1
|
Farzi N, Oloomi M, Bahramali G, Siadat SD, Bouzari S. Antibacterial Properties and Efficacy of LL-37 Fragment GF-17D3 and Scolopendin A2 Peptides Against Resistant Clinical Strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii In Vitro and In Vivo Model Studies. Probiotics Antimicrob Proteins 2024; 16:796-814. [PMID: 37148452 DOI: 10.1007/s12602-023-10070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii have emerged as major clinical threats owing to the increasing prevalence of ventilator-associated pneumonia caused by multidrug-resistant or extensively drug-resistant strains. The present study aimed to assess the antibacterial effects and efficacy of LL-37 fragment GF-17D3 and synthetic Scolopendin A2 peptides against resistant clinical strains in vitro and in vivo models. P. aeruginosa, S. aureus, and A. baumannii were isolated from clinical infections. Their antibiotic resistance and minimum inhibitory concentration were assessed. LL-37 fragment GF-17D3 peptide was selected from available databases. Scolopendin A2 peptide's 6th amino acid (proline) was substituted with lysine and peptides and MICs were determined. The biofilm inhibitory activity was quantified at sub MIC concentrations. Synergetic effects of Scolopendin A2 and imipenem were assessed by checkerboard. After mice nasal infection with P. aeruginosa, peptides LD50 was determined. Isolates harbored complete resistance toward the majority of antibiotics and MIC values ranged between 1 and > 512 µg/ml. The majority of isolates exhibited strong biofilm activity. Synthetic peptides showed lower MIC values than antibiotic agents and the lowest MIC values were obtained for synthetic peptides in combination with antibiotics. The Synergisms effect of Scolopendin A2 with imipenem was also determined. Scolopendin A2 was found to have antibacterial efficacy against P. aeruginosa, S. aureus, and A. baumannii with MIC 64 µg/ml, 8 µg/ml, and 16 µg/ml, respectively, and LL37 showed antibacterial efficacy against P. aeruginosa, S. aureus, and A. baumannii with MIC 128 µg/ml, 32 µg/ml, and 32 µg/ml, respectively. Both AMPs decreased biofilms by ≥ 96% at 1 × MIC. The biofilm inhibitory activity was measured at sub MIC concentrations of the peptides and the results demonstrated that Scolopendin A2 exhibited anti-biofilm activity at 1/4 × MIC and 1/2 × MIC concentrations was 47.9 to 63.8%, although LL37 among 1/4 × MIC and 1/2 × MIC concentrations was 21.3 to 49.6% against three pathogens. The combination of Scolopendin A2 and antibiotics demonstrated synergistic activity-resistant strains with FIC values ≤ 0.5 for three pathogens, while LL37 and antibiotics showed synergistic activity FIC values ≤ 0.5 for only P. aeruginosa. Infection model Scolopendin A2 with Imipenem (2 × MIC) was efficacious in vivo, with a 100% survival rate following treatment at 2 × MIC after 120 h. The mRNA expression of biofilm-related genes was decreased for both peptides. Synthesis Scolopendin A2 decreased the expression of biofilm formation genes compared to the control group. Synthetic Scolopendin A2 exhibits antimicrobial activity without causing toxicity on the human epithelial cell line. Based on our findings, it seems that synthetic Scolopendin A2 is an appropriate antimicrobial source. That could be a promising option in combination with antibiotics for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant bacteria. Nevertheless, additional experiments are required to assess another potential of this novel AMP.
Collapse
Affiliation(s)
- Nastaran Farzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran.
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Kim Y, Ban GH, Hong YW, Jeong KC, Bae D, Kim SA. Bacterial profile of pork from production to retail based on high-throughput sequencing. Food Res Int 2024; 176:113745. [PMID: 38163697 DOI: 10.1016/j.foodres.2023.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Pork is a common vehicle for foodborne pathogens, including Salmonella spp. and Yersinia enterocolitica. Cross-contamination can occur at any stage of the pork production chain, from farm to market. In the present study, high-throughput sequencing was used to characterize bacterial profiles and track their changes along the whole supply chain. Tracked meat samples (pig on the farm, carcass in the slaughterhouse, unprocessed carcass and processed meat in the processing plant, and fresh pork at the local retail stores) and their associated environmental samples (e.g., water, floor, feed, feces, and workers' gloves) were collected from sequential stages (n = 96) and subjected to 16S rRNA metataxonomic analyses. At the farm, a total of 652 genera and 146 exclusive genera were identified in animal and environmental samples (pig, drain, floor, fan, and feces). Based on beta diversity analysis, it was demonstrated that the microbial composition of animal samples collected at the same processing step is similar to that of environmental samples (e.g., drain, fan, feces, feed, floor, gloves, knives, tables, and water). All animal and environmental samples from the slaughterhouse were dominated by Acinetobacter (55.37 %). At the processing plant, belly meat and neck meat samples were dominated by Psychrobacter (55.49 %). At the retail level, key bacterial players, which are potential problematic bacteria and important members with a high relative abundance in the samples, included Acinetobacter (8.13 %), Pseudomonas (6.27 %), and Staphylococcus (2.13 %). In addition, the number of confirmed genera varied by more than twice that identified in the processing plant. Source tracking was performed to identify bacterial contamination routes in pork processing. Animal samples, including the processing plant's carcass, the pig from the farm, and the unwashed carcass from the slaughterhouse (77.45 %), along with the processing plant's gloves (5.71 %), were the primary bacterial sources in the final product. The present study provides in-depth knowledge about the bacterial players and contamination points within the pork production chain. Effective control measures are needed to control pathogens and major pollutants at each stage of pork production to improve food safety.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ye Won Hong
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | | | - Dongryeoul Bae
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
3
|
Zhang K, Deng J, Lin WH, Hu S. Vitamin B 12 and iron-rich sludge-derived biochar enhanced PFOA biodegradation: Importance of direct inter-species electron transfer and functional microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118978. [PMID: 37742566 DOI: 10.1016/j.jenvman.2023.118978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Owing to the strong C-F bond in nature and the rigidity of the poly-fluoroalkyl chain, perfluorooctanoic acid (PFOA) is difficult to be eliminated by reactive species and microbes in environments, thus posing a serious threat to ecosystems. Vitamin B12 as a cofactor for enzymes, and biochar as the electron providers and conductors, were integrated to enhance PFOA biodegradation. The raw material of biochar was the sludge after dewatering by adding 50 mg/g DS of Fe(III). After pyrolysis under high temperature (800 °C), biochar (SC800) detected high content of Fe(II) (197.64 mg/g) and abundant oxygen-containing functional groups, thus boosting PFOA biodegradation via donating electrons. 99.9% of PFOA could be removed within 60 d as 0.1 g/L SC800 was presented in the microbial systems containing vitamin B12. Moreover, vitamin B12 facilitated the evolution of Sporomusa which behaved the deflorination. Via providing reactive sites and mediating direct inter-species electron transfer (DIET), SC800 boosted PFOA biodegradation. Corresponding novel results in the present study could guide the development of bioremediation technologies for PFOA-polluted sites.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment, Tsinghua University, Beijing, 100091, PR China
| | - Jiayu Deng
- School of Environment, Tsinghua University, Beijing, 100091, PR China
| | - Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shaogang Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
4
|
Hong YW, Ban GH, Bae D, Kim SA. Microbial investigation of aquacultured olive flounder (Paralichthys olivaceus) from farm to table based on high-throughput sequencing. Int J Food Microbiol 2023; 389:110111. [PMID: 36746029 DOI: 10.1016/j.ijfoodmicro.2023.110111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/02/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The microbial ecologies of fish, such as the olive flounder (Paralichthys olivaceus), one of the most widely consumed fish in East Asia, remain to be elucidated. The microbiome of olive flounder and related environmental samples (i.e., feed, water, workers' aprons and gloves) were collected from six different sources (i.e., a fish farm, a transporting truck, a Wando market and restaurant, and a Seoul market and restaurant). These samples (n = 102) were investigated at various farm-to-distribution stages based on their 16S rRNA sequences. The microbial communities of fish from the farms and trucks were dominated by Photobacterium (>86 %) and showed distinct differences from fish from the Wando and Seoul markets and restaurants. There was also a significant difference in fish microbiomes according to geographical location. The relative abundances of Shewanella, Acinetobacter, Enterobacteriaceae, and Pseudomonas increased as the distribution and consumption stages of the supply chain advanced. The percentages of Shewanella (24.74 %), Acinetobacter (18.32 %), and Enterobacteriaceae (11.24 %) in Wando, and Pseudomonas (42.98 %) in Seoul markets and restaurants implied the importance of sanitation control in these areas. Alpha and beta diversity results corresponded to taxonomic analyses and showed the division of two groups (i.e., fish from the production and transporting stage (farm and truck fish) and fish from the distribution and consumption stages (market and restaurant fish)). The present study provides an in-depth understanding of olive flounder and its environmental microbiomes and suggests control measures to improve food safety.
