be potentially involved in the development of several types of cancer; however, its exact role in cancers, especially its effect on tumor microenvironment remain largely unknown. Here, using a murine hepatocellular carcinoma (HCC) model, we showed that MBL was a component of liver microenvironment and MBL-deficient (MBL-/-) mice exhibited an enhanced tumor growth compared with wild-type (WT) mice. This phenomenon was associated with elevation of myeloid derived suppressed cells (MDSCs) in tumor tissue of MBL-/- mice. MBL deficiency also resulted in an increase of activated hepatic stellate cells (HSCs), which showed enhanced cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production. Pharmacological inhibition of COX-2 in vivo partially abrogated the MBL deficiency-promoted tumor growth and MDSC accumulation. Mechanistic studies revealed that MBL could interact directly with HSCs and inhibit HCC-induced HSCs activation via downregulating the extracellular signal-regulated kinase (ERK)/COX-2/PGE2 signaling pathway. Furthermore, MBL-mediated suppression of HCC is validated by administration of MBL-expressing, liver-specific adeno-associated virus (AAV), which significantly inhibited HCC progression in MBL-/- mice. Taken together, these data reveal that MBL may impact on tumor development by shaping the tumor microenvironment via its interaction with the local stromal cells, and also suggests its potential therapeutic use for the treatment of HCC.
Collapse
Affiliation(s)
- Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, USA
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangdong, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Peng X, Zhao G, Lin J, Li C. Interaction of mannose binding lectin and other pattern recognition receptors in human corneal epithelial cells during Aspergillus fumigatus infection. Int Immunopharmacol 2018; 63:161-169. [DOI: 10.1016/j.intimp.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
15
|
Askarian F, Wagner T, Johannessen M, Nizet V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol Rev 2018; 42:656-671. [PMID: 29893825 PMCID: PMC6098222 DOI: 10.1093/femsre/fuy025] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial components. The intracellular signaling cascades triggered by these receptors result in transcriptional upregulation of inflammatory pathways. Although this step is crucial for bacterial elimination, it is also associated with the potential for substantial immunopathology, which underscores the need for tight control of inflammatory responses. The leading human bacterial pathogen Staphylococcus aureus expresses over 100 virulence factors that exert numerous effects upon host cells. In this manner, the pathogen seeks to avoid host recognition or perturb PRR-induced innate immune responses to allow optimal survival in the host. These immune system interactions may result in enhanced bacterial proliferation but also provoke systemic cytokine responses associated with sepsis. This review summarizes recent findings on the various mechanisms applied by S. aureus to modulate or interfere with inflammatory responses through PRRs. Detailed understanding of these complex interactions can provide new insights toward future immune-stimulatory therapeutics against infection or immunomodulatory therapeutics to suppress or correct dysregulated inflammation.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Theresa Wagner
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Complement components as promoters of immunological tolerance in dendritic cells. Semin Cell Dev Biol 2017; 85:143-152. [PMID: 29155220 DOI: 10.1016/j.semcdb.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
Complement and dendritic cells (DCs) share many functional features that drive the outcome of immune-inflammatory processes. Both have a sentinel function, acting as danger sensors specialized for a rapid, comprehensive and selective action against potential threats without damaging the healthy host cells. But while complement has been considered as a "master alarm" system poised for direct pathogen killing, DCs are regarded as "master regulators" or orchestrators of a vast range of effector immune cells for an effective immune response against threatening insults. The original definition of the complement system, coined to denote its auxiliary function to enhance or assist in the role of antibodies or phagocytes to clear microbes or damaged cells, envisaged an important crosstalk between the complement and the mononuclear phagocyte systems. More recent studies have shown that, depending on the microenvironmental conditions, several complement effectors are competent to influence the differentiation and/or function of different DC subsets toward immunogenicity or tolerance. In this review we will infer about the capability of complement activators and inhibitors to "condition" a tolerogenic and anti-inflammatory immune response by direct interaction with DC surface receptors, and about the implications of this knowledge to devise new complement-based therapeutic approaches for autoimmune pathologies.
