1
|
Zupancic M, Kostopoulou ON, Marklund L, Dalianis T. Therapeutic options for human papillomavirus-positive tonsil and base of tongue cancer. J Intern Med 2025; 297:608-629. [PMID: 40246777 PMCID: PMC12087873 DOI: 10.1111/joim.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The incidences of human papillomavirus-positive (HPV+) tonsillar and base tongue squamous cell carcinomas (TSCC and BOTSCC) have increased in recent decades. Notably, HPV+ TSCC and BOTSCC have a significantly better prognosis than their HPV-negative counterparts when treated with current surgical options, radiotherapy, or intensified chemoradiotherapy. However, a cure is not achieved in 20% of patients with HPV+ TSCC/BOTSCC. Meanwhile, cured patients often present with severe chronic side effects. This necessitates novel tailored alternatives, such as targeted therapy, immune checkpoint inhibitors (ICIs), and treatment de-escalation, together with better follow-up. Current precision medicine therefore focuses on detecting predictive and driver cancer genes to better stratify patient treatment, provide those with poor prognostic markers targeted therapy, and select those with favorable markers for de-escalated therapy. Moreover, detecting cell-free HPV DNA (cfHPV DNA) in plasma before and after treatment has been attempted to improve follow-up. In this context, this perspective discusses the significance of optimally defining HPV+ status, which requires HPV DNA and p16INKa overexpression, using prognostic markers, such as high CD8+ T-cell counts and HPV E2 mRNA expression, tumor size, and following cfHPV DNA for patient selection for specific therapies. Clinical trials with ICI with/without chemotherapy, targeted therapy with specific inhibitors-such as phosphoinositide 3-kinase and fibroblast growth factor receptor inhibitors-or immune therapy with various HPV-based vaccines for treating recurrences have yielded promising results.
Collapse
Affiliation(s)
- Mark Zupancic
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
| | | | - Linda Marklund
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
- Department of Surgical SciencesSection of Otolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
- Division of Ear Nose and Throat DiseasesDepartment of Clinical Sciences Intervention and TechnologyKarolinska InstitutetStockholmSweden
| | - Tina Dalianis
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Medical Unit Head, Neck, Lung, and Skin Cancer, Theme CancerKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025; 25:189-208. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
5
|
Qayoom H, Mir MA. Mutant P53 modulation by cryptolepine through cell cycle arrest and apoptosis in triple negative breast cancer. Biomed Pharmacother 2024; 179:117351. [PMID: 39216450 DOI: 10.1016/j.biopha.2024.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Triple Negative Breast cancer is an aggressive breast cancer subtype. It has a more aggressive clinical course, an earlier age of onset, a larger propensity for metastasis, and worse clinical outcomes as evidenced by a higher risk of recurrence and a shorter survival rate. Currently, the primary options for TNBC treatment are surgery, radiation, and chemotherapy. These treatments however remain ineffective due to recurrence. However, given that p53 mutations have been identified in more than 60-88 % of TNBC, translating p53 into the clinical situation is particularly important in TNBC. In this study, we screened and evaluated the therapeutic potential of cryptolepine (CRP) in TNBC in-vitro models being an anti-malarial drug it could be repurposed as an anti-cancer therapeutic targeting TNBC. Moreover, the cytotoxicity activity of cryptolepine to TNBC cells and a detailed anti-tumor mechanism in mutant P53 has not been reported before. METHODS MTT assays were used to examine the cytotoxicity and cell viability activity of Cryptolepine in TNBC, non-TNBC T47D and MCF-7 and non-malignant MCF10A cells. Scratch wound and clonogenic assay was used to evaluate the cryptolepine's effect on migration and colony forming ability of TNBC cells. Flow cytometry, MMP and DAPI was used to assess cell cycle arrest and cell apoptosis mechanism. The expression of proteins was detected by western blots. The differential expression of RNAs was evaluated by RT-PCR and the interaction between P53 and drug was evaluated computationally using in-silico approach and in-vitro using ChIP assay. RESULTS In this study, we found that cryptolepine has more preferential cytotoxicity in TNBC than non-TNBC cells. Notably, our studies revealed the mechanism by which cryptolepine induces intrinsic apoptosis and inhibit migration, colony formation ability, induce cell cycle arrest by inducing conformational change in the mutant P53 thereby increasing its DNA binding ability, hence activating its tumor suppressing potential significantly. CONCLUSION Our study revealed that CRP significantly reduced the proliferation, migration and colony forming ability of TNBC cells lines. Moreover, it was revealed that CRP induces cell cycle arrest and apoptosis by activating mutant P53 and enhancing its DNA binding ability to induce its tumor suppressing ability.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
6
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
7
|
Michaeli O, Luz I, Vatarescu M, Manko T, Weizman N, Korotinsky Y, Tsitrina A, Braiman A, Arazi L, Cooks T. APR-246 as a radiosensitization strategy for mutant p53 cancers treated with alpha-particles-based radiotherapy. Cell Death Dis 2024; 15:426. [PMID: 38890278 PMCID: PMC11189442 DOI: 10.1038/s41419-024-06830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Radiation therapy (RT) remains a common treatment for cancer patients worldwide, despite the development of targeted biological compounds and immunotherapeutic drugs. The challenge in RT lies in delivering a lethal dose to the cancerous site while sparing the surrounding healthy tissues. Low linear energy transfer (low-LET) and high linear energy transfer (high-LET) radiations have distinct effects on cells. High-LET radiation, such as alpha particles, induces clustered DNA double-strand breaks (DSBs), potentially inducing cell death more effectively. However, due to limited range, alpha-particle therapies have been restricted. In human cancer, mutations in TP53 (encoding for the p53 tumor suppressor) are the most common genetic alteration. It was previously reported that cells carrying wild-type (WT) p53 exhibit accelerated senescence and significant rates of apoptosis in response to RT, whereas cells harboring mutant p53 (mutp53) do not. This study investigated the combination of the alpha-emitting atoms RT based on internal Radium-224 (224Ra) sources and systemic APR-246 (a p53 reactivating compound) to treat tumors with mutant p53. Cellular models of colorectal cancer (CRC) or pancreatic ductal adenocarcinoma (PDAC) harboring mutant p53, were exposed to alpha particles, and tumor xenografts with mutant p53 were treated using 224Ra source and APR-246. Effects on cell survival and tumor growth, were assessed. The spread of alpha emitters in tumors was also evaluated as well as the spatial distribution of apoptosis within the treated tumors. We show that mutant p53 cancer cells exhibit radio-sensitivity to alpha particles in vitro and to alpha-particles-based RT in vivo. APR-246 treatment enhanced sensitivity to alpha radiation, leading to reduced tumor growth and increased rates of tumor eradication. Combining alpha-particles-based RT with p53 restoration via APR-246 triggered cell death, resulting in improved therapeutic outcomes. Further preclinical and clinical studies are needed to provide a promising approach for improving treatment outcomes in patients with mutant p53 tumors.
Collapse
Affiliation(s)
- Or Michaeli
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Maayan Vatarescu
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Weizman
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yevgeniya Korotinsky
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
9
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
11
|
Herrera-Calderon O, Herrera-Ramírez A, Cardona-G W, Melgar-Merino EJ, Chávez H, Pari-Olarte JB, Loyola-Gonzales E, Kong-Chirinos JF, Almeida-Galindo JS, Peña-Rojas G, Andía-Ayme V. Dodonaea viscosa Jacq. induces cytotoxicity, antiproliferative activity, and cell death in colorectal cancer cells via regulation of caspase 3 and p53. Front Pharmacol 2023; 14:1197569. [PMID: 37426815 PMCID: PMC10326442 DOI: 10.3389/fphar.2023.1197569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and is the second leading cause of cancer-related death due to an insufficiency prognosis and is generally diagnosed in the last step of development. The Peruvian flora has a wide variety of medicinal plants with therapeutic potential in several diseases. Dodonaea viscosa Jacq. is a plant used to treat inflammatory process as well as gastrointestinal diseases. The aim of this study was to examine the cytotoxic, antiproliferative, and cell death-inducing effects of D. viscosa on colorectal cancer cells (SW480 and SW620). The hydroethanolic extract was obtained by maceration at 70% ethanol, the phytochemical constituents were identified by LC-ESI-MS. D. viscosa revealed 57 compounds some of them are: isorhamnetin, kaempferol, quercetin, methyl dodovisate B, hardwickiic acid, viscosol, and dodonic acid. Regarding the antitumoral activity, D. viscosa induced cytotoxic and antiproliferative activity in both SW480 and SW620 cancer cells, accompanied with, important changes in mitochondrial membrane potential, formation of the Sub G0/G1 population and increasing levels of apoptotic biomarkers (caspase 3 and the tumor suppressor protein p53) in the metastatic derivative cell line (SW620), suggesting an intrinsic apoptotic process after the treatment with the hydroethanolic extract of D. viscosa.