Collapse
Affiliation(s)
- Ye Won Hong
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Dongryeoul Bae
- Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
5
|
Milligan EG, Calarco J, Davis BC, Keenum IM, Liguori K, Pruden A, Harwood VJ. A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. Curr Environ Health Rep 2023:10.1007/s40572-023-00393-9. [PMID: 36821031 DOI: 10.1007/s40572-023-00393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.
Collapse
Affiliation(s)
- Erin G Milligan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Benjamin C Davis
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ishi M Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Krista Liguori
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Pulami D, Kämpfer P, Glaeser SP. High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160182. [PMID: 36395844 DOI: 10.1016/j.scitotenv.2022.160182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii causing immense treatment problems in hospitals. There is still a knowledge gap on the abundance and stability of acquired resistances and the diversity of resistant Acinetobacter in the environment. The aim of the study was to investigate the diversity and antimicrobial resistances of Acinetobacter spp. released from livestock and human wastewater into the environment. Raw and digested manure of small scale on farm biogas plants as well as untreated and treated wastewater and sewage sludge of rural and urban wastewater treatment plants (WWTPs) were studied comparatively. A total of 132 Acinetobacter isolates were phylogenetically identified (16S rRNA gene and rpoB sequence analyses) and 14 different phylotypes were detected. Fiftytwo isolates represented A. baumannii which were cultured from raw and digested manure of different biogas plants, and most stages of the rural WWTP (no hospital wastewater receiving) and the two studied urban WWTPs receiving veterinarian and human hospital wastewater. Multi-locus sequence typing (Pasteur_MLST) identified 23 novel and 12 known STs of A. baumannii. Most novel STs (18/23) were cultured from livestock samples and the rural WWTP. A. baumannii isolates from livestock and the rural WWTP were susceptible to carbapenems, colistin, ciprofloxacin, ceftazidime, and piperacillin. In contrast, A. baumannii isolates from the two urban WWTPs showed clinical linkage with respect to MLST and were multi-drug resistant (MDR). The presence of viable A. baumannii in digested manure and sewage sludge confirmed the survival of the strict aerobic bacteria during anoxic conditions. The study indicated the spread of diverse Acinetobacter from anthropogenic sources into the environment with a strong linkage of clinial associated MDR A. baumannii strains to the inflow of hospital wastewater to WWTPs. A more frequent detection of Acinetobacter in sewage sludge than effluent waters indicated that particle-attachment of Acinetobacter must be considered by the risk assessment of these bacteria.
Collapse
Affiliation(s)
- Dipen Pulami
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Peter Kämpfer
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Stefanie P Glaeser
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
7
|
Pulami D, Schauss T, Eisenberg T, Wilharm G, Blom J, Goesmann A, Kämpfer P, Glaeser SP. Acinetobacter baumannii in manure and anaerobic digestates of German biogas plants. FEMS Microbiol Ecol 2021; 96:5896450. [PMID: 32832994 DOI: 10.1093/femsec/fiaa176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Studies considering environmental multidrug-resistant Acinetobacter spp. are scarce. The application of manure on agricultural fields is one source of multidrug-resistant bacteria from livestock into the environment. Here, Acinetobacter spp. were quantified by quantitative polymerase chain reaction in manure applied to biogas plants and in the output of the anaerobic digestion, and Acinetobacter spp. isolated from those samples were comprehensively characterized. The concentration of Acinetobacter 16S ribosomal ribonucleic acid (rRNA) gene copies per g fresh weight was in range of 106-108 in manure and decreased (partially significantly) to a still high concentration (105-106) in digestates. 16S rRNA, gyrB-rpoB and blaOXA51-like gene sequencing identified 17 different Acinetobacter spp., including six A. baumannii strains. Multilocus sequence typing showed no close relation of the six strains with globally relevant clonal complexes; however, they represented five novel sequence types. Comparative genomics and physiological tests gave an explanation how Acinetobacter could survive the anaerobic biogas process and indicated copper resistance and the presence of intrinsic beta-lactamases, efflux-pump and virulence genes. However, the A. baumannii strains lacked acquired resistance against carbapenems, colistin and quinolones. This study provided a detailed characterization of Acinetobacter spp. including A. baumannii released via manure through mesophilic or thermophilic biogas plants into the environment.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Thorsten Schauss
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), D-35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
8
|
Guo H, Wang N, Niu H, Zhao D, Zhang Z. Interaction of Arsenophonus with Wolbachia in Nilaparvata lugens. BMC Ecol Evol 2021; 21:31. [PMID: 33610188 PMCID: PMC7896400 DOI: 10.1186/s12862-021-01766-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Co-infection of endosymbionts in the same host is ubiquitous, and the interactions of the most common symbiont Wolbachia with other symbionts, including Spiroplasma, in invertebrate organisms have received increasing attention. However, the interactions between Wolbachia and Arsenophonus, another widely distributed symbiont in nature, are poorly understood. We tested the co-infection of Wolbachia and Arsenophonus in different populations of Nilaparvata lugens and investigated whether co-infection affected the population size of the symbionts in their host. Results A significant difference was observed in the co-infection incidence of Wolbachia and Arsenophonus among 5 populations of N. lugens from China, with nearly half of the individuals in the Zhenjiang population harbouring the two symbionts simultaneously, and the rate of occurrence was significantly higher than that of the other 4 populations. The Arsenophonus density in the superinfection line was significantly higher only in the Maanshan population compared with that of the single-infection line. Differences in the density of Wolbachia and Arsenophonus were found in all the tested double-infection lines, and the dominant symbiont species varied with the population only in the Nanjing population, with Arsenophonus the overall dominant symbiont. Conclusions Wolbachia and Arsenophonus could coexist in N. lugens, and the co-infection incidence varied with the geographic populations. Antagonistic interactions were not observed between Arsenophonus and Wolbachia, and the latter was the dominant symbiont in most populations.
Collapse
Affiliation(s)
- Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China.
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| |
Collapse
|
9
|
Carvalheira A, Silva J, Teixeira P. Acinetobacter spp. in food and drinking water - A review. Food Microbiol 2020; 95:103675. [PMID: 33397609 DOI: 10.1016/j.fm.2020.103675] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
Acinetobacter spp. has emerged as a pathogen of major public health concern due to their increased resistance to antibiotics and their association with a wide range of nosocomial infections, community-acquired infections and war and natural disaster-related infections. It is recognized as a ubiquitous organism however, information about the prevalence of different pathogenic species of this genus in food sources and drinking water is scarce. Since the implementation of molecular techniques, the role of foods as a source of several species, including the Acinetobacter baumannii group, has been elucidated. Multidrug resistance was also detected among Acinetobacter spp. isolated from food products. This highlights the importance of foods as potential sources of dissemination of Acinetobacter spp. between the community and clinical environments and reinforces the need for further investigations on the potential health risks of Acinetobacter spp. as foodborne pathogens. The aim of this review was to summarize the published data on the occurrence of Acinetobacter spp. in different food sources and drinking water. This information should be taken into consideration by those responsible for infection control in hospitals and other healthcare facilities.
Collapse
Affiliation(s)
- Ana Carvalheira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Joana Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
10
|
Cerqueda-García D, Améndola-Pimenta M, Zamora-Briseño JA, González-Penagos CE, Árcega-Cabrera F, Ceja-Moreno V, Rodríguez-Canul R. Effects of chronic exposure to water accommodated fraction (WAF) of light crude oil on gut microbiota composition of the lined sole (Achirus lineatus). MARINE ENVIRONMENTAL RESEARCH 2020; 161:105116. [PMID: 32861142 DOI: 10.1016/j.marenvres.2020.105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Exposure of marine fish to hydrocarbon compounds from crude oil can cause physiological and ecological alterations that can result in several cytotoxic, genotoxic, and teratogenic damages. One consequence of this exposure is the dysbiosis of the gut microbiota, where the normal bacterial composition is modified. Herein, we assessed the effect of the exposure to water accommodated fraction (WAF) of a light crude oil into the gut microbiota of a native species, the lined sole Achirus lineatus, a benthonic fish widely distributed in the Gulf of Mexico (GoM). We performed a chronic bioassay using two WAF concentrations (5 and 10% v/v), collecting lined sole entire gastrointestinal tracts for microbiota analyses at two timepoints, 14 and 28 days. Changes in the gut microbiota composition were determined by high throughput amplicon sequencing of the gene 16S rRNA. Diversity analyses showed that WAF exposure produced similar changes in the microbiota composition at both concentrations. Metagenomic functional prediction showed that these alterations could result in a shift in the gut redox status, towards a more anoxygenic environment. Enrichment of bacteria capable of use hydrocarbon as carbon source seems to be fast regardless time of exposure or WAF concentrations. Our results suggest that chronic WAF exposure can cause a dysbiosis in this benthic native species from the GoM.
