1
|
Jia W, Huang Y, Jiang T, Deng W, Lin L, Xu M, Jiang J. Rapid screening of indigenous degrading microorganisms for enhancing in-situ bioremediation of organic pollutants-contaminated soil. ENVIRONMENTAL RESEARCH 2024; 263:120154. [PMID: 39414109 DOI: 10.1016/j.envres.2024.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Organic pollutants (OPs) have caused severe environmental contaminations in the world and aroused wide public concern. Autochthonous bioaugmentation (ABA) is considered a reliable bioremediation approach for OPs contamination. However, the rapid screening of indigenous degrading strains from in-situ environments remains a primary challenge for the practical application of ABA. In this study, 3,5,6-Trichloro-2-pyridinol (TCP, an important intermediate in the synthesis of various pesticides) was selected as the target OPs, and DNA stable isotope probing (DNA-SIP) combined with high-throughput sequencing was employed to explore the rapid screening of indigenous degrading microorganisms. The results of DNA-SIP revealed a significant enrichment of OTU557 (Cupriavidus sp.) in the 13C-TCP-labeled heavy DNA fractions, indicating that it is the key strain involved in TCP metabolism. Subsequently, an indigenous TCP degrader, Cupriavidus sp. JL-1, was rapidly isolated from native soil based on the analysis of the metabolic substrate spectrum of Cupriavidus sp. Furthermore, ABA of strain JL-1 demonstrated higher remediation efficacy and stable survival compared to the exogenous TCP-degrading strain Cupriavidus sp. P2 in in-situ TCP-contaminated soil. This study presents a successful case for the rapid acquisition of indigenous TCP-degrading microorganisms to support ABA as a promising strategy for the in-situ bioremediation of TCP-contaminated soil.
Collapse
Affiliation(s)
- Weibin Jia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tianhui Jiang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenfang Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
2
|
Akoijam N, Joshi SR. Bioprospecting acid- and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils. Arch Microbiol 2023; 205:229. [PMID: 37160492 DOI: 10.1007/s00203-023-03567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Widespread use of chemical fertilizers and falling productivity in traditional agricultural practices has led to the biodiversity hotspot of North-Eastern region of India to face imminent threat to soil nutrients and biodiversity. The present work aimed to isolate rhizobacteria from Oryza sativa L. to evaluate their plant growth-promoting traits like indole, ammonia, siderophore production, and phosphate solubilization followed by in vitro plant growth promotion and anti-fungal assessment against Curvularia oryzae. Moreover, presence of heavy metals such as arsenic in chemical fertilizers and in groundwater contributes to arsenic contamination of agricultural soil. Taking this into consideration for the present study, the background metal content of the bulk soil, roots and grains of rice was measured. Arsenic tolerance of the rhizobacterial isolates was assessed using different concentrations of arsenite- and arsenate-supplemented media. 16S rRNA gene sequencing and phylogenetic tree analysis identified the isolates as Bacillus paramycoides, B. albus, B. altitudinis, B. koreensis, B. megaterium, B. wiedmannii, B. paramycoides, Chryseobacterium gleum, Stenotrophomonas maltophilia and Pseudomonas shirazica. Considering the acidic nature of the paddy growing soil, the growth kinetics of the isolates were monitored in acid and arsenic-supplemented conditions for 48 h of growth. Few isolates showed potent anti-fungal activity against the late blight phytopathogen, Curvularia oryzae MTCC 2605, apart from being potential growth promoters. The findings open vistas for the mass production of the characterized PGP rhizobacteria for their application in rehabilitation of the degrading arsenic contaminated paddy fields.
Collapse
Affiliation(s)
- Nirmala Akoijam
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793 022, India
| | - Santa Ram Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793 022, India.
