1
|
Li Z, Shang D. NOD1 and NOD2: Essential Monitoring Partners in the Innate Immune System. Curr Issues Mol Biol 2024; 46:9463-9479. [PMID: 39329913 PMCID: PMC11430502 DOI: 10.3390/cimb46090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain containing 1 (NOD1) and NOD2 are pivotal cytoplasmic pattern-recognition receptors (PRRs) that exhibit remarkable evolutionary conservation. They possess the ability to discern specific peptidoglycan (PGN) motifs, thereby orchestrating innate immunity and contributing significantly to immune homeostasis maintenance. The comprehensive understanding of both the structure and function of NOD1 and NOD2 has been extensively elucidated. These receptors proficiently recognize an array of damage-associated molecular patterns (DAMPs) as well as pathogen-associated molecular patterns (PAMPs), subsequently mediating inflammatory responses and autophagy. In recent years, emerging evidence has highlighted the crucial roles played by NOD1 and NOD2 in regulating infectious diseases, metabolic disorders, cancer, and autoimmune conditions, among others. Perturbation in either their loss or excessive activation can detrimentally impact immune homeostasis. This review offers a comprehensive overview of the structural characteristics, subcellular localization, activation mechanisms, and significant roles of NOD1 and NOD2 in innate immunity and related disease.
Collapse
Affiliation(s)
- Zhenjia Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
2
|
Kong L, Cao Y, He Y, Zhang Y. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med (Berl) 2024; 102:787-799. [PMID: 38740600 DOI: 10.1007/s00109-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn's disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
Collapse
Affiliation(s)
- Lingjun Kong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanhua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanan He
- Gamma Knife Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Peng XY, Wang KL, Li L, Li B, Wu XY, Zhang ZW, Li N, Liu LH, Nie P, Chen SN. Transcription of NOD1 and NOD2 and their interaction with CARD9 and RIPK2 in IFN signaling in a perciform fish, the Chinese perch, Siniperca chuatsi. Front Immunol 2024; 15:1374368. [PMID: 38715616 PMCID: PMC11074466 DOI: 10.3389/fimmu.2024.1374368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.
Collapse
Affiliation(s)
- Xue Yun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiang Yang Wu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhi Wei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - P. Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
4
|
Pearson JA, Wong FS, Wen L. Inflammasomes and Type 1 Diabetes. Front Immunol 2021; 12:686956. [PMID: 34177937 PMCID: PMC8219953 DOI: 10.3389/fimmu.2021.686956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Microbiota have been identified as an important modulator of susceptibility in the development of Type 1 diabetes in both animal models and humans. Collectively these studies highlight the association of the microbiota composition with genetic risk, islet autoantibody development and modulation of the immune responses. However, the signaling pathways involved in mediating these changes are less well investigated, particularly in humans. Importantly, understanding the activation of signaling pathways in response to microbial stimulation is vital to enable further development of immunotherapeutics, which may enable enhanced tolerance to the microbiota or prevent the initiation of the autoimmune process. One such signaling pathway that has been poorly studied in the context of Type 1 diabetes is the role of the inflammasomes, which are multiprotein complexes that can initiate immune responses following detection of their microbial ligands. In this review, we discuss the roles of the inflammasomes in modulating Type 1 diabetes susceptibility, from genetic associations to the priming and activation of the inflammasomes. In addition, we also summarize the available inhibitors for therapeutically targeting the inflammasomes, which may be of future use in Type 1 diabetes.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Zhang L, Cao M, Li Q, Yan X, Xue T, Song L, Su B, Li C. Genome-wide identification of NOD-like receptors and their expression profiling in mucosal tissues of turbot (Scophthalmus maximus L.) upon bacteria challenge. Mol Immunol 2021; 134:48-61. [PMID: 33713957 DOI: 10.1016/j.molimm.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
The innate immune system plays an important role in host defense against pathogenic infections. In the innate immune system, several families of innate pattern recognition receptors, including Toll-like receptors, RIG-I-like receptors, NOD-like receptors (NLRs), and DNA receptors (cytosolic sensors for DNA), are known to play vital roles in detecting and responding to various pathogens. In this study, we identified 29 NLRs in turbot including 4 NLRs from subfamily A: NOD1, NOD2, CIITA, NLRC5, 1 NLR from subfamily B: NLRB1, 21 NLRs from subfamily C: NLR-C3.1∼NLRC3.21, 1 from NLRX subfamily, and two that do not fall within these subfamilies: APAF1, NWD1. Phylogenetic analysis showed that these NLR genes were clearly divided into five subfamilies. Protein-protein interaction network analysis showed that some of these NLR genes shared same interacting genes and might participate in signal transductions associated with immunity. The evolutionary pressure selection analysis showed that the Ka/Ks ratios for all detected NLR genes were much less than one, implying more synonymous changes than non-synonymous changes. In addition, tissue expression analysis showed that the relative higher expression levels were observed in gill, skin and intestine. Meanwhile, NLR genes expression after bacterial infection results showed that most NLR genes participated in the process of defense of V. anguillarum and A. salmonicida infections in mucosal tissues. Taken together, identification and expression profiling analysis of NLR genes can provide valuable information for further functional characterization of these genes in turbot.