Collapse
Affiliation(s)
- Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| | - Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Puerto de Abrigo S/N, Sisal Yucatán, 97356, Mexico
| | - Víctor Ceja-Moreno
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Puerto de Abrigo S/N, Sisal Yucatán, 97356, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
11
|
Carvalheira A, Gonzales-Siles L, Salvà-Serra F, Lindgren Å, Svensson-Stadler L, Thorell K, Piñeiro-Iglesias B, Karlsson R, Silva J, Teixeira P, Moore ERB. Acinetobacter portensis sp. nov. and Acinetobacter guerrae sp. nov., isolated from raw meat. Int J Syst Evol Microbiol 2020; 70:4544-4554. [PMID: 32618559 DOI: 10.1099/ijsem.0.004311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic status of six strains of Acinetobacter obtained from meat samples, collected from supermarkets in Porto, Portugal, was investigated using polyphasic analysis. Partial rpoB sequence similarities lower than 95 % to other Acinetobacter species with validly published names led to the hypothesis that these strains represented novel species. This was confirmed based on comparative multilocus sequence analysis, which included the gyrB, recA and 16S rRNA genes, revealing that these strains represented two coherent lineages that were distinct from each other and from all known species. The names Acinetobacter portensis sp. nov. (comprising four strains) and Acinetobacter guerrae sp. nov. (comprising two strains) are proposed for these novel species. The species status of these two groups was confirmed by low (below 95 %) whole-genome sequence average nucleotide identity values and low (below 70 %) digital DNA-DNA hybridization similarities between the whole-genome sequences of the proposed type strains of each novel species and the representatives of the known Acinetobacter species. Phylogenomic treeing from core genome analysis supported these results. The coherence of each new species lineage was supported by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiation of the species at the protein level, by cellular fatty acid profiles, and by unique and differential combinations of metabolic and physiological properties shared by each novel species. The type strain of A. portensis sp. nov. is AC 877T (=CCUG 68672T=CCM 8789T) and the type strain of A. guerrae sp. nov. is AC 1271T (=CCUG 68674T=CCM 8791T).
Collapse
Affiliation(s)
- Ana Carvalheira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Lucia Gonzales-Siles
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Francisco Salvà-Serra
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Åsa Lindgren
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Liselott Svensson-Stadler
- Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Kaisa Thorell
- Center for Translational Microbiome Research, Department of Microbiology, Cell and Tumor biology, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Roger Karlsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Nanoxis Consulting AB, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Joana Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
12
|
Ruokolainen L, Parkkola A, Karkman A, Sinkko H, Peet A, Hämäläinen A, Hertzen L, Tillmann V, Koski K, Virtanen SM, Niemelä O, Haahtela T, Knip M. Contrasting microbiotas between Finnish and Estonian infants: Exposure to Acinetobacter may contribute to the allergy gap. Allergy 2020; 75:2342-2351. [PMID: 32108360 DOI: 10.1111/all.14250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allergic diseases are more common in Finland than in Estonia, which-according to the biodiversity hypothesis-could relate to differences in early microbial exposures. METHODS We aimed at defining possible microbial perturbations preceding early atopic sensitization. Stool, nasal and skin samples of 6-month-old DIABIMMUNE study participants with HLA susceptibility to type 1 diabetes were collected. We compared microbiotas of sensitized (determined by specific IgE results at 18 months of age) and unsensitized Estonian and Finnish children. RESULTS Sensitization was differentially targeted between populations, as egg-specific and birch pollen-specific IgE was more common in Finland. Microbial diversity and community composition also differed; the genus Acinetobacter was more abundant in Estonian skin and nasal samples. Particularly, the strain-level profile of Acinetobacter lwoffii was more diverse in Estonian samples. Early microbiota was not generally associated with later sensitization. Microbial composition tended to differ between children with or without IgE-related sensitization, but only in Finland. While land-use pattern (ie green areas vs. urban landscapes around the children's homes) was not associated with microbiota as a whole, it associated with the composition of the genus Acinetobacter. Breastfeeding affected gut microbial composition and seemed to protect from sensitization. CONCLUSIONS In accordance with the biodiversity hypothesis, our results support disparate early exposure to environmental microbes between Finnish and Estonian children and suggest a significant role of the genus Acinetobacter in the allergy gap between the two populations. The significance of the observed differences for later allergic sensitization remains open.
Collapse
Affiliation(s)
| | - Anna Parkkola
- Pediatric Research Center, Children’s HospitalHelsinki University HospitalUniversity of Helsinki Helsinki Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Antti Karkman
- Department of Biosciences University of Helsinki Helsinki Finland
- Department of Microbiology University of Helsinki Helsinki Finland
| | - Hanna Sinkko
- Human Microbiome (HUMI) Research Program Faculty of Medicine University of Helsinki Helsinki Finland
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Aleksandr Peet
- Department of Paediatrics Tartu University HospitalUniversity of Tartu Tartu Estonia
| | | | - Leena Hertzen
- Skin and Allergy Hospital Helsinki University Hospital Helsinki Finland
| | - Vallo Tillmann
- Department of Paediatrics Tartu University HospitalUniversity of Tartu Tartu Estonia
| | - Katriina Koski
- Clinicum Faculty of Medicine University of Helsinki Helsinki Finland
| | - Suvi M. Virtanen
- Department of Public Health Solutions National Institute for Health and Welfare Helsinki Finland
- Faculty of Social Sciences/Health Sciences University of Tampere Tampere Finland
- Center for Child Health Research Tampere University Hospital and Science CentreTampere University HospitalUniversity of Tampere Tampere Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit Seinäjoki Central HospitalUniversity of Tampere Tampere Finland
| | - Tari Haahtela
- Skin and Allergy Hospital Helsinki University Hospital Helsinki Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s HospitalHelsinki University HospitalUniversity of Helsinki Helsinki Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
- Center for Child Health Research Tampere University Hospital and Science CentreTampere University HospitalUniversity of Tampere Tampere Finland
- Folkhälsan Research Center Helsinki Finland
| |
Collapse
|
13
|
Molecular Detection of Carbapenemase-Encoding Genes in Multidrug-Resistant Acinetobacter baumannii Clinical Isolates in South Africa. Int J Microbiol 2020; 2020:7380740. [PMID: 32612659 PMCID: PMC7306865 DOI: 10.1155/2020/7380740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction Carbapenem-resistant Acinetobacter baumannii has been responsible for an increasing number of hospital-acquired infections globally. The study investigated the prevalence of carbapenemase-encoding genes in clinical multidrug-resistant A. baumannii strains. Materials and Methods A total of 100 nonduplicate multidrug-resistant A. baumannii strains were cultured from clinical samples obtained from healthcare facilities in the O. R. Tambo district. The strains were confirmed by detecting the intrinsic blaOXA-51-like gene. Antimicrobial susceptibility testing was performed by VITEK® 2 and autoSCAN-4 systems. The MIC of imipenem and meropenem was rechecked by E-test. Colistin MIC was confirmed by the broth microdilution method. Real-time PCR was performed to investigate the presence of carbapenemase-encoding genes. Results Most strains showed high resistance rates (>80%) to the antibiotics tested. Resistance to amikacin, tetracycline, and tigecycline were 50%, 64%, and 48%, respectively. All strains were fully susceptible to colistin. The blaOXA-51-like was detected in all strains whilst blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaIMP-1, blaVIM, and blaNDM-1 were found in 70%, 8%, 5%, 4%, 3%, and 2% of strains, respectively. None of the tested strains harboured the genes blaSIM and blaAmpC. The coexistence of blaOXA-23-like, and blaIMP-1 or blaOXA-58-like was detected in 1% and 2% strains, respectively. A distinct feature of our findings was the coharbouring of the genes blaOXA-23-like, blaOXA-58-like, and blaIMP-1 in 2% strains, and this is the first report in the Eastern Cape Province, South Africa. The intI1 was carried in 80% of tested strains whilst ISAba1/blaOXA-51-like and ISAba1/blaOXA-23-like were detected in 15% and 40% of the strains, respectively. The detection of blaOXA-23-like, ISAba1/blaOXA-51-like, ISAba1/blaOXA-23-like, and blaOXA-23-like, blaOXA-58-like, and blaIMP-1 carbapenemases in strains had a significant effect on both imipenem and meropenem MICs. Conclusions Results showed a high level of oxacillinases producing A. baumannii circulating in our study setting, highlighting the need for local molecular surveillance to inform appropriate management and prevention strategies.