Collapse
Affiliation(s)
- Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology, and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Angie Herrera-Ramírez
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Medellín, Colombia
| | - Wilson Cardona-G
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Medellín, Colombia
| | - Elizabeth Julia Melgar-Merino
- Department of Chemistry Sciences, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - Haydee Chávez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - Josefa Bertha Pari-Olarte
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - Eddie Loyola-Gonzales
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - José Francisco Kong-Chirinos
- Department of Surgical Clinical Sciences, Faculty of Human Medicine, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | | | - Gilmar Peña-Rojas
- Laboratory of Cellular and Molecular Biology, Biological Sciences Faculty, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - Vidalina Andía-Ayme
- Food Microbiology Laboratory, Biological Sciences Faculty, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| |
Collapse
|
12
|
Dual roles of TRIM3 in colorectal cancer by retaining p53 in the cytoplasm to decrease its nuclear expression. Cell Death Discov 2023; 9:85. [PMID: 36894560 PMCID: PMC9998637 DOI: 10.1038/s41420-023-01386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Colorectal cancer is a very heterogeneous disease caused by the interaction of genetic and environmental factors. P53, as a frequent mutation gene, plays a critical role in the adenoma-carcinoma transition during the tumorous pathological process. Our team discovered TRIM3 as a tumor-associated gene in CRC by high-content screening techniques. TRIM3 demonstrated both tumor-suppressive and tumorigenic features in cell experiments dependent on the cell status of wild or mutant p53. TRIM3 could directly interact with the C terminus of p53 (residues 320 to 393), a common segment of wtp53 and mutp53. Moreover, TRIM3 could exert different neoplastic features by retaining p53 in the cytoplasm to decrease its nuclear expression in a wtp53 or mutp53-dependent pathway. Chemotherapy resistance develops in nearly all patients with advanced CRC and seriously limits the therapeutic efficacies of anticancer drugs. TRIM3 could reverse the chemotherapy resistance of oxaliplatin in mutp53 CRC cells by degradation of mutp53 in the nuclei to downregulate the multidrug resistance gene. Therefore, TRIM3 could be a potential therapeutic strategy to improve the survival of CRC patients with mutp53.
Collapse
|
13
|
Lv C, Lan A, Fan X, Huang C, Yang G. Asperolide A induces apoptosis and cell cycle arrest of human hepatoma cells with p53-Y220C mutant through p38 mediating phosphorylation of p53 (S33). Heliyon 2023; 9:e13843. [PMID: 36923828 PMCID: PMC10009462 DOI: 10.1016/j.heliyon.2023.e13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Asperolides A (AA), one of the new tetranorlabdane diterpenoids, is proved to inhibit the proliferation of lung cancer cells and bone metastasis of breast cancer cells. Herein, we report that AA induces apoptosis and cell cycle arrest of hepatoma cells. It intensely inhibits proliferation of Huh-7 cell, compared with HepG-2 and L02 cells. AA elevates the activity of mitogen-activated protein kinases (MAPKs), in which the activation of ERK and JNK improves cell survival. However, phosphorylation of p53 at S33 by p38 activation could be a principal factor in the AA-induced apoptosis and G2/M cell cycle arrest of Huh-7 cells. The S33 site of p53-Y220C mutant, as the specific activation site of p38, reactivates the wild-type function of mutant p53 protein, which leads to a higher sensitivity of Huh-7 cells to AA. These results provide new insights into the molecular mechanisms of AA as a developing mutant p53 rescue drug.
Collapse
Affiliation(s)
- Cuiting Lv
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Aihua Lan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiao Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 201900, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai, 200433, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China
| |
Collapse
|
14
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 339] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
15
|
The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ 2023; 30:1033-1046. [PMID: 36739334 PMCID: PMC10070280 DOI: 10.1038/s41418-023-01122-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
Mutant TP53 proteins are thought to drive the development and sustained expansion of cancers at least in part through the loss of the wild-type (wt) TP53 tumour suppressive functions. Therefore, compounds that can restore wt TP53 functions in mutant TP53 proteins are expected to inhibit the expansion of tumours expressing mutant TP53. APR-246 has been reported to exert such effects in malignant cells and is currently undergoing clinical trials in several cancer types. However, there is evidence that APR-246 may also kill malignant cells that do not express mutant TP53. To support the clinical development of APR-246 it is important to understand its mechanism(s) of action. By establishing isogenic background tumour cell lines with different TP53/TRP53 states, we found that APR-246 can kill malignant cells irrespective of their TP53/TRP53 status. Accordingly, RNAseq analysis revealed that treatment with APR-246 induces expression of the same gene set in Eμ-Myc mouse lymphoma cells of all four possible TRP53 states, wt, wt alongside mutant, knockout and knockout alongside mutant. We found that depending on the type of cancer cell and the concentration of APR-246 used, this compound can kill malignant cells through induction of various programmed cell death pathways, including apoptosis, necroptosis and ferroptosis. The sensitivity of non-transformed cells to APR-246 also depended on the cell type. These findings reveal that the clinical testing of APR-246 should not be limited to cancers expressing mutant TP53 but expanded to cancers that express wt TP53 or are TP53-deficient.
Collapse
|
16
|
Unaffected Li-Fraumeni Syndrome Carrier Parent Demonstrates Allele-Specific mRNA Stabilization of Wild-Type TP53 Compared to Affected Offspring. Genes (Basel) 2022; 13:genes13122302. [PMID: 36553570 PMCID: PMC9778056 DOI: 10.3390/genes13122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Li-Fraumeni Syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is inherited by offspring of a carrier parent. p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Unexpectedly, some mutant TP53 carriers remain unaffected, while their children develop cancer early in life. To begin unravelling this paradox, the response of dermal fibroblasts (dFb) isolated from a child with LFS was compared to those from her unaffected father after UV exposure. Phospho-Chk1[S345], a key activator of cell cycle arrest, was increased by UV induction in the LFS patient compared to their unaffected parent dFb. This result, along with previous findings of reduced CDKN1A/p21 UV induction in affected dFb, suggest that cell cycle dysregulation may contribute to cancer onset in the affected LFS subject but not the unaffected parent. Mutant p53 protein and its promoter binding affinity were also higher in dFb from the LFS patient compared to their unaffected parent. These results were as predicted based on decreased mutant TP53 allele-specific mRNA expression previously found in unaffected dFb. Investigation of the potential mechanism regulating this TP53 allele-specific expression found that, while epigenetic promoter methylation was not detectable, TP53 wild-type mRNA was specifically stabilized in the unaffected dFb. Hence, the allele-specific stabilization of wild-type TP53 mRNA may allow an unaffected parent to counteract genotoxic stress by means more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
|
17
|
Unraveling the Structural Changes in the DNA-Binding Region of Tumor Protein p53 ( TP53) upon Hotspot Mutation p53 Arg248 by Comparative Computational Approach. Int J Mol Sci 2022; 23:ijms232415499. [PMID: 36555140 PMCID: PMC9779389 DOI: 10.3390/ijms232415499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The vital tissue homeostasis regulator p53 forms a tetramer when it binds to DNA and regulates the genes that mediate essential biological processes such as cell-cycle arrest, senescence, DNA repair, and apoptosis. Missense mutations in the core DNA-binding domain (109-292) simultaneously cause the loss of p53 tumor suppressor function and accumulation of the mutant p53 proteins that are carcinogenic. The most common p53 hotspot mutation at codon 248 in the DNA-binding region, where arginine (R) is substituted by tryptophan (W), glycine (G), leucine (L), proline (P), and glutamine (Q), is reported in various cancers. However, it is unclear how the p53 Arg248 mutation with distinct amino acid substitution affects the structure, function, and DNA binding affinity. Here, we characterized the pathogenicity and protein stability of p53 hotspot mutations at codon 248 using computational tools PredictSNP, Align GVGD, HOPE, ConSurf, and iStable. We found R248W, R248G, and R248P mutations highly deleterious and destabilizing. Further, we subjected all five R248 mutant-p53-DNA and wt-p53-DNA complexes to molecular dynamics simulation to investigate the structural stability and DNA binding affinity. From the MD simulation analysis, we observed increased RMSD, RMSF, and Rg values and decreased protein-DNA intermolecular hydrogen bonds in the R248-p53-DNA than the wt-p53-DNA complexes. Likewise, due to high SASA values, we observed the shrinkage of proteins in R248W, R248G, and R248P mutant-p53-DNA complexes. Compared to other mutant p53-DNA complexes, the R248W, R248G, and R248P mutant-p53-DNA complexes showed more structural alteration. MM-PBSA analysis showed decreased binding energies with DNA in all five R248-p53-DNA mutants than the wt-p53-DNA complexes. Henceforth, we conclude that the amino acid substitution of Arginine with the other five amino acids at codon 248 reduces the p53 protein's affinity for DNA and may disrupt cell division, resulting in a gain of p53 function. The proposed study influences the development of rationally designed molecular-targeted treatments that improve p53-based therapeutic outcomes in cancer.