Collapse
Affiliation(s)
- Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Xiao Y, Huang Q, Wu Z, Chen W. Roles of protein ubiquitination in inflammatory bowel disease. Immunobiology 2020; 225:152026. [PMID: 33190004 DOI: 10.1016/j.imbio.2020.152026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) seriously affects the quality of life for patients. The pathogenesis of IBD contains the environmental, host genetic and epigenetic factors. In recent years, the studies of protein ubiquitination, an important protein post-translational modification as an epigenetic factor, have emerged in the pathogenesis and development of IBD. In the past few years, accumulative evidence illustrated that six E3 ubiquitin ligases, namely, ring finger protein (RNF) 183, RNF 20, A20, Pellino 3, TRIM62 and Itch, exhibited clear mechanisms in the development of IBD. They regulate the intestinal inflammation by facilitating the ubiquitination of targeted proteins which participate in different inflammatory signaling pathways. Besides, it was reported that some deubiquitinating enzymes such as Cylindromatosis and USP7 were involved in the development of IBD, but the molecular mechanism was still unclear. This review summarized the role and regulatory mechanism of protein ubiquitination in the pathogenesis and development of IBD, providing insights to develop a new therapeutic strategy in IBD treatments.
Collapse
Affiliation(s)
- Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 516080, China
| | - Qi Huang
- Department of Pediatric Orthopaedics, Shenzhen Children's Hospital, Shenzhen 518035, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 516080, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Department of Immunology, School of Medicine, Shenzhen University, Shenzhen 516080, China.
| |
Collapse
|
7
|
Kwon MY, Hwang N, Back SH, Lee SJ, Perrella MA, Chung SW. Nucleotide-binding oligomerization domain protein 2 deficiency enhances CHOP expression and plaque necrosis in advanced atherosclerotic lesions. FEBS J 2020; 287:2055-2069. [PMID: 32167239 PMCID: PMC7318642 DOI: 10.1111/febs.15294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced cell death of vascular smooth muscle cells (VSMCs) is extensively involved in atherosclerotic plaque stabilization. We previously reported that nucleotide-binding oligomerization domain protein 2 (NOD2) participated in vascular homeostasis and tissue injury. However, the role and underlying mechanisms of NOD2 remain unknown in ER stress-induced cell death of VSMC during vascular diseases, including advanced atherosclerosis. Here, we report that NOD2 specifically interacted with ER stress sensor activating transcription factor 6 (ATF6) and suppressed the expression of proapoptotic transcription factor CHOP (C/EBP homologous protein) during ER stress. CHOP-positive cells were increased in neointimal lesions after femoral artery injury in NOD2-deficient mice. In particular, a NOD2 ligand, MDP, and overexpression of NOD2 decreased CHOP expression in wild-type VSMCs. NOD2 interacted with an ER stress sensor molecule, ATF6, and acted as a negative regulator for ATF6 activation and its downstream target molecule, CHOP, that regulates ER stress-induced apoptosis. Moreover, NOD2 deficiency promoted disruption of advanced atherosclerotic lesions and CHOP expression in NOD2-/- ApoE-/- mice. Our findings indicate an unsuspected critical role for NOD2 in ER stress-induced cell death.