Collapse
|
14
|
Li Y, Liu X, Wang N, Zhang Y, Hoffmann AA, Guo H. Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus. Environ Microbiol 2020; 22:2653-2663. [PMID: 32128956 DOI: 10.1111/1462-2920.14974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/29/2022]
Abstract
Although facultative endosymbionts are now known to protect insect hosts against pathogens and parasitoids, the effects of endosymbionts on insecticide resistance are still unclear. Here we show that Wolbachia are associated with increased resistance to the commonly used insecticide, buprofezin, in the small brown planthopper (Laodelphax striatellus) in some genetic backgrounds while having no effect in other backgrounds. In three Wolbachia-infected lines from experimental buprofezin-resistant strains and one line from a buprofezin-susceptible line established from Chuxiong, Yunnan province, China, susceptibility to buprofezin increased after removal of Wolbachia. An increase in susceptibility was also evident in a Wolbachia-infected line established from a field population in Rugao, Jiangsu province. However, no increase was evident in two field populations from Nanjing and Fengxian, Jiangsu province, China. When Wolbachia was introgressed into different genetic backgrounds, followed by Wolbachia removal, the data pointed to Wolbachia effects that depend on the nuclear background as well as on the Wolbachia strain. However, there was no relationship between Wolbachia density and the component of buprofezin resistance associated with the symbiont. The results suggest that Wolbachia effects associated with chemical resistance are complex and unpredictable, but also that they can be substantial.
Collapse
Affiliation(s)
- Yongteng Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xiangdong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yueliang Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Anane A Y, Apalata T, Vasaikar S, Okuthe GE, Songca S. Prevalence and molecular analysis of multidrug-resistant Acinetobacter baumannii in the extra-hospital environment in Mthatha, South Africa. Braz J Infect Dis 2019; 23:371-380. [PMID: 31706742 PMCID: PMC9428220 DOI: 10.1016/j.bjid.2019.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction The presence of Acinetobacter baumannii outside hospitals remains unclear. This study aimed to determine the prevalence of multidrug-resistance (MDR) A. baumannii in the extra-hospital environment in Mthatha, South Africa and to investigate the frequency of carbapenemase-encoding genes. Material and Methods From August 2016 to July 2017 a total of 598 abattoir samples and 689 aquatic samples were collected and analyzed presumptively by cultural methods for the presence of A. baumannii using CHROMagar™ Acinetobacter medium. Species identification was performed by autoSCAN-4 (Dade Behring Inc., IL) and confirmed by the detection of their intrinsic blaOXA-51 gene. Confirmed MDR A. baumannii isolates were screened for the presence of carbapenemase-encoding genes, ISAba1 insertion sequence and integrase intI1. Results In total, 248 (19.3%) Acinetobacter species were isolated. Acinetobacter. baumannii was detected in 183 (73.8%) of which 85 (46.4%) and 98 (53.6%) were recovered from abattoir and aquatic respectively. MDR A. baumannii was detected in 56.5% (48/85) abattoir isolates and 53.1% (52/98) aquatic isolates. Isolates showed high resistance to antimicrobials most frequently used to treat Acinetobacter infections such as piperacillin/tazobactam; abattoir (98% of isolates resistant), aquatic (94% of isolates resistant), ceftazidime (84%, 83%), ciprofloxacin (71%, 70%), amikacin (41%, 42%), imipenem (75%, 73%), and meropenem (74%, 71%). All the isolates were susceptible to tigecycline and colistin. All the isolates carried blaOXA-51-like. The blaOXA-23 was detected in 32 (66.7%) abattoir isolates and 11 (21.2%) aquatic isolates. The blaOXA-58-like was positive in 7 (14.6%) and 4 (7.7%) abattoir and aquatic isolates, respectively. Both groups of isolates lacked blaOXA-24-like, blaIMP-type, blaVIM-type, blaNDM-1,blaSIM, blaAmpC, ISAba1 and inI1. Isolates showed high level of Multiple Antibiotic Resistance Index (MARI) ranging from 0.20-0.52. Conclusion Extra-hospital sources such as abattoir and aquatic environments may be a vehicle of spread of MDR A. baumannii strains in the community and hospital settings.
Collapse
Affiliation(s)
- Yaw Anane A
- Walter Sisulu University, Faculty of Health Sciences, Department of Laboratory Medicine & Pathology, Eastern Cape Province, South Africa
| | - Teke Apalata
- Nelson Mandela Central Hospital, National Health Laboratory Services (NHLS), Division of Medical Microbiology, Mthatha, South Africa.
| | - Sandeep Vasaikar
- Walter Sisulu University, Faculty of Health Sciences, Department of Laboratory Medicine & Pathology, Eastern Cape Province, South Africa; Nelson Mandela Central Hospital, National Health Laboratory Services (NHLS), Division of Medical Microbiology, Mthatha, South Africa
| | - Grace Emily Okuthe
- Walter Sisulu University, Department of Biological & Environmental Sciences, Eastern Cape Province, South Africa
| | - Sandile Songca
- University of KwaZulu-Natal, College of Agriculture Engineering and Science, School of Chemistry and Physics, Durban, South Africa
| |
Collapse
|
16
|
Li Y, Liu X, Guo H. Population Dynamics of Wolbachia in Laodelphax striatellus (Fallén) Under Successive Stress of Antibiotics. Curr Microbiol 2019; 76:1306-1312. [PMID: 31471686 DOI: 10.1007/s00284-019-01762-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022]
Abstract
Wolbachia are the most common symbionts in arthropods; antibiotic treatment for eliminating the symbionts from their host is necessary to investigate the functions. Tetracycline antibiotics are widely used to remove endosymbiont Wolbachia from insect hosts. However, very little has been known on the effects of tetracycline on population size of Wolbachia in small brown planthopper (SBPH), Laodelphax striatellus (Fallén), an important insect pest of rice in Asia. Here, we investigated the dynamics of Wolbachia population density in females and males of L. striatellus by real-time fluorescent quantitative PCR method. The Wolbachia density in females and males of L. striatellus all declined sharply after treatment with 2 mg/mL tetracycline for one generation, and continued to decrease to a level which could not be detected by both qPCR and diagnostic PCR after treated for another generation, then maintained at 0 in the following three generations with continuous antibiotic treatment. Wolbachia infection did not recover in L. striatellus after stopping tetracycline treatment for ten generations. This is the first report to precisely monitor the population dynamics of Wolbachia in L. striatellus during successive tetracycline treatment and after that. The results provide a useful method for evaluating the efficiency of artificial operation of endosymbionts.
Collapse
Affiliation(s)
- Yongteng Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling street, Nanjing, 210014, China
| | - Xiangdong Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling street, Nanjing, 210014, China.
| |
Collapse
|
17
|
Biotechnological potential of bacteria isolated from cattle environments of desert soils in Sonora Mexico. World J Microbiol Biotechnol 2018; 35:4. [PMID: 30554397 DOI: 10.1007/s11274-018-2574-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
The aim of this research was to study the hydrolytic potential of bacteria isolated from cattle environments of two desert soils in one of the driest and hottest zones in America. A total of 26 points were sampled, 144 strains were isolated, and 50 strains were selected for the characterization of esterase, lipase, protease, and amylase activities and for 16S rRNA identification. Strains of the Bacillus, Pseudomonas, Acinetobacter, Enterobacter, Providencia, Escherichia, and Pantoea genera were identified. Comparisons of the proteolytic activity of the secretome from 14 strains (Bacillus n = 7, Escherichia n = 2; Providencia, Pseudomonas, Enterobacter, Pantoea and Acinetobacter n = 1) were performed. Four strains of Bacillus showed the highest proteolytic activity. These strains were characterized through a comparative analysis of pH and temperature as well as the effects of salt concentration on protease activity. Maximum proteolytic activity occurred in the range of pH 7-9 and temperatures between 50 and 70 °C for B. subtilis WD01, B. tequilensis WS11, B. tequilensis WS13, and B. tequilensis WS14. At a 20% NaCl concentration, the proteolytic activity retained was 71.4%, 65%, and 79.8% for WD01, WS11, and WS13, respectively; the activity of strain WS14 increased with 45% NaCl. Protease production by B. tequilensis WS14 with wheat, fish, and bone flours as low-cost substrates showed no differences between bone and fish flours and showed a decrease in protease production with wheat flour. The proteolytic activity in flour extracts with 20% NaCl was 82%, 75.61% and 38.04% for fish, bone and wheat flours, respectively. Data obtained in this work allow us to propose that strains isolated from environments with extreme conditions have a biotechnological potential.