Collapse
|
18
|
Stephenson Clarke J, Douglas LR, Duriez PJ, Balourdas DI, Joerger AC, Khadiullina R, Bulatov E, Baud MGJ. Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C. ACS Pharmacol Transl Sci 2022; 5:1169-1180. [PMID: 36407959 PMCID: PMC9667543 DOI: 10.1021/acsptsci.2c00164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/28/2022]
Abstract
The tumor suppressor protein p53 is inactivated in the majority of human cancers and remains a prime target for developing new drugs to reactivate its tumor suppressing activity for anticancer therapies. The oncogenic p53 mutant Y220C accounts for approximately 125,000 new cancer cases per annum and is one of the most prevalent p53 mutants overall. It harbors a narrow, mutationally induced pocket at the surface of the DNA-binding domain that destabilizes p53, leading to its rapid denaturation and aggregation. Here, we present the structure-guided development of high-affinity small molecules stabilizing p53-Y220C in vitro, along with the synthetic routes developed in the process, in vitro structure-activity relationship data, and confirmation of their binding mode by protein X-ray crystallography. We disclose two new chemical probes displaying sub-micromolar binding affinity in vitro, marking an important milestone since the discovery of the first small-molecule ligand of Y220C in 2008. New chemical probe JC744 displayed a K d = 320 nM, along with potent in vitro protein stabilization. This study, therefore, represents a significant advance toward high-affinity Y220C ligands for clinical evaluation.
Collapse
Affiliation(s)
- Joseph
R. Stephenson Clarke
- School of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Leon R. Douglas
- Cancer
Research UK, Somers Building, University
Hospital Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Patrick J. Duriez
- Centre
for Cancer Immunology, University Hospital
Southampton, Coxford
Road, Southampton SO16
6YD, United Kingdom
| | - Dimitrios-Ilias Balourdas
- Institute
of Pharmaceutical Chemistry, Johann Wolfgang
Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Buchmann
Institute for Molecular Life Sciences and Structural Genomics Consortium, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Andreas C. Joerger
- Institute
of Pharmaceutical Chemistry, Johann Wolfgang
Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Buchmann
Institute for Molecular Life Sciences and Structural Genomics Consortium, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Raniya Khadiullina
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kazan 420008, Russia
| | - Emil Bulatov
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kazan 420008, Russia
| | - Matthias G. J. Baud
- School of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
19
|
Synthesis and Chemopreventive Potential of 5-FU/Genistein Hybrids on Colorectal Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15101299. [PMID: 36297411 PMCID: PMC9606943 DOI: 10.3390/ph15101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
A series of 5-FU-Genistein hybrids were synthesized and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated in human colon adenocarcinoma cells (SW480 and SW620) and non-malignant cell lines (HaCaT and CHO-K1). Hybrid 4a displayed cytotoxicity against SW480 and SW620 cells with IC50 values of 62.73 ± 7.26 µM and 50.58 ± 1.33 µM, respectively; compound 4g induced cytotoxicity in SW620 cells with an IC50 value of 36.84 ± 0.71 µM. These compounds were even more selective than genistein alone, the reference drug (5-FU) and the equimolar mixture of genistein plus 5-FU. In addition, hybrids 4a and 4g induced time- and concentration-dependent antiproliferative activity and cell cycle arrest at the S-phase and G2/M. It was also observed that hybrid 4a induced apoptosis in SW620 cells probably triggered by the extrinsic pathway in response to the activation of p53, as evidenced by the increase in the levels of caspases 3/8 and the tumor suppressor protein (Tp53). Molecular docking studies suggest that the most active compound 4a would bind efficiently to proapoptotic human caspases 3/8 and human Tp53, which in turn could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. On the other hand, molecular dynamics (MD) studies provided strong evidence of the conformational stability of the complex between caspase-3 and hybrid 4a obtained throughout 100 ns all-atom MD simulation. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of the complex with caspase-3 showed that the interaction between the ligand and the target protein is stable. Altogether, the results suggest that the active hybrids, mainly compound 4a, might act by modulating caspase-3 activity in a colorectal cancer model, making it a privileged scaffold that could be used in future investigations.
Collapse
|
20
|
GOF Mutant p53 in Cancers: A Therapeutic Challenge. Cancers (Basel) 2022; 14:cancers14205091. [PMID: 36291874 PMCID: PMC9600758 DOI: 10.3390/cancers14205091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In normal cells, p53 is a protein which regulates the cell cycle progression to ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge of these strategies is important in improving the overall therapeutic response of cancers with mutant p53. This review highlights new strategies and discusses the progression of such therapies. Abstract TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.
Collapse
|
21
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp Hematol Oncol 2022; 11:66. [PMID: 36171607 PMCID: PMC9520902 DOI: 10.1186/s40164-022-00317-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to neurodegenerative diseases, the concept that tumors are prion like diseases has been proposed in recent years. p53, the most well-known tumor suppressor, has been extensively studied for its expression, mutation, and function in various tumors. Currently, an interesting phenomenon of p53 prion-like aggregation has been found in several tumors, and studies have found that its pathological aggregation may lead to functional alterations and ultimately affect tumor progression. It has been demonstrated that the mechanism of p53 aggregation involves its mutation, domains, isoform, etc. In addition to p53 itself, some other factors, including Zn2+ concentration, pH, temperature and chaperone abnormalities, can also contribute to p53 aggregation. Although there are some studies about the mechanism and role of p53 aggregation and amyloidosis in tumors, there still exist some controversies. In this paper, we review the mechanism of p53 amyloid fibril structure and discuss the characteristics and effects of p53 amyloid aggregation, as well as the pathogenic mechanism leading to the occurrence of aggregation in tumors. Finally, we summarize the various inhibitors targeting p53 aggregation and prion-like behavior. In conclusion, a comprehensive understanding of p53 aggregation can expand our understanding of the causes leading its loss of physiological function and that targeting p53 aggregation might be a promising therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
22
|
Moreno-Q G, Herrera-R A, Yepes AF, Naranjo TW, Cardona-G W. Proapoptotic Effect and Molecular Docking Analysis of Curcumin-Resveratrol Hybrids in Colorectal Cancer Chemoprevention. Molecules 2022; 27:3486. [PMID: 35684424 PMCID: PMC9181936 DOI: 10.3390/molecules27113486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Different hybrids based on curcumin and resveratrol were previously synthesized and characterized by spectroscopic techniques. The most active molecules (3a, 3e, 3i, and 3k) were evaluated in vitro as an approach to determine the possible mechanism of action of the hybrids. The results indicated that the evaluated curcumin/resveratrol hybrids induce mitochondrial instability in SW620 and SW480 cells. Moreover, these molecules caused a loss in membrane integrity, suggesting an apoptotic process mediated by caspases after the treatment with compounds 3i (SW480) and 3k (SW620). In addition, the results suggest that the mechanism of action of the hybrids could be independent of the p53 status. Furthermore, hybrids 3e and 3i caused G0/G1 phase arrest, which highlights the potential of these molecules not only as cytotoxic but also as cytostatic compounds. Hybrids 3e and 3i caused a negative modulation of the matrix metalloproteinase 7 (MMP7) on SW480 cells. These curcumin resveratrol hybrids could be potential candidates for further investigations in the search for potential chemopreventive agents, even in those cases with resistance to conventional chemotherapy because of the lack of p53 expression or function. Molecular docking simulations showed that compounds 3e, 3i, and 3k bind efficiently to proapoptotic human caspases 3/7 proteins, as well as human MMP-7 and p53, which, in turn, could explain at the molecular level the in vitro cytotoxic effect of these compounds in SW480 and SW620 colon cancer cell lines.