Collapse
Affiliation(s)
- Min-Young Kwon
- Laboratory of Molecular Immunology, Department of Biological Sciences, University of Ulsan, South Korea.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Laboratory of Molecular Immunology, Department of Biological Sciences, University of Ulsan, South Korea
| | - Sung Hoon Back
- Laboratory of Molecular Immunology, Department of Biological Sciences, University of Ulsan, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, KRIBB, Daejeon, Korea
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su Wol Chung
- Laboratory of Molecular Immunology, Department of Biological Sciences, University of Ulsan, South Korea
| |
Collapse
|
8
|
Corvilain E, Casanova JL, Puel A. Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. J Clin Immunol 2018; 38:656-693. [PMID: 30136218 PMCID: PMC6157734 DOI: 10.1007/s10875-018-0539-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Autosomal recessive CARD9 deficiency underlies life-threatening, invasive fungal infections in otherwise healthy individuals normally resistant to other infectious agents. In less than 10 years, 58 patients from 39 kindreds have been reported in 14 countries from four continents. The patients are homozygous (n = 49; 31 kindreds) or compound heterozygous (n = 9; 8 kindreds) for 22 different CARD9 mutations. Six mutations are recurrent, probably due to founder effects. Paradoxically, none of the mutant alleles has been experimentally demonstrated to be loss-of-function. CARD9 is expressed principally in myeloid cells, downstream from C-type lectin receptors that can recognize fungal components. Patients with CARD9 deficiency present impaired cytokine and chemokine production by macrophages, dendritic cells, and peripheral blood mononuclear cells and defective killing of some fungi by neutrophils in vitro. Neutrophil recruitment to sites of infection is impaired in vivo. The proportion of Th17 cells is low in most, but not all, patients tested. Up to 52 patients suffering from invasive fungal diseases (IFD) have been reported, with ages at onset of 3.5 to 52 years. Twenty of these patients also displayed superficial fungal infections. Six patients had only mucocutaneous candidiasis or superficial dermatophytosis at their last follow-up visit, at the age of 19 to 50 years. Remarkably, for 50 of the 52 patients with IFD, a single fungus was involved; only two patients had IFDs due to two different fungi. IFD recurred in 44 of 45 patients who responded to treatment, and a different fungal infection occurred in the remaining patient. Ten patients died from IFD, between the ages of 12 and 39 years, whereas another patient died at the age of 91 years, from an unrelated cause. At the most recent scheduled follow-up visit, 81% of the patients were still alive and aged from 6.5 to 75 years. Strikingly, all the causal fungi belonged to the phylum Ascomycota: commensal Candida and saprophytic Trychophyton, Aspergillus, Phialophora, Exophiala, Corynesprora, Aureobasidium, and Ochroconis. Human CARD9 is essential for protective systemic immunity to a subset of fungi from this phylum but seems to be otherwise redundant. Previously healthy patients with unexplained invasive fungal infection, at any age, should be tested for inherited CARD9 deficiency. KEY POINTS • Inherited CARD9 deficiency (OMIM #212050) is an AR PID due to mutations that may be present in a homozygous or compound heterozygous state. • CARD9 is expressed principally in myeloid cells and transduces signals downstream from CLR activation by fungal ligands. • Endogenous mutant CARD9 levels differ between alleles (from full-length normal protein to an absence of normal protein). • The functional impacts of CARD9 mutations involve impaired cytokine production in response to fungal ligands, impaired neutrophil killing and/or recruitment to infection sites, and defects of Th17 immunity. • The key clinical manifestations in patients are fungal infections, including CMC, invasive (in the CNS in particular) Candida infections, extensive/deep dermatophytosis, subcutaneous and invasive phaeohyphomycosis, and extrapulmonary aspergillosis. • The clinical penetrance of CARD9 deficiency is complete, but penetrance is incomplete for each of the fungi concerned. • Age at onset is highly heterogeneous, ranging from childhood to adulthood for the same fungal disease. • All patients with unexplained IFD should be tested for CARD9 mutations. Familial screening and genetic counseling should be proposed. • The treatment of patients with CARD9 mutations is empirical and based on antifungal therapies and the surgical removal of fungal masses. Patients with persistent/relapsing Candida infections of the CNS could be considered for adjuvant GM-CSF/G-CSF therapy. The potential value of HSCT for CARD9-deficient patients remains unclear.
Collapse
Affiliation(s)
- Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- Free University of Brussels, Brussels, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- Imagine Institute, Paris Descartes University, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France.