Collapse
|
18
|
Variations in Endosymbiont Infection Between Buprofezin-Resistant and Susceptible Strains of Laodelphax striatellus (Fallén). Curr Microbiol 2018; 75:709-715. [DOI: 10.1007/s00284-018-1436-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
|
19
|
Prayoonthien P, Nitisinprasert S, Keawsompong S. In vitro fermentation of copra meal hydrolysate by chicken microbiota. 3 Biotech 2018; 8:41. [PMID: 29291154 DOI: 10.1007/s13205-017-1058-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/19/2017] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to carry out preliminary investigations on the in vitro fermentation selectivity of copra meal hydrolysate (CMH) by chicken gut microbiota. The ileum and cecum contents from three 35-day-old birds were used as inocula. Yeast mannooligosaccharide (yeast-MOS) or α-mannan was selected as a positive control. Batch culture fermentation with fecal bacteria was performed at 42 °C for 24 h in an anaerobic chamber. Samples were collected at 0, 6, 12, 18 and 24 h of fermentation and evaluated using real-time PCR and short-chain fatty acid (SCFA) analysis. Results showed that the medium containing ileum and both CMH and yeast-MOS substrates led to an increase in the growth of the dominant groups as Lactobacillus, Enterobacteriaceae and Enterococcus spp. compared with 0-h fermentation. Campylobacter spp. and Bifidobacterium spp. were not detected in any samples. A significant decrease in Acinetobacter was observed in all substrates tested after 6 h of fermentation (P < 0.05). Only the sample from CMH fermentation showed a significantly greater reduction in the population of Pseudomonas after 18-h fermentation with ileum content (P < 0.05). Propionate was the main fermentation product found in both ileum and cecum fermentation followed by lactate and acetate. CMH can be utilized by ileum and cecum microbial of chickens, and CMH has a generally desirable effect on the microbiota. CMH has the potential for use as a supplementary diet with similar or improved benefits and lower costs compared to commercial prebiotics. Further experiments in animal trials would seem to be justified.
Collapse
Affiliation(s)
- Phatcharin Prayoonthien
- Faculty of Agro-Industry, Department of Biotechnology, Kasetsart University, Ladyaow, Chatuchak, Bangkok, 10900 Thailand
| | - Sunee Nitisinprasert
- Faculty of Agro-Industry, Department of Biotechnology, Kasetsart University, Ladyaow, Chatuchak, Bangkok, 10900 Thailand
- Center for Advanced Studies in Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Ladyaow, Chatuchak, Bangkok, 10900 Thailand
| | - Suttipun Keawsompong
- Faculty of Agro-Industry, Department of Biotechnology, Kasetsart University, Ladyaow, Chatuchak, Bangkok, 10900 Thailand
- Center for Advanced Studies in Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Ladyaow, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
20
|
MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites. Microorganisms 2017; 5:microorganisms5030047. [PMID: 28796186 PMCID: PMC5620638 DOI: 10.3390/microorganisms5030047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.
Collapse
|
21
|
Carvalheira A, Silva J, Teixeira P. Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiol 2017; 64:119-125. [PMID: 28213015 DOI: 10.1016/j.fm.2016.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
The role of ready-to-eat products as a reservoir of pathogenic species of Acinetobacter remains unclear. The objective of the present study was to evaluate the presence of Acinetobacter species in lettuces and fruits marketed in Portugal, and their susceptibility to antimicrobials. Acinetobacter spp. were isolated from 77.9% of the samples and these microorganisms were also found as endophytes (i.e. present within the plant tissue) in 12 of 20 samples of lettuces analysed. Among 253 isolates that were identified as belonging to this genus, 181 presented different PFGE profiles, representing different strains. Based on the analysis of the partial sequence of rpoB, 175 strains were identified as members of eighteen distinct species and the remaining six strains may represent five new candidate species since their rpoB sequence similarities with type strains were less than 95%. Acinetobacter calcoaceticus and Acinetobacter johnsonii were the most common species, both with the frequency of 26.5%; and 11% of the strains belong to the Acinetobacter baumannii group (i.e. A. baumannii, Acinetobacter pittii, Acinetobacter seifertii and Acinetobacter nosocomialis), which is most frequently associated with nosocomial infections. Overall, the strains were least susceptible to piperacillin (80.1%), piperacillin-tazobactam (64.1%), ceftazidime (43.1%), ciprofloxacin (16.6%), trimethoprim-sulfamethoxazole (14.9%), imipenem (14.4%) and colistin (13.3%). The most active antimicrobials were minocycline and tetracycline, with 0.6% and 3.9% of strains resistant, respectively. About 29.8% of the strains were classified as multidrug-resistant (MDR), 4.4% as extensively drug-resistant (XDR) and the prevalence of MDR strains within the A. baumannii group (25%) was similar to other species (30.4%). The presence of clinically important species as well as MDR strains in lettuces and fruits may be a threat to public health considering that they may transmit these pathogens to environments such as the community and hospital settings.
Collapse
Affiliation(s)
- Ana Carvalheira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Joana Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| |
Collapse
|
22
|
Shamsizadeh Z, Nikaeen M, Nasr Esfahani B, Mirhoseini SH, Hatamzadeh M, Hassanzadeh A. Detection of antibiotic resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of Acinetobacter infections. Environ Health Prev Med 2017; 22:44. [PMID: 29165152 PMCID: PMC5664838 DOI: 10.1186/s12199-017-0653-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Antibiotic resistant Acinetobacter baumannii has emerged as one of the most problematic hospital acquired pathogens around the world. This study was designed to investigate the presence of antibiotic resistant A. baumannii in various hospital environments. Methods Air, water and inanimate surface samples were taken in different wards of four hospitals and analyzed for the presence of A. baumannii. Confirmed A. baumannii isolates were analyzed for antimicrobial susceptibility and also screened for the presence of three most common OXA- type carbapenemase-encoding genes. Results A. baumannii was detected in 11% (7/64) of air samples with the highest recovery in intensive care units (ICUs). A. baumannii was also detected in 17% (7/42) and 2% (1/42) of surface and water samples, respectively. A total of 40 A. baumannii isolates were recovered and analysis of antimicrobial susceptibility showed the highest resistance towards ceftazidime (92.5%, 37/40). 85% (34/40) and 80% (32/40) of the isolates were also resistant to imipenem and gentamicin, respectively. Resistance genes analysis showed that 77.5% (31/40) strains contained OXA-23 and 5% (2/40) strains contained OXA-24, but OXA-58 was not detected in any of the strains. Conclusion Detection of antibiotic resistant A. baumannii in various samples revealed that hospital environments could act as a potential source for transmission of A. baumannii infections especially in ICUs. These results emphasize the importance of early detection and implementation of control measures to prevent the spread of A. baumannii in hospital environments.
Collapse
Affiliation(s)
- Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, Iran.
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hamed Mirhoseini
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Hatamzadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, Iran
| | - Akbar Hassanzadeh
- Department of Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Carvalheira A, Casquete R, Silva J, Teixeira P. Prevalence and antimicrobial susceptibility of Acinetobacter spp. isolated from meat. Int J Food Microbiol 2017; 243:58-63. [DOI: 10.1016/j.ijfoodmicro.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023]
|
24
|
Al Atrouni A, Hamze M, Rafei R, Eveillard M, Joly-Guillou ML, Kempf M. Diversity of Acinetobacter species isolated from different environments in Lebanon: a nationwide study. Future Microbiol 2016; 11:1147-56. [DOI: 10.2217/fmb-2016-0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the extrahospital reservoirs of Acinetobacter spp. in Lebanon. Materials & methods: Two thousand three hundred and sixty-one samples from different ecological niches were analyzed by culture methods. Species identification was confirmed by rpoB-gene sequencing. Multilocus sequence typing was used to characterize the Acinetobacter baumannii clones. Results & conclusion: Acinetobacter spp. were detected in 14% of environmental samples and 8% of food samples. Furthermore, 9% of animals and 3.4% of humans were colonized. Non-baumannii Acinetobacter were the most common species isolated and newly susceptible A. baumannii clones were detected. Interestingly, 21 isolates were not identified at the species level and were considered as putative novel species. To our knowledge, this is the largest epidemiological study investigating the epidemiology of Acinetobacter spp. outside hospitals.
Collapse
Affiliation(s)
- Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie et Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Matthieu Eveillard
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier Universitaire, Angers, France
| | - Marie-Laure Joly-Guillou
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier Universitaire, Angers, France
| | - Marie Kempf
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of Angers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
25
|
Carvalheira A, Ferreira V, Silva J, Teixeira P. Enrichment of Acinetobacter spp. from food samples. Food Microbiol 2016; 55:123-7. [DOI: 10.1016/j.fm.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/31/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
26
|
Zhou AX, Zhang YL, Dong TZ, Lin XY, Su XS. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10094-10106. [PMID: 25687607 DOI: 10.1007/s11356-015-4183-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site and in other petrochemical-contaminated areas. Furthermore, they are probably helpful for reducing health risks to the general public from contaminated groundwater.