Collapse
Affiliation(s)
- Gustavo Moreno-Q
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
| | - Angie Herrera-R
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellin 050034, Colombia;
| | - Andres F. Yepes
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
| | - Tonny W. Naranjo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellin 050034, Colombia;
- School of Health Sciences, Pontifical Bolivarian University, Medellin 050034, Colombia
| | - Wilson Cardona-G
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
| |
Collapse
|
23
|
Amirtharaj F, Venkatesh GH, Wojtas B, Nawafleh HH, Mahmood AS, Nizami ZN, Khan MS, Thiery J, Chouaib S. p53 reactivating small molecule PRIMA‑1 MET/APR‑246 regulates genomic instability in MDA‑MB‑231 cells. Oncol Rep 2022; 47:85. [PMID: 35234267 DOI: 10.3892/or.2022.8296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pharmacological reactivation of tumor‑suppressor protein p53 has acted as a promising strategy for more than 50% of human cancers that carry a non‑functional mutant p53 (mutp53). p53 plays a critical role in preserving genomic integrity and DNA fidelity through numerous biological processes, including cell cycle arrest, DNA repair, senescence and apoptosis. By contrast, non‑functional mutp53 compromises the aforementioned genome stabilizing mechanisms through gain of function, thereby increasing genomic instability in human cancers. Restoring the functional activity of p53 using both genetic and pharmacological approaches has gained prominence in targeting p53‑mutated tumors. Thus, the present study aimed to investigate the reactivation of p53 in DNA repair mechanisms and the maintenance of genomic stability using PRIMA‑1MET/APR‑246 small molecules, in both MDA‑MB‑231 and MCF‑7 breast cancer cell lines, which carry mutp53 and wild‑type p53, respectively. Results of the present study revealed that reactivation of p53 through APR‑246 led to an increase in the functional activity of DNA repair. Prolonged treatment of MDA‑MB‑231 cells with APR‑246 in the presence of cisplatin led to a reduction in mutational accumulation, compared with cells treated with cisplatin alone. These findings demonstrated that APR‑246 may act as a promising small molecule to control the genomic instability in p53‑mutated tumors.
Collapse
Affiliation(s)
- Francis Amirtharaj
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, PAS, 02‑093 Warsaw, Poland
| | - Hussam Hussein Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Ayda Shah Mahmood
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Zohra Nausheen Nizami
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Munazza Samar Khan
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris‑Saclay, F‑94805 Villejuif, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| |
Collapse
|
24
|
Yuan F, Sun Q, Zhang S, Ye L, Xu Y, Deng G, Xu Z, Zhang S, Liu B, Chen Q. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell Biosci 2022; 12:20. [PMID: 35216629 PMCID: PMC8881833 DOI: 10.1186/s13578-022-00764-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 01/14/2023] Open
Abstract
Background Ferroptosis plays a key role in human cancer, but its function and mechanism in glioma is not clear. P62/SQSTM1 was reported to inhibit ferroptosis via the activation of NRF2 signaling pathway. In this study we reveal a dual role of p62 in ferroptosis of glioblastoma (GBM) according to p53 status. Method Lipid peroxidation analysis, transmission electron microscopy (TEM), GSH assay were performed to determine the level of ferroptosis. Western blot and qPCR were obtained to detect the expression of ferroptosis markers. Construction of mutant plasmids, immunoprecipitation, luciferase assay and rescue-experiments were performed to explore the regulatory mechanism. Results P62 overexpression facilitates ferroptosis and inhibits SLC7A11 expression in p53 mutant GBM, while attenuates ferroptosis and promotes SLC7A11 expression in p53 wild-type GBM. P62 associates with p53 and inhibits its ubiquitination. The p53-NRF2 association and p53-mediated suppression of NRF2 antioxidant activity are diversely regulated by p62 according to p53 status. P53 mutation status is required for the dual regulation of p62 on ferroptosis. In wild-type p53 GBM, the classical p62-mediated NRF2 activation pathway plays a major regulatory role of ferroptosis, leading to increased SLC7A11 expression, resulting in a anti-ferroptosis role. In mutant p53 GBM, stronger interaction of mutant-p53/NRF2 by p62 enhance the inhibitory effect of mutant p53 on NRF2 signaling, which reversing the classical p62-mediated NRF2 activation pathway, together with increased p53’s transcriptional suppression on SLC7A11 by p62, leading to a decrease of SLC7A11, resulting in a pro-ferroptosis role. Conclusion Together, this study shows novel molecular mechanisms of ferroptosis regulated by p62; the mutation status of p53 is an important factor that determines the therapeutic response to p62-mediated ferroptosis-targeted therapies in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00764-z.
Collapse
Affiliation(s)
- Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China. .,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China. .,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
25
|
Abrams SL, Duda P, Akula SM, Steelman LS, Follo ML, Cocco L, Ratti S, Martelli AM, Montalto G, Emma MR, Cervello M, Rakus D, Gizak A, McCubrey JA. Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells 2022; 11:794. [PMID: 35269416 PMCID: PMC8909756 DOI: 10.3390/cells11050794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53.
Collapse
Affiliation(s)
- Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland; (P.D.); (D.R.); (A.G.)
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| | - Matilde L. Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Alberto M. Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40139 Bologna, Italy; (M.L.F.); (L.C.); (S.R.); (A.M.M.)
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (M.C.)
| | - Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (M.C.)
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (M.C.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland; (P.D.); (D.R.); (A.G.)
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland; (P.D.); (D.R.); (A.G.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (S.M.A.); (L.S.S.)
| |
Collapse
|
26
|
Canale M, Andrikou K, Priano I, Cravero P, Pasini L, Urbini M, Delmonte A, Crinò L, Bronte G, Ulivi P. The Role of TP53 Mutations in EGFR-Mutated Non-Small-Cell Lung Cancer: Clinical Significance and Implications for Therapy. Cancers (Basel) 2022; 14:cancers14051143. [PMID: 35267450 PMCID: PMC8909869 DOI: 10.3390/cancers14051143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Non-Small-Cell Lung Cancer (NSCLC) is the primary cause of cancer-related death worldwide. Patients carrying Epidermal Growth Factor Receptor (EGFR) mutations usually benefit from targeted therapy treatment. Nonetheless, primary or acquired resistance mechanisms lead to treatment discontinuation and disease progression. Tumor protein 53 (TP53) mutations are the most common mutations in NSCLC, and several reports highlighted a role for these mutations in influencing prognosis and responsiveness to EGFR targeted therapy. In this review, we discuss the emerging data about the role of TP53 in predicting EGFR mutated NSCLC patients’ prognosis and responsiveness to targeted therapy. Abstract Non-Small-Cell Lung Cancer (NSCLC) is the primary cause of cancer-related death worldwide. Oncogene-addicted patients usually benefit from targeted therapy, but primary and acquired resistance mechanisms inevitably occur. Tumor protein 53 (TP53) gene is the most frequently mutated gene in cancer, including NSCLC. TP53 mutations are able to induce carcinogenesis, tumor development and resistance to therapy, influencing patient prognosis and responsiveness to therapy. TP53 mutants present in different forms, suggesting that different gene alterations confer specific acquired protein functions. In recent years, many associations between different TP53 mutations and responses to Epidermal Growth Factor Receptor (EGFR) targeted therapy in NSCLC patients have been found. In this review, we discuss the current landscape concerning the role of TP53 mutants to guide primary and acquired resistance to Tyrosine-Kinase Inhibitors (TKIs) EGFR-directed, investigating the possible mechanisms of TP53 mutants within the cellular compartments. We also discuss the role of the TP53 mutations in predicting the response to targeted therapy with EGFR-TKIs, as a possible biomarker to guide patient stratification for treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
| | - Kalliopi Andrikou
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Ilaria Priano
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Paola Cravero
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
- Correspondence: (P.C.); (L.P.)
| | - Luigi Pasini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
- Correspondence: (P.C.); (L.P.)
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Giuseppe Bronte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
| |
Collapse
|
27
|
McCubrey JA, Abrams SL, Steelman LS, Cocco L, Ratti S, Martelli AM, Lombardi P, Gizak A, Duda P. APR-246-The Mutant TP53 Reactivator-Increases the Effectiveness of Berberine and Modified Berberines to Inhibit the Proliferation of Pancreatic Cancer Cells. Biomolecules 2022; 12:276. [PMID: 35204775 PMCID: PMC8961609 DOI: 10.3390/biom12020276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some of their growth suppressive properties, but they may also interact with other proteins, e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53 reactivator-induced increase in therapeutic potential of many modified berberines.