- Imagine Institute, Paris Descartes University, 75015, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Peterson MR, Haller SE, Ren J, Nair S, He G. CARD9 as a potential target in cardiovascular disease. Drug Des Devel Ther 2016; 10:3799-3804. [PMID: 27920495 PMCID: PMC5125811 DOI: 10.2147/dddt.s122508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammation and localized macrophage infiltration have been implicated in cardiovascular pathologies, including coronary artery disease, carotid atherosclerosis, heart failure, obesity-associated heart dysfunction, and cardiac fibrosis. Inflammation induces macrophage infiltration and activation and release of cytokines and chemokines, causing tissue dysfunction by instigating a positive feedback loop that further propagates inflammation. Cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) is a protein expressed primarily by dendritic cells, neutrophils, and macrophages, in which it mediates cytokine secretion. The purpose of this review is to highlight the role of CARD9 as a potential target in inflammation-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Matthew R Peterson
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Samantha E Haller
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Sreejayan Nair
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| | - Guanglong He
- School of Pharmacy, University of Wyoming, College of Health Sciences, Laramie, WY, USA
| |
Collapse
|
10
|
Pereira M, Tourlomousis P, Wright J, P. Monie T, Bryant CE. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages. Nat Commun 2016; 7:12874. [PMID: 27670879 PMCID: PMC5052644 DOI: 10.1038/ncomms12874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response.
Collapse
Affiliation(s)
- Milton Pereira
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Panagiotis Tourlomousis
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - John Wright
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Tom P. Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Clare E. Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
11
|
Di Narzo AF, Peters LA, Argmann C, Stojmirovic A, Perrigoue J, Li K, Telesco S, Kidd B, Walker J, Dudley J, Cho J, Schadt EE, Kasarskis A, Curran M, Dobrin R, Hao K. Blood and Intestine eQTLs from an Anti-TNF-Resistant Crohn's Disease Cohort Inform IBD Genetic Association Loci. Clin Transl Gastroenterol 2016; 7:e177. [PMID: 27336838 PMCID: PMC4931595 DOI: 10.1038/ctg.2016.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES: Genome-wide association studies (GWAS) have identified loci reproducibly associated with inflammatory bowel disease (IBD) and other immune-mediated diseases; however, the molecular mechanisms underlying most of genetic susceptibility remain undefined. Expressional quantitative trait loci (eQTL) of disease-relevant tissue can be employed in order to elucidate the genes and pathways affected by disease-specific genetic variance. METHODS: In this study, we derived eQTLs for human whole blood and intestine tissues of anti-tumor necrosis factor-resistant Crohn's disease (CD) patients. We interpreted these eQTLs in the context of published IBD GWAS hits to inform on the disease process. RESULTS: At 10% false discovery rate, we discovered that 5,174 genes in blood and 2,063 genes in the intestine were controlled by a nearby single-nucleotide polymorphism (SNP) (i.e., cis-eQTL), among which 1,360 were shared between the two tissues. A large fraction of the identified eQTLs were supported by the regulomeDB database, showing that the eQTLs reside in regulatory elements (odds ratio; OR=3.44 and 3.24 for blood and intestine eQTLs, respectively) as opposed to protein-coding regions. Published IBD GWAS hits as a whole were enriched for blood and intestine eQTLs (OR=2.88 and 2.05; and P value=2.51E-9 and 0.013, respectively), thereby linking genetic susceptibility to control of gene expression in these tissues. Through a systematic search, we used eQTL data to inform 109 out of 372 IBD GWAS SNPs documented in National Human Genome Research Institute catalog, and we categorized the genes influenced by eQTLs according to their functions. Many of these genes have experimentally validated roles in specific cell types contributing to intestinal inflammation. CONCLUSIONS: The blood and intestine eQTLs described in this study represent a powerful tool to link GWAS loci to a regulatory function and thus elucidate the mechanisms underlying the genetic loci associated with IBD and related conditions. Overall, our eQTL discovery approach empirically identifies the disease-associated variants including their impact on the direction and extent of expression changes in the context of disease-relevant cellular pathways in order to infer the functional outcome of this aspect of genetic susceptibility.
Collapse
Affiliation(s)
- Antonio F Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lauren A Peters
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Katherine Li
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, USA
| | | | - Brian Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jennifer Walker
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joel Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark Curran
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, USA
| | - Radu Dobrin
- Janssen R&D, LLC, 1400 McKean Road, Spring House, PA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Costa FRC, Françozo MCS, de Oliveira GG, Ignacio A, Castoldi A, Zamboni DS, Ramos SG, Câmara NO, de Zoete MR, Palm NW, Flavell RA, Silva JS, Carlos D. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset. J Exp Med 2016; 213:1223-39. [PMID: 27325889 PMCID: PMC4925011 DOI: 10.1084/jem.20150744] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
Streptozotocin causes T1D by inducing the translocation of intestinal bacteria into pancreatic lymph nodes and driving the development of pathogenic Th1 and Th17 cells through NOD2 receptor. Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic β cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease.