| |
Collapse
|
3
|
Esikova TZ, Anokhina TO, Suzina NE, Shushkova TV, Wu Y, Solyanikova IP. Characterization of a New Pseudomonas Putida Strain Ch2, a Degrader of Toxic Anthropogenic Compounds Epsilon-Caprolactam and Glyphosate. Microorganisms 2023; 11:microorganisms11030650. [PMID: 36985223 PMCID: PMC10053300 DOI: 10.3390/microorganisms11030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
In this work, a new Ch2 strain was isolated from soils polluted by agrochemical production wastes. This strain has a unique ability to utilize toxic synthetic compounds such as epsilon-caprolactam (CAP) as a sole carbon and energy source and the herbicide glyphosate (GP) as a sole source of phosphorus. Analysis of the nucleotide sequence of the 16S rRNA gene of Ch2 revealed that the strain belongs to the species Pseudomonas putida. This strain grew in the mineral medium containing CAP in a concentration range of 0.5 to 5.0 g/L and utilized 6-aminohexanoic acid and adipic acid, which are the intermediate products of CAP catabolism. The ability of strain Ch2 to degrade CAP is determined by a conjugative megaplasmid that is 550 kb in size. When strain Ch2 is cultured in a mineral medium containing GP (500 mg/L), more intensive utilization of the herbicide occurs in the phase of active growth. In the phase of declining growth, there is an accumulation of aminomethylphosphonic acid, which indicates that the C-N bond is the first site cleaved during GP degradation (glyphosate oxidoreductase pathway). Culture growth in the presence of GP during the early step of its degradation is accompanied by unique substrate-dependent changes in the cytoplasm, including the formation of vesicles of cytoplasmic membrane consisting of specific electron-dense content. There is a debate about whether these membrane formations are analogous to metabolosomes, where the primary degradation of the herbicide can take place. The studied strain is notable for its ability to produce polyhydroxyalkanoates (PHAs) when grown in mineral medium containing GP. At the beginning of the stationary growth phase, it was shown that, the amount and size of PHA inclusions in the cells drastically increased; they filled almost the entire volume of cell cytoplasm. The obtained results show that the strain P. putida Ch2 can be successfully used for the PHAs’ production. Moreover, the ability of P. putida Ch2 to degrade CAP and GP determines the prospects of its application for the biological cleanup of CAP production wastes and in situ bioremediation of soil polluted with GP.
Collapse
Affiliation(s)
- Tatiana Z. Esikova
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Tatiana O. Anokhina
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Nataliya E. Suzina
- Laboratory of Cytology of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Tatiana V. Shushkova
- Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
| | - Yonghong Wu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Inna P. Solyanikova
- Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino, 142290 Pushchino, Russia
- Regional Microbiological Center, Institute of Pharmacy, Chemistry and Biology, Belgorod National Research University, 308015 Belgorod, Russia
- Correspondence:
| |
Collapse
|
4
|
Jia W, Li N, Yang T, Dai W, Jiang J, Chen K, Xu X. Bioaugmentation of Atrazine-Contaminated Soil With Paenarthrobacter sp. Strain AT-5 and Its Effect on the Soil Microbiome. Front Microbiol 2021; 12:771463. [PMID: 34956132 PMCID: PMC8692732 DOI: 10.3389/fmicb.2021.771463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Atrazine, a triazine herbicide, is widely used around the world. The residue of atrazine due to its application in the fore-rotating crop maize has caused phytotoxicity to the following crop sweet potato in China. Bioaugmentation of atrazine-contaminated soil with atrazine-degrading strains is considered as the most potential method to remove atrazine from soil. Nevertheless, the feasibility of bioaugmentation and its effect on soil microbiome still need investigation. In this study, Paenarthrobacter sp. AT-5, an atrazine-degrading strain, was inoculated into agricultural soils contaminated with atrazine to investigate the bioaugmentation process and the reassembly of the soil microbiome. It was found that 95.9% of 5 mg kg−1 atrazine was removed from the soils when inoculated with strain AT-5 with 7 days, and the phytotoxicity of sweet potato caused by atrazine was significantly alleviated. qRT-PCR analysis revealed that the inoculated strain AT-5 survived well in the soils and maintained a relatively high abundance. The inoculation of strain AT-5 significantly affected the community structure of the soil microbiome, and the abundances of bacteria associated with atrazine degradation were improved.
Collapse
Affiliation(s)
- Weibin Jia
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ning Li
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tunan Yang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weixian Dai
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Chen
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Andreeva SV, Filippova YY, Devyatova EV, Nokhrin DY. Variability of the structure of winter microbial communities in Chelyabinsk lakes. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.
Collapse
|
6
|
Andreeva SV, Filippova YY, Devyatova EV, Nokhrin DY. Variability of the structure of winter microbial communities in Chelyabinsk lakes. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.