Collapse
Affiliation(s)
- James Andrew McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (L.S.S.)
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (L.S.S.)
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (L.S.S.)
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, 40126 Bologna, Italy; (L.C.); (S.R.); (A.M.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, 40126 Bologna, Italy; (L.C.); (S.R.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, 40126 Bologna, Italy; (L.C.); (S.R.); (A.M.M.)
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, 20026 Novate Milanese, Italy;
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wroclaw, Poland; (A.G.); (P.D.)
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wroclaw, Poland; (A.G.); (P.D.)
| |
Collapse
|
28
|
Petersen I. Classification and Treatment of Diseases in the Age of Genome Medicine Based on Pathway Pathology. Int J Mol Sci 2021; 22:ijms22179418. [PMID: 34502326 PMCID: PMC8431301 DOI: 10.3390/ijms22179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022] Open
Abstract
The focus of pathology as a biomedical discipline is the identification of the pathomechanisms of diseases and the integration of this knowledge into routine diagnosis and classification. Standard tools are macroscopic and microscopic analysis complemented by immunohistochemistry and molecular pathology. So far, classification has been based on the paradigm of cellular pathology established by Rudolf Virchow and others more than 150 years ago, stating that diseases originate from diseased cells. This dogma is meanwhile challenged by the fact that cells can be fully reprogrammed. Many diseases are nowadays considered to originate from undifferentiated stem cells, induced into a diseased state by genetic or epigenetic alterations. In addition, the completion of the Human Genome Project, with the identification of more than 20.000 genes and a much higher number of gene variants and mutations, led to the concept that diseases are dominated by genetics/epigenetics rather than cells of origin. The axiom of cellular pathology, however, still holds true, as cells are the smallest animate units from which diseases originate. Medical doctors and researchers nowadays have to deal with a tremendous amount of data. The International Classification of Diseases will expand from 14.400 entities/codes in ICD-10 to more than 55.000 in ICD-11. In addition, large datasets generated by “genomics“, e.g., whole-genome sequencing, expression profiling or methylome analysis, are meanwhile not only applied in research but also introduced into clinical settings. It constitutes a major task to incorporate all the data into routine medical work. Pathway pathology may help solve this problem. It is based on the realization that diseases are characterized by three essential components: (i) cells of origin/cellular context and (ii) the alteration of cellular as well as (iii) molecular/signal transduction pathways. The concept is illustrated by elaborating on two key cellular pathways, i.e., the cellular senescence of normal cells and the immortality of cancer cells, and by contrasting single cell/single pathway diseases, such as mycoplasma and coughing pneumonia, with complex diseases such as cancer, with multiple cell types as well as multiple affected cellular and signaling pathways. Importantly, the concept of pathway pathology is not just intended to classify disease, but also to conceive new treatment modalities. This article is dedicated to Dr. Leonard Hayflick, who made basic discoveries in pathway pathology not only by identifying cells causing disease (Mycoplasma pneumoniae) and establishing cell strains for treating disease (WI-38 for viral vaccines), but also by first describing cellular senescence and immortality.
Collapse
Affiliation(s)
- Iver Petersen
- Institute of Pathology, SRH Poliklinik Gera, SRH-Wald-Klinikum Gera, Strasse des Friedens 122, D-07548 Gera, Germany
| |
Collapse
|
29
|
Kuo KK, Hsiao PJ, Chang WT, Chuang SC, Yang YH, Wuputra K, Ku CC, Pan JB, Li CP, Kato K, Liu CJ, Wu DC, Yokoyama KK. Therapeutic Strategies Targeting Tumor Suppressor Genes in Pancreatic Cancer. Cancers (Basel) 2021; 13:3920. [PMID: 34359820 PMCID: PMC8345812 DOI: 10.3390/cancers13153920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The high mortality of pancreatic cancer is attributed to the insidious progression of this disease, which results in a delayed diagnosis and advanced disease stage at diagnosis. More than 35% of patients with pancreatic cancer are in stage III, whereas 50% are in stage IV at diagnosis. Thus, understanding the aggressive features of pancreatic cancer will contribute to the resolution of problems, such as its early recurrence, metastasis, and resistance to chemotherapy and radiotherapy. Therefore, new therapeutic strategies targeting tumor suppressor gene products may help prevent the progression of pancreatic cancer. In this review, we discuss several recent clinical trials of pancreatic cancer and recent studies reporting safe and effective treatment modalities for patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pi-Jung Hsiao
- Department of Internal Medicine, Division of Endocrinology and Metabolism, EDA Hospital, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Wen-Tsan Chang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Chang Chuang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Han Yang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenly Wuputra
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Chen Ku
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Bin Pan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Pei Li
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kazunari K. Yokoyama
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
30
|
Näsman A, Holzhauser S, Kostopoulou ON, Zupancic M, Ährlund-Richter A, Du J, Dalianis T. Prognostic Markers and Driver Genes and Options for Targeted Therapy in Human-Papillomavirus-Positive Tonsillar and Base-of-Tongue Squamous Cell Carcinoma. Viruses 2021; 13:v13050910. [PMID: 34069114 PMCID: PMC8156012 DOI: 10.3390/v13050910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of Human-papillomavirus-positive (HPV+) tonsillar and base-of-tongue squamous cell carcinoma (TSCC and BOTSCC, respectively) is increasing epidemically, but they have better prognosis than equivalent HPV-negative (HPV−) cancers, with roughly 80% vs. 50% 3-year disease-free survival, respectively. The majority of HPV+ TSCC and BOTSCC patients therefore most likely do not require the intensified chemoradiotherapy given today to head and neck cancer patients and would with de-escalated therapy avoid several severe side effects. Moreover, for those with poor prognosis, survival has not improved, so better-tailored alternatives are urgently needed. In line with refined personalized medicine, recent studies have focused on identifying predictive markers and driver cancer genes useful for better stratifying patient treatment as well as for targeted therapy. This review presents some of these endeavors and briefly describes some recent experimental progress and some clinical trials with targeted therapy.
Collapse
Affiliation(s)
- Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Ourania N. Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Andreas Ährlund-Richter
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
| | - Juan Du
- Department of Microbiology, Tumor Biology and Cellular Biology, Karolinska Institutet, Biomedicum, 171 77 Stockholm, Sweden;
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64 Stockholm, Sweden; (A.N.); (S.H.); (O.N.K.); (M.Z.); (A.Ä.-R.)
- Correspondence:
| |
Collapse
|
31
|
Zeng Y, Wang J, Huang Q, Ren Y, Li T, Zhang X, Yao R, Sun J. Cucurbitacin IIa: A review of phytochemistry and pharmacology. Phytother Res 2021; 35:4155-4170. [PMID: 33724593 DOI: 10.1002/ptr.7077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Cucurbitacin IIa was first found in plants and it belongs to tetracyclo triterpenoids. It is one of the most important active components in cucurbitaceae plants. Studies have found that cucurbitacin IIa has a variety of pharmacological effects, such as antitumor, antiinflammatory, antibacterial, antihepatitis B virus, inhibition of human immunodeficiency virus replication, and antidepressant effect. However, the underlying mechanisms, intracellular targets, and structure-activity relationships of cucurbitacin IIa remain to be completely elucidated. This review summarizes the current advances concerning the phytochemistry and pharmacology of cucurbitacin IIa. Electronic databases such as PubMed, Web of Science, Google Scholar, Science Direct, and CNKI were used to find relevant information about cucurbitacin IIa using keywords such as "Cucurbitacin IIa," "Pharmacology," and "Phytochemistry." These pharmacological effects involve the actin cytoskeleton aggregation, the regulation of JAK2/STAT3, ERBB-MAPK, CaMKII α/CREB/BDNF signal pathways, as well as the regulation of survivin, caspases, and other cell cycles, apoptosis, autophagy-related cytokines, and kinases. It has high development and use value.