Collapse
Affiliation(s)
- Frederico R C Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Marcela C S Françozo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Gabriela G de Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Aline Ignacio
- Department of Immunology, Institute of Biomedical Science (ICB), University of São Paulo, 05508-000 São Paulo, Brazil
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Science (ICB), University of São Paulo, 05508-000 São Paulo, Brazil
| | - Dario S Zamboni
- Department of Molecular and Cell Biology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Simone G Ramos
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Niels O Câmara
- Department of Immunology, Institute of Biomedical Science (ICB), University of São Paulo, 05508-000 São Paulo, Brazil
| | - Marcel R de Zoete
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06519 Howard Hughes Medical Institute, Yale University, New Haven, CT 06510 Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06519
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06519 Howard Hughes Medical Institute, Yale University, New Haven, CT 06510
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Parkhouse R, Monie TP. Dysfunctional Crohn's Disease-Associated NOD2 Polymorphisms Cannot be Reliably Predicted on the Basis of RIPK2 Binding or Membrane Association. Front Immunol 2015; 6:521. [PMID: 26500656 PMCID: PMC4597273 DOI: 10.3389/fimmu.2015.00521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in NOD2 represent the single greatest genetic risk factor for the development of Crohn’s disease. Three different non-synonomous NOD2 polymorphisms – R702W, G908R, and L1007fsincC – account for roughly 80% of all NOD2-associated cases of Crohn’s disease and are reported to result in a loss of receptor function in response to muramyl dipeptide (MDP) stimulation. Loss of NOD2 signaling can result from a failure to detect ligand; alterations in cellular localization; and changes in protein interactions, such as an inability to interact with the downstream adaptor protein RIPK2. Using an overexpression system, we analyzed ~50 NOD2 polymorphisms reportedly connected to Crohn’s disease to determine if they also displayed loss of function and if this could be related to alterations in protein localization and/or association with RIPK2. Just under half the polymorphisms displayed a significant reduction in signaling capacity following ligand stimulation, with nine of them showing near complete ablation. Only two polymorphisms, R38M and R138Q, lost the ability to interact with RIPK2. However, both these polymorphisms still associated with cellular membranes. In contrast, L248R, W355stop, L550V, N825K, L1007fsinC, L1007P, and R1019stop still bound RIPK2, but showed impaired membrane association and were unable to signal in response to MDP. This highlights the complex contributions of NOD2 polymorphisms to Crohn’s disease and reiterates the importance of both RIPK2 binding and membrane association in NOD2 signaling. Simply ascertaining whether or not NOD2 polymorphisms bind RIPK2 or associate with cellular membranes is not sufficient for determining their signaling competency.
Collapse
Affiliation(s)
| | - Tom P Monie
- Department of Biochemistry, University of Cambridge , Cambridge , UK ; Department of Veterinary Medicine, University of Cambridge , Cambridge , UK ; Medical Research Council Human Nutrition Research , Cambridge , UK
| |
Collapse
|
14
|
Li J, Gao Y, Xu T. Comparative genomic and evolution of vertebrate NOD1 and NOD2 genes and their immune response in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2015; 46:387-397. [PMID: 26108036 DOI: 10.1016/j.fsi.2015.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
The nucleotide-binding oligomerization domain proteins NOD1 and NOD2 are important cytoplasmic pathogen recognition receptors which sense microbial infections molecules to induce innate immune response. In this study, the sequence analysis showed that NOD1 and NOD2 genes in miiuy croaker (miichthys miiuy, mmiNOD1 and mmiNOD2) share some highly conserved motifs that crucial for recognizing the bacterial and viral components. Quantitative expression analysis revealed mmiNOD1 and mmiNOD2 had the highest level of expression in liver. Induction experiments with Vibrio anguillarum indicated the different expression levels of mmiNOD1 and mmiNOD2 in liver, spleen and kidney. The expressions of mmiNOD1 and mmiNOD2 increased more significantly after Poly(I:C) stimulation, meanwhile, we carried out the expression analysis at the transcriptome level and the regulation of microRNAs. In addition, the evolutionary analysis showed that the ancestral lineages of NOD1 in bony fish detected one positively selected site, however, both the current lineages of NOD1 and NOD2 genes in bony fish underwent purifying selection indicating that NOD1 gene in the ancestor of bony fish experienced positive selection. To further understand the evolutionary pattern of NOD1 and NOD2 in vertebrates, we were the first to conduct comparative genomic analysis by comparing the number and synteny of NOD1 and NOD2. Combining the duplication of NOD1, the lost of NOD2 and the more conserved synteny of NOD2 than NOD1, we proposed that the hypothetical evolutionary pattern is different between NOD1 and NOD2.