Collapse
Affiliation(s)
- Ai-xia Zhou
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, No. 2519, Jiefang Road, Changchun, Jilin Province, 130021, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Tang MS, Poles J, Leung JM, Wolff MJ, Davenport M, Lee SC, Lim YA, Chua KH, Loke P, Cho I. Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation. Gut Microbes 2015; 6:48-56. [PMID: 25559083 PMCID: PMC4615154 DOI: 10.1080/19490976.2014.1000080] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal microbiota lives in close proximity with the intestinal epithelium and may interact more directly with the host immune system than the luminal/fecal bacteria. The availability of nutrients in the mucus layer of the epithelium is also very different from the gut lumen environment. Inferred metagenomic analysis for microbial function of the mucosal microbiota is possible by PICRUSt. We recently found that by using this approach, actively inflamed tissue of ulcerative colitis (UC) patients have mucosal communities enriched for genes involved in lipid and amino acid metabolism, and reduced for carbohydrate and nucleotide metabolism. Here, we find that the same bacterial taxa (e.g. Acinetobacter) and predicted microbial pathways enriched in actively inflamed colitis tissue are also enriched in the mucosa of subjects undergoing routine screening colonoscopies, when compared with paired samples of luminal/fecal bacteria. These results suggest that the mucosa of healthy individuals may be a reservoir of aerotolerant microbial communities expanded during colitis.
Collapse
Affiliation(s)
- Mei San Tang
- Department of Microbiology; New York University School of Medicine; New York, NY USA
| | - Jordan Poles
- Department of Microbiology; New York University School of Medicine; New York, NY USA
| | - Jacqueline M Leung
- Department of Microbiology; New York University School of Medicine; New York, NY USA
| | - Martin J Wolff
- Department of Medicine; New York University School of Medicine; New York, NY USA
| | - Michael Davenport
- Department of Medicine; New York University School of Medicine; New York, NY USA
| | - Soo Ching Lee
- Department of Parasitology; University of Malaya; Kuala Lumpur, Malaysia
| | - Yvonne Al Lim
- Department of Parasitology; University of Malaya; Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science; University of Malaya; Kuala Lumpur, Malaysia
| | - P'ng Loke
- Department of Microbiology; New York University School of Medicine; New York, NY USA,Corresponding authors: P’ng Loke;
| | - Ilseung Cho
- Department of Medicine; New York University School of Medicine; New York, NY USA,VA New York Harbor Healthcare System; New York, NY USA
| |
Collapse
|
28
|
Souto R, Silva-Boghossian CM, Colombo APV. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection. Braz J Microbiol 2014; 45:495-501. [PMID: 25242933 PMCID: PMC4166274 DOI: 10.1590/s1517-83822014000200017] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
P. aeruginosa and Acinetobacter spp. are important pathogens associated with late nosocomial pneumonia in hospitalized and institutionalized individuals. The oral cavity may be a major source of these respiratory pathogens, particularly in the presence of poor oral hygiene and periodontal infection. This study investigated the prevalence of P. aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with periodontal disease or health. Samples were obtained from 55 periodontally healthy (PH) and 169 chronic periodontitis (CP) patients. DNA was obtained from the samples and detection of P. aeruginosa and Acinetobacter spp. was carried out by multiplex and nested PCR. P. aeruginosa and Acinetobacter spp. were detected in 40% and 45% of all samples, respectively. No significant differences in the distribution of these microorganisms between men and women, subgingival biofilm and saliva samples, patients ≤ 35 and > 35 years of age, and smokers and non-smokers were observed regardless periodontal status (p > 0.05). In contrast, the frequencies of P. aeruginosa and Acinetobacter spp. in saliva and biofilm samples were significantly greater in CP than PH patients (p < 0.01). Smokers presenting P. aeruginosa and high frequencies of supragingival plaque were more likely to present CP than PH. P. aeruginosa and Acinetobacter spp. are frequently detected in the oral microbiota of CP. Poor oral hygiene, smoking and the presence of P. aeruginosa are strongly associated with periodontitis.
Collapse
Affiliation(s)
- Renata Souto
- Instituto de Microbiologia Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carina M Silva-Boghossian
- Departamento de Clínica Odontológica Faculdade de Odontologia Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Departamento de Clínica Odontológica, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Vieira Colombo
- Instituto de Microbiologia Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Hassanshahian M, Emtiazi G, Caruso G, Cappello S. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study. MARINE ENVIRONMENTAL RESEARCH 2014; 95:28-38. [PMID: 24388285 DOI: 10.1016/j.marenvres.2013.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 05/15/2023]
Abstract
Bioaugmentation (amendment with selected bacterial strains) and/or biostimulation (nutrients addition and/or air supply) are relatively new fields in environmental microbiology for preventing pollution and cleanup contamination. In this study, the efficiency of application of bioaugmentation/biostimulation treatments, for recovery of crude oil-polluted seawater, was evaluated. Three different series of experiments were performed in a "Mesocosm Facility" (10.000 L). Natural seawater was artificially polluted with crude oil (1000 ppm) and was amended with inorganic nutrients (Mesocosm 1, M1), inorganic nutrient and an inoculum of Alcanivorax borkumensis SK2(T) (Mesocosm 2, M2) and inorganic nutrient and an inoculum of A. borkumensis SK2(T) and Thalassolituus oleivorans MIL-1(T) (Mesocosm 3, M3), respectively. During the experimental period (20 days) bacterial abundance (DAPI count), culturable heterotrophic bacteria (CFU count), MPN, microbial metabolic activity [Biochemical Oxygen Demand and enzymatic activity (leucine aminopeptidase LAP, β-glucosidase BG, alkaline phosphatase AP)] and quali-, quantitative analysis of the composition of total extracted and resolved hydrocarbons and their derivates (TERHCs) were carried out. The microbiological and physiological analysis of marine microbial community found during the three different biostimulation and bioaugmentation assays performed in mesocosms show that the load of crude oil increases total microbial abundance, inhibits the activity of some enzymes such as LAP while stimulates both AP and BG activities. The biodegradation results show that bioaugmentation with A. borkumensis SK2(T) alone is able to produce the highest percentage of degradation (95%) in comparison with the biostimulation treatment (80%) and bioaugmentation using an Alcanivorax-Thalassolituus bacterial consortium (70%). This result highlights the reduced biodegradation capability of the consortium used in this study, suggesting an unfavourable interaction between the two bacterial genera.
Collapse
Affiliation(s)
- Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Giti Emtiazi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Gabriella Caruso
- Istituto per l'Ambiente Marino Costiero (IAMC)-CNR of Messina, Messina, Italy
| | - Simone Cappello
- Istituto per l'Ambiente Marino Costiero (IAMC)-CNR of Messina, Messina, Italy
| |
Collapse
|
30
|
Wei CL, Chao SH, Tsai WB, Lee PS, Tsau NH, Chen JS, Lai WL, Tu JCY, Tsai YC. Analysis of bacterial diversity during the fermentation of inyu, a high-temperature fermented soy sauce, using nested PCR-denaturing gradient gel electrophoresis and the plate count method. Food Microbiol 2013; 33:252-61. [PMID: 23200659 DOI: 10.1016/j.fm.2012.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/14/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
The diversity of bacteria associated with the fermentation of inyu, also known as black soy sauce, was studied through the nested PCR-denaturing gradient gel electrophoresis (DGGE) of samples collected from the fermentation stages of the inyu production process. The DGGE profiles targeted the bacterial 16S rDNA and revealed the presence of Citrobacter farmeri, Enterobacter cloacae, Enterobacter hormaechei, Enterococcus faecium, Klebsiella pneumoniae, Pantoea agglomerans, Salmonella enterica, Serratia marcescens, Staphylococcus sciuri and Weissella confusa. The bacterial compositions of 4 fermented samples were further elucidated using the plate count method. The bacteria isolated from the koji-making stage exhibited the highest diversity; Brachybacterium rhamnosum, E. hormaechei, K. pneumoniae, Kurthia gibsonii, Pantoea dispersa, Staphylococcus gallinarum, Staphylococcus kloosii and S. sciuri were identified. Koji collected during the preincubation stage presented the largest cell counts, and E. hormaechei, K. pneumoniae, E. cloacae and Enterobacter pulveris were identified. In brine samples aged for 7 and 31 days, the majority of the bacteria isolated belonged to 4 Bacillus species, but 4 Staphylococcus species and Delftia tsuruhatensis were also detected. This study demonstrates the benefits of using a combined approach to obtain a more complete picture of microbial populations and provides useful information for the control or development of bacterial flora during inyu fermentation.