Collapse
|
17
|
Han HD, Byeon Y, Jang JH, Jeon HN, Kim GH, Kim MG, Pack CG, Kang TH, Jung ID, Lim YT, Lee YJ, Lee JW, Shin BC, Ahn HJ, Sood AK, Park YM. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci Rep 2016; 6:38348. [PMID: 27910914 PMCID: PMC5133713 DOI: 10.1038/srep38348] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
Dentritic cell (DC)-based cancer immunotherapy faces challenges in both efficacy and practicality. However, DC-based vaccination requires multiple injections and elaborates ex vivo manipulation, which substantially limits their use. Therefore, we sought to develop a chitosan nanoparticle (CH-NP)-based platform for the next generation of vaccines to bypass the ex vivo manipulation and induce immune responses via active delivery of polyinosinic-polycytidylic acid sodium salt (poly I:C) to target Toll-like receptor 3 (TLR3) in endosomes. We developed CH-NPs encapsulating ovalbumin (OVA) as a model antigen and poly I:C as the adjuvant in an ionic complex. These CH-NPs showed increased in vivo intracellular delivery to the DCs in comparison with controls after injection into tumor-bearing mice, and promoted DC maturation, leading to emergence of antigen-specific cytotoxic CD8+ T cells. Finally, the CH-NPs showed significantly greater antitumor efficacy in EG.7 and TC-1 tumor-bearing mice compared to the control (p < 0.01). Taken together, these data show that the CH-NP platform can be used as an immune response modulatory vaccine for active cancer immunotherapy without ex vivo manipulation, thus resulting in increased anticancer efficacy.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 31962, South Korea
| | - Hat Nim Jeon
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Ga Hee Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Min Gi Kim
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine &Asan Institute for Life Sciences, Asan Medical Center, Seoul 055-05, South Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - In Duk Jung
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 25-2, South Korea
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul 143-747, South Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sunkyunkwan University School of Medicine, Seoul 06531, South Korea
| | - Byung Cheol Shin
- Bio/Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, South Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas M.D. Anderson Cancer Center, Texas, USA.,Department of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Texas, USA.,Center for RNA Interference and Non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| |
Collapse
|
18
|
Triantafilou M, Hughes TR, Morgan BP, Triantafilou K. Complementing the inflammasome. Immunology 2016; 147:152-64. [PMID: 26572245 DOI: 10.1111/imm.12556] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 01/02/2023] Open
Abstract
The innate immune system is an ancient surveillance system able to sense microbial invaders as well as aberrations in normal cell function. No longer viewed as a static and non-specific part of immunity, the innate immune system employs a plethora of specialized pattern recognition sensors to monitor and achieve homeostasis; these include the Toll-like receptors, the retinoic acid-inducible gene-like receptors, the nucleotide-binding oligomerization domain receptors (NLRs), the C-type lectins and the complement system. In order to increase specificity and diversity, innate immunity uses homotypic and heterotypic associations among these different components. Multi-molecular assemblies are formed both on the cell surface and in the cytosol to respond to pathogen and danger signals. Diverse, but tailored, responses to a changing environment are orchestrated depending on the the nature of the challenge and the repertoire of interacting receptors and components available in the sensing cell. It is now emerging that innate immunity operates a system of 'checks and balances' where interaction among the sensors is key in maintaining normal cell function. Complement sits at the heart of this alarm system and it is becoming apparent that it is capable of interacting with all the other pathways to effect a tailored immune response. In this review, we will focus on complement interactions with NLRs, the so-called 'inflammasomes', describing the molecular mechanisms that have been revealed so far and discussing the circumstantial evidence that exists for these interactions in disease states.
Collapse
Affiliation(s)
- Martha Triantafilou
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Bryan Paul Morgan
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Kathy Triantafilou
- Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Tang Y, Ma D, Ming S, Zhang L, Zhou J, Shan G, Chen Z, Lu X, Zuo D. Mannan-binding lectin reduces CpG DNA-induced inflammatory cytokine production by human monocytes. Microbiol Immunol 2016; 59:231-7. [PMID: 25664598 DOI: 10.1111/1348-0421.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
Mannan-binding lectin (MBL) belongs to the collectin family and functions as an opsonin that can also initiate complement activation. Our previous study showed that MBL serves as a double-stranded RNA binding protein that attenuates polyriboinosinic-polyribocytidylic acid-induced TLR3 activation. Prompted by these findings, in the present study cross-talk between MBL and CpG-DNA-induced TLR9 activation was investigated. Here, it was found that MBL also interacts with the TLR9 agonist, CpG oligodeoxynucleotide (CpG-ODN), in a calcium-dependent manner. Purified MBL protein suppressed activation of nuclear factor-kappa B signaling and subsequent production of proinflammatory cytokines from human monocytes induced by CpG-ODN 2006. These observations indicate that MBL can down-regulate CpG DNA-induced TLR9 activation, emphasizing the importance of understanding the interaction of MBL with TLR agonist in host immune defense.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Immunology, Southern Medical University, Guangzhou, 510515
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thaiss CA, Levy M, Itav S, Elinav E. Integration of Innate Immune Signaling. Trends Immunol 2016; 37:84-101. [PMID: 26755064 DOI: 10.1016/j.it.2015.12.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The last decades of research in innate immunology have revealed a multitude of sensing receptors that evaluate the presence of microorganisms or cellular damage in tissues. In the context of a complex tissue, many such sensing events occur simultaneously. Thus, the downstream pathways need to be integrated to launch an appropriate cellular response, to tailor the magnitude of the reaction to the inciting event, and to terminate it in a manner that avoids immunopathology. Here, we provide a conceptual overview of the crosstalk between innate immune receptors in the initiation of a concerted immune reaction to microbial and endogenous triggers. We classify the known interactions into categories of communication and provide examples of their importance in pathogenic infection.
Collapse
Affiliation(s)
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomik Itav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Abstract
Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.
Collapse
|
22
|
Zhang P, Liu X, Cao X. Extracellular pattern recognition molecules in health and diseases. Cell Mol Immunol 2014; 12:255-7. [PMID: 25195513 DOI: 10.1038/cmi.2014.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/02/2014] [Indexed: 12/30/2022] Open
|