Collapse
Affiliation(s)
- Jinrui Li
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
15
|
Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol 2015; 4:rsob.140178. [PMID: 25520185 PMCID: PMC4281710 DOI: 10.1098/rsob.140178] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytosolic pattern recognition receptor NOD2 is activated by the peptidoglycan fragment muramyl dipeptide to generate a proinflammatory immune response. Downstream effects include the secretion of cytokines such as interleukin 8, the upregulation of pro-interleukin 1β, the induction of autophagy, the production of antimicrobial peptides and defensins, and contributions to the maintenance of the composition of the intestinal microbiota. Polymorphisms in NOD2 are the cause of the inflammatory disorder Blau syndrome and act as susceptibility factors for the inflammatory bowel condition Crohn's disease. The complexity of NOD2 signalling is highlighted by the observation that over 30 cellular proteins interact with NOD2 directly and influence or regulate its functional activity. Previously, the majority of reviews on NOD2 function have focused upon the role of NOD2 in inflammatory disease or in its interaction with and response to microbes. However, the functionality of NOD2 is underpinned by its biochemical interactions. Consequently, in this review, we have taken the opportunity to address the more ‘basic’ elements of NOD2 signalling. In particular, we have focused upon the core interactions of NOD2 with protein factors that influence and modulate the signal transduction pathways involved in NOD2 signalling. Further, where information exists, such as in relation to the role of RIP2, we have drawn comparison with the closely related, but functionally discrete, pattern recognition receptor NOD1. Overall, we provide a comprehensive resource targeted at understanding the complexities of NOD2 signalling.
Collapse
Affiliation(s)
- Joseph P Boyle
- Department of Biochemistry, University of Cambridge, Cambridge, UK Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tom P Monie
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, UK
| |
Collapse
|
16
|
Structural models of zebrafish (Danio rerio) NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations. PLoS One 2015; 10:e0121415. [PMID: 25811192 PMCID: PMC4374677 DOI: 10.1371/journal.pone.0121415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/01/2015] [Indexed: 11/25/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved ‘Lysine’ at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. ‘Proline’ of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.
Collapse
|
17
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
18
|
Parkhouse R, Boyle JP, Monie TP. Blau syndrome polymorphisms in NOD2 identify nucleotide hydrolysis and helical domain 1 as signalling regulators. FEBS Lett 2014; 588:3382-9. [PMID: 25093298 PMCID: PMC4158908 DOI: 10.1016/j.febslet.2014.07.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022]
Abstract
NOD2 SNPs that cause Blau syndrome cluster in two regions of the NACHT. The ATP/Mg2+ binding pocket cluster are likely to dysregulate ATP hydrolysis. SNPs in helical domain 1 are predicted to influence receptor autoinhibition. Complementary mutations in NOD1 do not all result in hyperactivation.
Understanding how single nucleotide polymorphisms (SNPs) lead to disease at a molecular level provides a starting point for improved therapeutic intervention. SNPs in the innate immune receptor nucleotide oligomerisation domain 2 (NOD2) can cause the inflammatory disorders Blau Syndrome (BS) and early onset sarcoidosis (EOS) through receptor hyperactivation. Here, we show that these polymorphisms cluster into two primary locations: the ATP/Mg2+-binding site and helical domain 1. Polymorphisms in these two locations may consequently dysregulate ATP hydrolysis and NOD2 autoinhibition, respectively. Complementary mutations in NOD1 did not mirror the NOD2 phenotype, which indicates that NOD1 and NOD2 are activated and regulated by distinct methods.
Collapse
Affiliation(s)
| | - Joseph P Boyle
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tom P Monie
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|