Collapse
Affiliation(s)
- Chia-Li Wei
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The pilot study for waste oil removal from oilfields by Acinetobacter johnsonii using a specialized batch bioreactor. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0232-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Jiang Y, Qi H, Zhang X, Chen G. Inorganic impurity removal from waste oil and wash-down water by Acinetobacter johnsonii. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:289-293. [PMID: 23021100 DOI: 10.1016/j.jhazmat.2012.08.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
The removal of the abundant inorganic impurities in waste oil has been one of the most significant issues in waste oil reclamation. Acinetobacter johnsonii isolated from waste oil in aerobic process was employed to remove the inorganic impurities in waste oil and wash-down water. The biological process was developed through the primary mechanism research on the impurity removal and the optimization of the various parameters, such as inoculum type, inoculum volume and disposal temperature and time. The results showed that waste oil and wash-down water were effectively cleansed under the optimized conditions, with inorganic impurity and turbidity below 0.5% and 100 NTU from the initial values of 2% and 300 NTU, respectively. Sulfide, the main hazardous matter during waste oil reclamation, was also reduced within 1mg/L. After the biotreatment, the oil-water interface was clear in favor of its separation to benefit the smooth reclamation of waste oil and wash-down water.
Collapse
Affiliation(s)
- Yan Jiang
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | | | | | | |
Collapse
|
33
|
Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol 2012; 97:329-40. [DOI: 10.1007/s00253-012-4190-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 11/26/2022]
|
34
|
Guan ZB, Zhang ZH, Cao Y, Chen LL, Xie GF, Lu J. Analysis and comparison of bacterial communities in two types of ‘wheatQu’, the starter culture of Shaoxing rice wine, using nested PCR-DGGE. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Guang-Fa Xie
- Key Laboratory of Technology and Equipment for Chinese Rice Wine, Zhejiang Province; China Shaoxing Rice Wine Group Co. Ltd; Shaoxing; 312000; People's Republic of China
| | | |
Collapse
|
35
|
Di Capua C, Bortolotti A, Farías ME, Cortez N. UV-resistant Acinetobacter sp. isolates from Andean wetlands display high catalase activity. FEMS Microbiol Lett 2011; 317:181-9. [DOI: 10.1111/j.1574-6968.2011.02231.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Doughari HJ, Ndakidemi PA, Human IS, Benade S. The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes Environ 2011; 26:101-12. [DOI: 10.1264/jsme2.me10179] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | - Spinney Benade
- Applied Sciences Faculty, Cape Peninsula University of Technology
| |
Collapse
|
37
|
|
38
|
Sachdev D, Nema P, Dhakephalkar P, Zinjarde S, Chopade B. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol Res 2010; 165:627-38. [DOI: 10.1016/j.micres.2009.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/05/2009] [Accepted: 12/13/2009] [Indexed: 10/19/2022]
|
39
|
Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 2010; 105:899-908. [PMID: 19998285 DOI: 10.1002/bit.22616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrolysate was tested as substrate for hydrogen production by extreme thermophilic mixed culture (70 degrees C) in both batch and continuously fed reactors. Hydrogen was produced at hydrolysate concentrations up to 25% (v/v), while no hydrogen was produced at hydrolysate concentration of 30% (v/v), indicating that hydrolysate at high concentrations was inhibiting the hydrogen fermentation process. In addition, the lag phase for hydrogen production was strongly influenced by the hydrolysate concentration, and was prolonged from approximately 11 h at the hydrolysate concentrations below 20% (v/v) to 38 h at the hydrolysate concentration of 25% (v/v). The maximum hydrogen yield as determined in batch assays was 318.4 +/- 5.2 mL-H(2)/g-sugars (14.2 +/- 0.2 mmol-H(2)/g-sugars) at the hydrolysate concentration of 5% (v/v). Continuously fed, and the continuously stirred tank reactor (CSTR), operating at 3 day hydraulic retention time (HRT) and fed with 20% (v/v) hydrolysate could successfully produce hydrogen. The hydrogen yield and production rate were 178.0 +/- 10.1 mL-H(2)/g-sugars (7.9 +/- 0.4 mmol H(2)/g-sugars) and 184.0 +/- 10.7 mL-H(2)/day L(reactor) (8.2 +/- 0.5 mmol-H(2)/day L(reactor)), respectively, corresponding to 12% of the chemical oxygen demand (COD) from sugars. Additionally, it was found that toxic compounds, furfural and hydroxymethylfurfural (HMF), contained in the hydrolysate were effectively degraded in the CSTR, and their concentrations were reduced from 50 and 28 mg/L, respectively, to undetectable concentrations in the effluent. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and CSTR reactors were phylogenetically related to the Caldanaerobacter subteraneus, Thermoanaerobacter subteraneus, and Thermoanaerobacterium thermosaccharolyticum.
Collapse
Affiliation(s)
- Prawit Kongjan
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
40
|
Prevalence of potential bacterial respiratory pathogens in the oral cavity of hospitalised individuals. Arch Oral Biol 2010; 55:21-8. [DOI: 10.1016/j.archoralbio.2009.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
|
41
|
Goldman G, Starosvetsky J, Armon R. Inhibition of biofilm formation on UF membrane by use of specific bacteriophages. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.06.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zhang Y, Marrs CF, Simon C, Xi C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3702-6. [PMID: 19321192 DOI: 10.1016/j.scitotenv.2009.02.013] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/15/2009] [Accepted: 02/09/2009] [Indexed: 05/17/2023]
Abstract
The occurrence and spread of multi-drug resistant bacteria is a pressing public health problem. The emergence of bacterial resistance to antibiotics is common in areas where antibiotics are heavily used, and antibiotic-resistant bacteria also increasingly occur in aquatic environments. The purpose of the present study was to evaluate the impact of the wastewater treatment process on the prevalence of antibiotic resistance in Acinetobacter spp. in the wastewater and its receiving water. During two different events (high-temperature, high-flow, 31 degrees C; and low-temperature, low-flow, 8 degrees C), 366 strains of Acinetobacter spp. were isolated from five different sites, three in a wastewater treatment plant (raw influent, second effluent, and final effluent) and two in the receiving body (upstream and downstream of the treated wastewater discharge point). The antibiotic susceptibility phenotypes were determined by the disc-diffusion method for 8 antibiotics, amoxicillin/clavulanic acid (AMC), chloramphenicol (CHL), ciprofloxacin (CIP), colistin (CL), gentamicin (GM), rifampin (RA), sulfisoxazole (SU), and trimethoprim (TMP). The prevalence of antibiotic resistance in Acinetobacter isolates to AMC, CHL, RA, and multi-drug (three antibiotics or more) significantly increased (p<0.01) from the raw influent samples (AMC, 8.7%; CHL, 25.2%; RA, 63.1%; multi-drug, 33.0%) to the final effluent samples (AMC, 37.9%; CHL, 69.0%; RA, 84.5%; multi-drug, 72.4%), and was significantly higher (p<0.05) in the downstream samples (AMC, 25.8%; CHL, 48.4%; RA, 85.5%; multi-drug, 56.5%) than in the upstream samples (AMC, 9.5%; CHL, 27.0%; RA, 65.1%; multi-drug, 28.6%). These results suggest that wastewater treatment process contributes to the selective increase of antibiotic resistant bacteria and the occurrence of multi-drug resistant bacteria in aquatic environments.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
43
|
Kim TW, Lee JH, Kim SE, Park MH, Chang HC, Kim HY. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int J Food Microbiol 2009; 131:265-71. [PMID: 19324443 DOI: 10.1016/j.ijfoodmicro.2009.03.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/29/2009] [Accepted: 03/01/2009] [Indexed: 11/15/2022]
Abstract
Doenjang is a traditional Korean fermented soybean paste that provides a major source of protein. The microbial diversity of 10 samples of doenjang (5 commercially manufactured products and 5 homemade products) was investigated using nested PCR-denaturing gradient gel electrophoresis (DGGE). In the first step, the nearly complete 16S rRNA and 18S rRNA genes were amplified using universal primers. Subsequently, these products were used as a template in a nested PCR to obtain fragments suitable for DGGE. The bacterial DGGE profile targeting the V3 region of the 16S rRNA gene indicated that lactic acid bacteria such as Leuconostoc mesenteroide, Tetragenococcus halophilus, and Enterococcus faecium were the predominant species. However, bands corresponding to Bacillus species, known to be the main organisms in doenjang, were not detected under the conditions described above. When selective PCR was conducted using a primer specific for Bacillus species, Bacillus subtilis and B. licheniformis were detected in several doenjang samples. In analysis of fungi, Mucor plumbeus, Aspergillus oryzae, and Debaryomyces hansenii were the most common species in the doenjang samples. On the basis of DGGE, a few differences in community structure were found for different samples. Also, cluster analysis of the DGGE profile revealed that the microbial diversity did not differ clearly between commercially manufactured and homemade products. The nested PCR-DGGE technique was used for the first time in this study to asses a microbial community in doenjang and proved to be effective in profiling microbial diversity.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Agrawal A, Lal B. Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 2009; 69:301-12. [PMID: 19527290 DOI: 10.1111/j.1574-6941.2009.00714.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) pose a serious problem to offshore oil industries by producing sulfide, which is highly reactive, corrosive and toxic. The dissimilatory sulfite reductase (dsr) gene encodes for enzyme dissimilatory sulfite reductase and catalyzes the conversion of sulfite to sulfide. Because this gene is required by all sulfate reducers, it is a potential candidate as a functional marker. Denaturing gradient gel electrophoresis fingerprints revealed the presence of considerable genetic diversity in the DNA extracts achieved from production water collected from various oil fields. A quantitative PCR (qPCR) assay was developed for rapid and accurate detection of dsrB in oil field samples. A standard curve was prepared based on a plasmid containing the appropriate dsrB fragment from Desulfomicrobium norvegicum. The quantification range of this assay was six orders of magnitude, from 4.5 x 10(7) to 4.5 x 10(2) copies per reaction. The assay was not influenced by the presence of foreign DNA. This assay was tested against several DNA samples isolated from formation water samples collected from geographically diverse locations of India. The results indicate that this qPCR approach can provide valuable information related to the abundance of the bisulfite reductase gene in harsh environmental samples.