Collapse
Affiliation(s)
- Yijia Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingna Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renchuan Yao
- Sichuan Provincial Engineering Research Center for Fermented Traditional Chinese Medicine, Jianyang, China
| | - Jilin Sun
- Sichuan Fu Zheng Pharmaceutical Co. Ltd., Jianyang, China
| |
Collapse
|
32
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
33
|
Pandey R, Johnson N, Cooke L, Johnson B, Chen Y, Pandey M, Chandler J, Mahadevan D. TP53 Mutations as a Driver of Metastasis Signaling in Advanced Cancer Patients. Cancers (Basel) 2021; 13:597. [PMID: 33546249 PMCID: PMC7913278 DOI: 10.3390/cancers13040597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular profiling with next generation sequencing (NGS) delivers key information on mutant gene sequences, copy number alterations, gene-fusions, and with immunohistochemistry (IHC), is a valuable tool in clinical decision making for patients entering investigational agent trials. Our objective was to elucidate mutational profiles from primary versus metastatic sites from advanced cancer patients to guide rational therapy. All phase I patients (n = 203) with advanced cancer were profiled by commercially available NGS platforms. The samples were annotated by histology, primary and metastatic site, biopsy site, gene mutations, mutation count/gene, and mutant TP53. A molecular profile of each patient was categorized into common and unique mutations, signaling pathways for each profile and TP53 mutations mapped to 3D-structure of p53 bound to DNA and pre/post therapy molecular response. Of the 171 patients analyzed, 145 had genetic alterations from primary and metastatic sites. The predominant histology was adenocarcinoma followed by squamous cell carcinoma, carcinoma of unknown primary site (CUPS), and melanoma. Of 790 unique mutations, TP53 is the most common followed by APC, KRAS, PIK3CA, ATM, PTEN, NOTCH1, BRCA2, BRAF, KMT2D, LRP1B, and CDKN2A. TP53 was found in most metastatic sites and appears to be a key driver of acquired drug resistance. We highlight examples of acquired mutational profiles pre-/post- targeted therapy in multiple tumor types with a menu of potential targeted agents. Conclusion: The mutational profiling of primary and metastatic lesions in cancer patients provides an opportunity to identify TP53 driver 'pathways' that may predict for drug sensitivity/resistance and guide rational drug combinations in clinical trials.
Collapse
Affiliation(s)
- Ritu Pandey
- Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (L.C.); (Y.C.)
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan Johnson
- School of Medicine, Vanderbilt University, Nashville, TN 37325, USA;
| | - Laurence Cooke
- Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (L.C.); (Y.C.)
| | | | - Yuliang Chen
- Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (L.C.); (Y.C.)
| | - Manjari Pandey
- West Cancer Center, 7945 Wolf River Blvd, Germantown, TN 38138, USA; (M.P.); (J.C.)
| | - Jason Chandler
- West Cancer Center, 7945 Wolf River Blvd, Germantown, TN 38138, USA; (M.P.); (J.C.)
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
34
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
35
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
36
|
Alsofyani AA, Dallol A, Farraj SA, Alsiary RA, Samkari A, Alhaj-Hussain BT, Khan JA, Al-Maghrabi J, Al-Khayyat SS, Alkhatabi H, Elaimi A, Buhmeida A, Johargy AK, Abuzenadah AM, Azhar EI, Al-Qahtani MH. Molecular characterisation in tongue squamous cell carcinoma reveals key variants potentially linked to clinical outcomes. Cancer Biomark 2021; 28:213-220. [PMID: 32250288 DOI: 10.3233/cbm-190897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Oral tongue squamous cell carcinoma (OTSCC) is a highly aggressive malignancy characterized by frequent recurrence, poor survival with relatively few therapeutic options due to the late diagnosis in many cases. OBJECTIVES Understanding the molecular pathways underlying OTSCC tumourigenesis and the discovery of diagnostic and/or prognostic biomarkers. METHODS We performed high-throughput mutational analysis of 44 OTSCC formalin-fixed paraffin-embedded (FFPE) cases using the Cancer Hotspots Panel (CHP) v2 on the Ion Torrent™platform. We determined the frequency of human papilloma virus (HPV) using PCR and Epstein bar virus (EBV) positivity using immunohistochemistry. As a control for EBV infection we screened matched non-tumourous tissues. RESULTS Sequencing analysis identified missense, nonsense and frameshift mutations in TP53 (66%), PIK3CA (27%), CDKN2A (25%), EGFR (18%), and PTEN (14%). Interestingly, no significant associations were found between damaging mutations and clinicopathological data. A total of 10/44 of the OTSCC samples (23%) tested was positive for HPV18 DNA. OTSCC patients with positive HPV infection had worse overall survival compared to HPV-negative cases as determined by Kaplan-Meier survival (p= 0.023). Furthermore, EBNA1 expression showed a strong tumour-enriched expression pattern in 20 out of 21 samples (95%) in the epithelial compartments of the tissues analysed. CONCLUSIONS Taken together, this study highlights that the two most common events in OTSCC are TP53 mutations and EBV positivity. Helping to understand the contribution of TP53 mutations and EBV infection events could serve as useful biomarkers for OTSCC.
Collapse
Affiliation(s)
- Abeer A Alsofyani
- King Abdullah International Medical Research Center and King Saudbin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Ashraf Dallol
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suha A Farraj
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawiah A Alsiary
- King Abdullah International Medical Research Center and King Saudbin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Alaa Samkari
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Baraa T Alhaj-Hussain
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Heba Alkhatabi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Khalid Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Herrera-R A, Moreno G, Araque P, Vásquez I, Naranjo E, Alzate F, Cardona-G W. In-vitro Chemopreventive Potential of a Chromone from Bomarea setacea (ALSTROEMERIACEAE) against Colorectal Cancer. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:254-267. [PMID: 34567160 PMCID: PMC8457729 DOI: 10.22037/ijpr.2020.113745.14466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemoprevention with natural products may provide important alternatives in the search for new drugs to treat cancer. Thus, the ethanol extract of Bomarea setacea and its secondary metabolite (chromone) were evaluated in-vitro in SW480 and SW620 human adenocarcinoma colon cells to identify a possible effect on cell growth, antiproliferative and/or proapoptotic activity. The ethanol extract did not show growth inhibition of these cell lines 48 h after treatment; besides, it required higher concentration and time to have an antiproliferative effect. On the other hand, although the chromone was not as active as the reference drug (5-FU), it displayed a greater selectivity, being 156-fold more selective against SW480 cells (SI => 100) and 255-fold against SW620 cells (SI => 86,9). Additionally, the chromone caused an important arrest in G2/M (44.18%) with an important accumulation in subG0/G1 phase in SW620 cells, inducing loss in mitochondrial membrane potential and damage in the cell membrane of both cell lines, with activation of caspase 3, suggesting an apoptotic process independent of ROS production and p53 activation.
Collapse
Affiliation(s)
- Angie Herrera-R
- Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, UdeA, Calle 70 No. 52–21, A.A 1226, Medellín, Colombia.
| | - Gustavo Moreno
- Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, UdeA, Calle 70 No. 52–21, A.A 1226, Medellín, Colombia.
| | - Pedronel Araque
- Grupo de Investigación e Innovación en Formulaciones Químicas, Escuela de ciencias de la vida, EIA University, km 2 + 200 Vía José María Córdova airport, Postal Code 055428, Envigado, Colombia.
| | - Isabel Vásquez
- Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, UdeA, Calle 70 No. 52–21, A.A 1226, Medellín, Colombia.
| | - Elizabeth Naranjo
- Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, UdeA, Calle 70 No. 52–21, A.A 1226, Medellín, Colombia.
| | - Fernando Alzate
- Grupo de Estudios Botánicos, Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia UdeA, A.A. 1226 Medellín, Colombia.
| | - Wilson Cardona-G
- Química de Plantas Colombianas, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, UdeA, Calle 70 No. 52–21, A.A 1226, Medellín, Colombia.
| |
Collapse
|
38
|
Malhotra L, Goyal HKV, Jhuria S, Dev K, Kumar S, Kumar M, Kaur P, Ethayathulla AS. Curcumin rescue p53Y220C in BxPC-3 pancreatic adenocarcinomas cell line: Evidence-based on computational, biophysical, and in vivo studies. Biochim Biophys Acta Gen Subj 2020; 1865:129807. [PMID: 33278547 DOI: 10.1016/j.bbagen.2020.129807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The p53, tumor suppressor protein is inactivated upon mutation in the DNA-binding domain and the non-functional protein leads to cancers. The p53Y220C is one of the most frequently observed mutations in p53 with a scope of rescuing the protein function using small molecules. METHODS Using computational modeling, biophysical, and experimental cell-based studies we tried to understand the molecular basis of Curcumin as a potential small molecule to stabilize p53Y220C mutant and restore its function. The pancreatic adenocarcinomas BxPC-3 p53Y220C mutant cell line was used for cell-based assays to determine the therapeutic potential of Curcumin to restore mutant p53 to function like wild type. RESULTS Our results showed that the Curcumin binds p53Y220C with Kd = 3.169 ± 0.257 μM and it increases the DNA binding affinity of the mutant by 4-fold with Kd = 851.29 ± 186.27 nM. By Fluorescence, CD, and IR spectroscopy, we could characterize the secondary structural changes and stabilization of the p53Y220C DNA binding domain upon Curcumin binding. By caspase-3 and Annexin V assays, we could demonstrate that Curcumin at 3 μM to 8 μM concentration could initiate p53 mediated apoptosis in BxPC-3 cell line. Based on our experimental studies, we propose a mechanism for the activation of ATM/Chk1 kinases pathways for apoptosis and/or G2/M cell cycle arrest in the BxPC-3 cell line mediated by functionally restored p53Y220C. CONCLUSION The study indicated that the natural compound Curcumin could rescue mutant p53Y220C in BxPC-3 pancreatic adenocarcinomas cell line to function like wild-type and activate apoptotic pathways.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Harsh K V Goyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sunita Jhuria
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Milia Islamia, New Delhi 110025, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
39
|
Huang J. Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol Ther 2020; 220:107720. [PMID: 33130194 DOI: 10.1016/j.pharmthera.2020.107720] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022]
Abstract
p53 is one of the most well-studied tumor suppressors. It is mutated or deleted in half of all cancers. In the other half carrying wild type p53, the p53 signaling pathway is disrupted by abnormalities of other components in the pathway. Due to its paramount role in tumor suppression, p53 has attracted great interest in drug development as any clinically successful therapeutic agent to target the p53 pathway will save millions of lives. However, designing therapeutics targeting the pathway has been extremely challenging, despite more than forty years of research. This review will summarize past and current efforts of developing p53-based gene therapy and targeted therapies for cancer treatment. In addition, the current efforts of exploiting the immunogenicity of p53 protein for cancer immunotherapy will be reviewed. Challenges and future directions for targeting the p53 pathway will be discussed.
Collapse
Affiliation(s)
- Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States.
| |
Collapse
|
40
|
Nardone V, Chaves-Sanjuan A, Lapi M, Airoldi C, Saponaro A, Pasqualato S, Dolfini D, Camilloni C, Bernardini A, Gnesutta N, Mantovani R, Nardini M. Structural Basis of Inhibition of the Pioneer Transcription Factor NF-Y by Suramin. Cells 2020; 9:E2370. [PMID: 33138093 PMCID: PMC7692634 DOI: 10.3390/cells9112370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
NF-Y is a transcription factor (TF) comprising three subunits (NF-YA, NF-YB, NF-YC) that binds with high specificity to the CCAAT sequence, a widespread regulatory element in gene promoters of prosurvival, cell-cycle-promoting, and metabolic genes. Tumor cells undergo "metabolic rewiring" through overexpression of genes involved in such pathways, many of which are under NF-Y control. In addition, NF-YA appears to be overexpressed in many tumor types. Thus, limiting NF-Y activity may represent a desirable anti-cancer strategy, which is an ongoing field of research. With virtual-screening docking simulations on a library of pharmacologically active compounds, we identified suramin as a potential NF-Y inhibitor. We focused on suramin given its high water-solubility that is an important factor for in vitro testing, since NF-Y is sensitive to DMSO. By electrophoretic mobility shift assays (EMSA), isothermal titration calorimetry (ITC), STD NMR, X-ray crystallography, and molecular dynamics (MD) simulations, we showed that suramin binds to the histone fold domains (HFDs) of NF-Y, preventing DNA-binding. Our analyses, provide atomic-level detail on the interaction between suramin and NF-Y and reveal a region of the protein, nearby the suramin-binding site and poorly conserved in other HFD-containing TFs, that may represent a promising starting point for rational design of more specific and potent inhibitors with potential therapeutic applications.
Collapse
Affiliation(s)
- Valentina Nardone
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Michela Lapi
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy;
| | - Diletta Dolfini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Carlo Camilloni
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Andrea Bernardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Nerina Gnesutta
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Roberto Mantovani
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| |
Collapse
|
41
|
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol 2020; 10:593383. [PMID: 33194757 PMCID: PMC7655923 DOI: 10.3389/fonc.2020.593383] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human TP53 locus, located on the short arm of chromosome 17, encodes a tumour suppressor protein which functions as a tetrameric transcription factor capable of regulating the expression of a plethora of target genes involved in cell cycle arrest, apoptosis, DNA repair, autophagy, and metabolism regulation. TP53 is the most commonly mutated gene in human cancer cells and TP53 germ-line mutations are responsible for the cancer-prone Li-Fraumeni syndrome. When mutated, the TP53 gene generally presents missense mutations, which can be distributed throughout the coding sequence, although they are found most frequently in the central DNA binding domain of the protein. TP53 mutations represent an important prognostic and predictive marker in cancer. The presence of a TP53 mutation does not necessarily imply a complete P53 inactivation; in fact, mutant P53 proteins are classified based on the effects on P53 protein function. Different models have been used to explore these never-ending facets of TP53 mutations, generating abundant experimental data on their functional impact. Here, we briefly review the studies analysing the consequences of TP53 mutations on P53 protein function and their possible implications for clinical outcome. The focus shall be on Chronic Lymphocytic Leukemia (CLL), which also has generated considerable discussion on the role of TP53 mutations for therapy decisions.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera (AO) di Cosenza, Cosenza, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fortunato Morabito
- Unità di Ricerca Biotecnologica, Azienda Sanitaria Provinciale di Cosenza, Aprigliano, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
42
|
Bories P, Prade N, Lagarde S, Cabarrou B, Largeaud L, Plenecassagnes J, Luquet I, De Mas V, Filleron T, Cassou M, Sarry A, Fornecker LM, Simand C, Bertoli S, Recher C, Delabesse E. Impact of TP53 mutations in acute myeloid leukemia patients treated with azacitidine. PLoS One 2020; 15:e0238795. [PMID: 33001991 PMCID: PMC7529302 DOI: 10.1371/journal.pone.0238795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Hypomethylating agents are a classical frontline low-intensity therapy for older patients with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a potential predictive biomarker of better outcome in patients treated with a ten-day decitabine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as reflected in multiple functional TP53 classifications and their impact in patients treated with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279 patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our regional healthcare network. By screening 224 of them, we detected TP53 mutations in 55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The identification of any TP53 mutation was associated with worse overall survival but not with response to azacitidine in the whole cohort and in the subgroup of patients with adverse karyotype. Stratification of patients according to three recent validated functional classifications did not allow the identification of TP53 mutated patients who could benefit from azacitidine. Systematic TP53 mutant classification will deserve further exploration in the setting of patients treated with conventional therapy and in the emerging field of therapies targeting TP53 pathway.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- France/epidemiology
- Genes, p53
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Mutation
- Prognosis
- Prospective Studies
- Registries
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pierre Bories
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Réseau Onco-occitanie, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- * E-mail:
| | - Naïs Prade
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Stéphanie Lagarde
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Bastien Cabarrou
- Unité de biostatistique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Laetitia Largeaud
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Julien Plenecassagnes
- Unité de bioinformatique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Véronique De Mas
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Thomas Filleron
- Unité de biostatistique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Manon Cassou
- Unité de bioinformatique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Luc-Matthieu Fornecker
- Service d'Onco-Hématologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Célestine Simand
- Service d'Onco-Hématologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Christian Recher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| |
Collapse
|
43
|
Philipovskiy A, Dwivedi AK, Gamez R, McCallum R, Mukherjee D, Nahleh Z, Aguilera RJ, Gaur S. Association between tumor mutation profile and clinical outcomes among Hispanic Latina women with triple-negative breast cancer. PLoS One 2020; 15:e0238262. [PMID: 32886682 PMCID: PMC7473586 DOI: 10.1371/journal.pone.0238262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents 15%-20% of all breast cancer types. It is more common among African American (AA) and Hispanic-Latina (HL) women. The biology of TNBC in HL women has been poorly characterized, but some data suggest that the molecular drivers of breast cancer might differ. There are no clinical tools to aid medical oncologists with decisions regarding appropriate individualized therapy, and no way to predict long-term outcomes. The aim of this study was to characterize individual patient gene mutation profiles and to identify the relationship with clinical outcomes. We collected formalin-fixed paraffin-embedded tumors (FFPE) from women with TNBC. We analyzed the gene mutation profiles of the collected tumors and compared the results with individual patient's clinical histories and outcomes. Of 25 patients with TNBC, 24 (96%) identified as HL. Twenty-one (84%) had stage III-IV disease. The most commonly mutated genes were TP53, NOTCH1, NOTCH2, NOTCH3, AKT, MEP3K, PIK3CA, and EGFR. Compared with other international cancer databases, our study demonstrated statistically significant higher frequencies of these genes among HL women. Additionally, a worse clinical course was observed among patients whose tumors had mutations in NOTCH genes and PIK3CA. This study is the first to identify the most common genetic alterations among HL women with TNBC. Our data strongly support the notion that molecular drivers of breast cancer could differ in HL women compared with other ethnic backgrounds. Therefore, a deeper understanding of the biological mechanisms behind NOTCH gene and PIK3CA mutations may lead to a new treatment approach.