Collapse
|
45
|
Gao L, Yang H, Wang X, Huang Z, Ishii M, Igarashi Y, Cui Z. Rice straw fermentation using lactic acid bacteria. BIORESOURCE TECHNOLOGY 2008; 99:2742-8. [PMID: 17702573 DOI: 10.1016/j.biortech.2007.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 05/16/2023]
Abstract
To efficiently utilize rice straw and lessen its disposal problem on the environment, a lactic acid bacteria community, SFC-2 was developed from natural fermentation products of rice straw by continuous enrichment with the MRS-S broth (MRS broth with sucrose), and used to accelerate the fermentation of air-dried straws. The SFC-2 could rapidly lower the pH of the broth and produce high levels of lactic acid. Using a combination of plate isolation, denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing, the microbial composition of the SFC-2 was classified into Lactobacillus, mainly comprised of L. fermentum, L. plantarum and L. paracacei. An evaluation of the fermentation effect of SFC-2 on rice straw showed that it lowered the pH and significantly (P<0.05) increased lactic acid concentration in the straw. Further analysis with DGGE indicated that L. plantarum, L. fermentum and L. paracasei were the dominant species during fermentation.
Collapse
Affiliation(s)
- Lijuan Gao
- College of Agronomy and Biotechnology, China Agricultural University Beijing 100094, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Vanbroekhoven K, Van Roy S, Gielen C, Maesen M, Ryngaert A, Diels L, Seuntjens P. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 148:759-69. [PMID: 17445959 DOI: 10.1016/j.envpol.2007.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 01/31/2007] [Indexed: 05/15/2023]
Abstract
Two sites representing different aquifer types, i.e., Dommel (sandy) and Flémalle (gravelly loam) along the Meuse River, have been selected to conduct microcosm experiments. Various conditions ranging from aerobic over nitrate- to sulphate reducing were imposed. For the sandy aquifer, nitrate reducing conditions predominated, which specifically in the presence of a carbon source led to pH increases and enhanced Zn removal. For the calcareous gravelly loam, sulphate reduction was dominant resulting in immobilization of both Zn and Cd. For both aquifer types and almost all redox conditions, higher arsenic concentrations were measured in the groundwater. Analyses of different specific microbial populations by polymerase chain reaction (PCR) revealed the dominance of denitrifiers for the Dommel site, while sulfate reducing bacteria (SRB) were the prevailing population for all redox conditions in the Flémalle samples.
Collapse
Affiliation(s)
- K Vanbroekhoven
- VITO, Environmental and Process Technology, Boeretang 200, B-2400 Mol, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Miletto M, Bodelier PLE, Laanbroek HJ. Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. J Microbiol Methods 2007; 70:103-11. [PMID: 17481757 DOI: 10.1016/j.mimet.2007.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 03/22/2007] [Accepted: 03/28/2007] [Indexed: 11/20/2022]
Abstract
In this study we evaluated a high resolution PCR-DGGE strategy for the characterization of complex sulfate-reducing microbial communities inhabiting natural environments. dsrB fragments were amplified with a two-step nested PCR protocol using combinations of primers targeting the dissimilatory (bi)sulfite reductase genes. The PCR-DGGE conditions were initially optimized using a dsrAB clone library obtained from a vegetated intertidal riparian soil along the river Rhine (Rozenburg, the Netherlands). Partial dsrB were successfully amplified from the same environmental DNA extracts used to construct the library, DGGE-separated and directly sequenced. The two approaches were in good agreement: the phylogenetic distribution of clones and DGGE-separated dsrB was comparable, suggesting the presence of sulfate-reducing prokaryotes (SRP) belonging to the families 'Desulfobacteraceae,' 'Desulfobulbaceae' and 'Syntrophobacteraceae,' and to the Desulfomonile tiedjei- and Desulfobacterium anilini-groups. The nested PCR-DGGE was also used to analyze sediment samples (Appels, Belgium) from a series of microcosms subjected to a tidal flooding regime with water of different salinity, and proved to be a valid tool also to monitor the SRP community variation over time and space as a consequence of environmental changes.
Collapse
Affiliation(s)
- Marzia Miletto
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Wetland Ecology, Rijksstraatweg 6, 3631 AC Nieuwersluis, The Netherlands.
| | | | | |
Collapse
|
48
|
Su ZC, Zhang HW, Li XY, Zhang Q, Zhang CG. Toxic effects of acetochlor, methamidophos and their combination on nifH gene in soil. J Environ Sci (China) 2007; 19:864-873. [PMID: 17966876 DOI: 10.1016/s1001-0742(07)60144-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.
Collapse
Affiliation(s)
- Zhen-Cheng Su
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
49
|
Chan OC, Yang X, Fu Y, Feng Z, Sha L, Casper P, Zou X. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 2006; 58:247-59. [PMID: 17064266 DOI: 10.1111/j.1574-6941.2006.00156.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial community structure was studied in humus and mineral soils of evergreen broad-leaved forests in Ailaoshan and Xishuangbanna, representing subtropical and tropical ecosystems, respectively, in south-west China using sequence analysis and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Clone sequences affiliated to Acidobacteria were retrieved as the predominant bacterial phylum in both forest soils, followed by those affiliated to members of the Proteobacteria, Planctomycete and Verrucomicrobia. Despite higher floristic richness at the Xishuangbanna forest than at the Ailaoshan forest, soil at Xishuangbanna harbored a distinctly high relative abundance of Acidobacteria-affiliated sequences (80% of the total clones), which led to a lower overall bacterial diversity than at Ailaoshan. Bacterial communities in humus and mineral soils of the two forests appeared to be well differentiated, based on 16S rRNA gene phylogeny, and correlations were found between the bacterial T-RFLP community patterns and the organic carbon and nutrient contents of the soil samples. The data reveal that Acidobacteria dominate soil bacterial communities in the evergreen broad-leaved forests studied here and suggest that bacterial diversity may be influenced by soil carbon and nutrient levels, but is not related to floristic richness along the climatic gradient from subtropical to tropical forests in south-west China.
Collapse
Affiliation(s)
- On Chim Chan
- Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Department of Forest Ecosystem, Soil Ecology Group, Kunming, Yunnan, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hendrickx B, Dejonghe W, Faber F, Boënne W, Bastiaens L, Verstraete W, Top EM, Springael D. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 2006; 55:262-73. [PMID: 16420634 DOI: 10.1111/j.1574-6941.2005.00018.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
tmoA and related genes encode the alpha-subunit of the hydroxylase component of the major group (subgroup 1 of subfamily 2) of bacterial multicomponent mono-oxygenase enzyme complexes involved in aerobic benzene, toluene, ethylbenzene and xylene (BTEX) degradation. A PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of tmoA-like gene sequences in environmental samples using a newly designed moderately degenerate primer set suitable for that purpose. In 35 BTEX-degrading bacterial strains isolated from a hydrocarbon polluted aquifer, tmoA-like genes were only detected in two o-xylene degraders and were identical to the touA gene of Pseudomonas stutzeri OX1. The diversity of tmoA-like genes was examined in DNA extracts from contaminated and non-contaminated subsurface samples at a site containing a BTEX-contaminated groundwater plume. Differences in DGGE patterns were observed between strongly contaminated, less contaminated and non-contaminated samples and between different depths, suggesting that the diversity of tmoA-like genes was determined by environmental conditions including the contamination level. Phylogenetic analysis of the protein sequences deduced from the amplified amplicons showed that the diversity of TmoA-analogues in the environment is larger than suggested from described TmoA-analogues from cultured isolates, which was translated in the DGGE patterns. Although different positions on the DGGE gel can correspond to closely related TmoA-proteins, relationships could be noticed between the position of tmoA-like amplicons in the DGGE profile and the phylogenetic position of the deduced protein sequence.
Collapse
Affiliation(s)
- Barbara Hendrickx
- Environmental and Process Technology, Flemish Institute for Technological Research (Vito), Mol, Belgium
| | | | | | | | | | | | | | | |
Collapse
|