Collapse
Affiliation(s)
- Alexander Philipovskiy
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Alok K. Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Roberto Gamez
- Department of Pathology, University Medical Center, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Richard McCallum
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Debabrata Mukherjee
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Zeina Nahleh
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic, Florida, Weston, Florida, United States of America
| | - Renato J. Aguilera
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sumit Gaur
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| |
Collapse
|
44
|
Chasov V, Mirgayazova R, Zmievskaya E, Khadiullina R, Valiullina A, Stephenson Clarke J, Rizvanov A, Baud MGJ, Bulatov E. Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Front Oncol 2020; 10:1460. [PMID: 32974171 PMCID: PMC7461930 DOI: 10.3389/fonc.2020.01460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is a key tumor suppressor that is inactivated in almost all cancers due to either point mutations in the TP53 gene or overexpression of its negative regulators. The p53 protein is known as the “cellular gatekeeper” for its roles in facilitating DNA repair, cell cycle arrest or apoptosis upon DNA damage. Most p53 mutations are missense and result in either structural destabilization of the protein, causing its partial unfolding and deactivation under physiological conditions, or impairment of its DNA-binding properties. Tumor cells with p53 mutations are generally more immunogenic due to “hot spot” neoantigens that instigate the immune system response. In this review, we discuss the key therapeutic strategies targeting mutant p53 tumors, including classical approaches based on small molecule intervention and emerging technologies such as gene editing and T cell immunotherapy.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Matthias G J Baud
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Sabapathy K, Lane DP. Understanding p53 functions through p53 antibodies. J Mol Cell Biol 2020; 11:317-329. [PMID: 30907951 PMCID: PMC6487784 DOI: 10.1093/jmcb/mjz010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
TP53 is the most frequently mutated gene across all cancer types. Our understanding of its functions has evolved since its discovery four decades ago. Initially thought to be an oncogene, it was later realized to be a critical tumour suppressor. A significant amount of our knowledge about p53 functions have come from the use of antibodies against its various forms. The early anti-p53 antibodies contributed to the recognition of p53 accumulation as a common feature of cancer cells and to our understanding of p53 DNA-binding and transcription activities. They led to the concept that conformational changes can facilitate p53’s activity as a growth inhibitory protein. The ensuing p53 conformational-specific antibodies further underlined p53’s conformational flexibility, collectively forming the basis for current efforts to generate therapeutic molecules capable of altering the conformation of mutant p53. A subsequent barrage of antibodies against post-translational modifications on p53 has clarified p53’s roles further, especially with respect to the mechanistic details and context-dependence of its activity. More recently, the generation of p53 mutation-specific antibodies have highlighted the possibility to go beyond the general framework of our comprehension of mutant p53—and promises to provide insights into the specific properties of individual p53 mutants. This review summarizes our current knowledge of p53 functions derived through the major classes of anti-p53 antibodies, which could be a paradigm for understanding other molecular events in health and disease.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), 8 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
46
|
Näsman A, Du J, Dalianis T. A global epidemic increase of an HPV-induced tonsil and tongue base cancer - potential benefit from a pan-gender use of HPV vaccine. J Intern Med 2020; 287:134-152. [PMID: 31733108 DOI: 10.1111/joim.13010] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022]
Abstract
In 2007, human papillomavirus (HPV) type 16 was finally recognized as a risk factor, besides smoking and alcohol, for oropharyngeal squamous cell carcinoma (OPSCC), including tonsillar squamous cell carcinoma (TSCC), by the International Agency for Research against Cancer. Just before, in 2006, the Food and Drug Administration had approved Gardasil, the first vaccine against HPV16, 18, 6 and 11, for preventive vaccination women against cervical cancer. Concurrently, some Western countries, where smoking was decreasing, disclosed an epidemic increase in the incidence of OPSCC, especially of TSCC and base of tongue cancer (BOTSCC), together accounting for 80-90% of all OPSCCs, and mainly affecting men. The epidemic was later revealed to be due to a rise in HPV-positive cases, and scientists in the field suggested HPV vaccination also of boys. Globally, there are roughly 96 000 incident OPSCC cases/year of which 20-24% are caused by HPV, thereby accounting for around 22 000 OPSCC cases annually. Of these cases, 80-90% are due to HPV16 infection and would be prevented with the presently registered HPV vaccines. In Western countries, such as Sweden (with almost 400 TSCC and BOTSCC cases per year) and the United States, HPV prevalence in OPSCC is higher and around 70%. HPV vaccination of girls has been initiated in many countries, and the vaccines have been efficient and their side effects limited. HPV vaccination of boys has, however, been the exception, but should definitely not be delayed any further. It would benefit both girls and boys directly, and result in better and more robust herd immunity. Today, we have the possibility to eliminate several high-risk HPV types in the younger generations and avoid more than 600 000 cancer cases annually worldwide, and this possibility should be embraced by offering global pan-gender HPV vaccination.
Collapse
Affiliation(s)
- A Näsman
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - J Du
- Department of Microbiology, Tumor Biology and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - T Dalianis
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
SOCS1: phosphorylation, dimerization and tumor suppression. Oncoscience 2019; 6:386-389. [PMID: 31984217 PMCID: PMC6959930 DOI: 10.18632/oncoscience.495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) family members are upregulated following JAK-STAT pathway activation by cytokines. SOCS proteins are recognized inhibitors of cytokine signaling playing roles in cell growth and differentiation. Moreover, SOCS1 and SOCS3 have been shown to be involved in tumor suppression through their ability to interact with p53 leading to the activation of its transcriptional program and showing the implication of SOCS family members in the regulation of apoptosis, ferroptosis and senescence. More recently, we demonstrated that the SRC family of non-receptor tyrosine kinases (SFK) can phosphorylate SOCS1 leading to its homodimerization and inhibiting its interaction with p53. Then, we reactivated the SOCS1-p53 tumor suppressor axis with the SFK inhibitor dasatinib in combination with the p53 activating compound PRIMA. This work suggests new avenues for cancer treatment and leaves open several new questions that deserve to be addressed.
Collapse
|
48
|
Styrylcoumarin 7-SC2 induces apoptosis in SW480 human colon adenocarcinoma cells and inhibits azoxymethane-induced aberrant crypt foci formation in BALB/c mice. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02487-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
50
|
Wang H, Liao P, Zeng SX, Lu H. Co-targeting p53-R249S and CDK4 synergistically suppresses survival of hepatocellular carcinoma cells. Cancer Biol Ther 2019; 21:269-277. [PMID: 31747859 PMCID: PMC7012101 DOI: 10.1080/15384047.2019.1685289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
p53-R249S (p53-RS) is frequently detected in human hepatocellular carcinoma (HCC) that is highly associated with hepatitis B infection and aflatoxin B1 exposure. Our previous study showed that CDK4/Cyclin D1 phosphorylates p53-RS at the cancer-derived Ser249 and promotes its interaction with c-Myc in the nucleus, consequently enhancing c-Myc-dependent ribosomal biogenesis and HCC cell proliferation. Here we explored the possibility of co-targeting CDK4 and p53-RS with available small molecule inhibitors as a potential combined therapy for HCC that harbor p53-RS. Indeed, co-treatment of p53-RS-containing, but not wild-type p53 or p53-null, HCC cells with PD-0332991 (PD), a CDK4/6 inhibitor, and CP-31398 (CP), a compound that can restore the intrinsic conformation and transcriptional activity of mutant p53, drastically repressed the c-Myc activation function of p53-RS. This combination of PD with CP exhibited a synergistic effect on the inhibition of HCC cell growth in a p53-RS dependent manner, especially at a lower dose. These results suggest that co-targeting CDK4 and p53-RS can serve as a potential approach for the development of an effective therapy for HCC that harbor p53-RS.
Collapse
Affiliation(s)
- Huai Wang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- School of Public Health, Nanchang University, Nanchang, Jiangxi, P.R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shelya X. Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|