Collapse
|
7
|
Arellano-Caicedo C, Ohlsson P, Bengtsson M, Beech JP, Hammer EC. Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Commun Biol 2021; 4:1226. [PMID: 34702996 PMCID: PMC8548513 DOI: 10.1038/s42003-021-02736-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Microhabitat conditions determine the magnitude and speed of microbial processes but have been challenging to investigate. In this study we used microfluidic devices to determine the effect of the spatial distortion of a pore space on fungal and bacterial growth, interactions, and substrate degradation. The devices contained channels differing in bending angles and order. Sharper angles reduced fungal and bacterial biomass, especially when angles were repeated in the same direction. Substrate degradation was only decreased by sharper angles when fungi and bacteria were grown together. Investigation at the cellular scale suggests that this was caused by fungal habitat modification, since hyphae branched in sharp and repeated turns, blocking the dispersal of bacteria and the substrate. Our results demonstrate how the geometry of microstructures can influence microbial activity. This can be transferable to soil pore spaces, where spatial occlusion and microbial feedback on microstructures is thought to explain organic matter stabilization.
Collapse
Affiliation(s)
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Lund University, Lund, Sweden
| | | |
Collapse
|
8
|
Schito AM, Piatti G, Caviglia D, Zuccari G, Zorzoli A, Marimpietri D, Alfei S. Bactericidal Activity of Non-Cytotoxic Cationic Nanoparticles against Clinically and Environmentally Relevant Pseudomonas spp. Isolates. Pharmaceutics 2021; 13:1411. [PMID: 34575487 PMCID: PMC8465415 DOI: 10.3390/pharmaceutics13091411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
Difficult-to-treat bacterial infections caused by resistant human and plant pathogens severely afflict hospitals, and concern the agri-food sectors. Bacteria from the Pseudomonadaceae family, such as P. aeruginosa, P. putida, P. fluorescens, and P. straminea, can be responsible for severe nosocomial infections in humans. P. fragi is the major cause of dairy and meat spoilage, while P. syringae can infect a wide range of economically important plant species, including tobacco, kiwi, and tomato. Therefore, a cationic water-soluble lysine dendrimer (G5-PDK) was tested on several species of Pseudomonas genus. Interestingly, G5-PDK demonstrated variable minimum inhibitory concentrations (MICs), depending on their pigment production, on Pseudomonas aeruginosa (1.6-> 6.4 µM), MICs = 3.2-6.4 µM on P. putida clinical isolates producing pyoverdine, and very low MICs (0.2-1.6 µM) on strains that produced non-pigmented colonies. Time-kill experiments established the rapid bactericidal activity of G5-PDK. In the cytotoxicity experiments on human keratinocytes, after 4 h of treatment with G5-PDK at concentrations 16-500 × MIC, more than 80% of viable cells were observed, and after 24 h, the selectivity indices were maintained above the maximum value reported as acceptable. Due to its proven bactericidal potency and low cytotoxicity, G5-PDK should be seriously considered to counteract clinically and environmentally relevant Pseudomonas isolates.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.P.); (D.C.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.P.); (D.C.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.P.); (D.C.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (A.Z.); (D.M.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
9
|
Pérez-Rodríguez F, González-Prieto JM, Vera-Núñez JA, Ruiz-Medrano R, Peña-Cabriales JJ, Ruiz-Herrera J. Wide distribution of the Ustilago maydis-bacterium endosymbiosis in naturally infected maize plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1855016. [PMID: 33356903 PMCID: PMC7849723 DOI: 10.1080/15592324.2020.1855016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We have previously described that laboratory strains of Ustilago maydis, a fungal pathogen of maize and its ancestor teosinte, harbor an intracellular bacterium that enables the fungus to fix nitrogen. However, it is not clear whether other strains isolated from nature also harbor endosymbiotic bacteria, and whether these fix nitrogen for its host. In the present study, we isolated U. maydis strains from naturally infected maize. All the isolated strains harbored intracellular bacteria as determined by PCR amplification of the 16S rRNA gene, and some of them showed capacity to fix nitrogen. That these are truly bacterial endosymbionts were shown by the fact that, after thorough treatments with CuSO4 followed by serial incubations with antibiotics, the aforementioned bacterial gene was still amplified in treated fungi. In all, these data support the notion that U. maydis-bacterium endosymbiosis is a general phenomenon in this species.
Collapse
Affiliation(s)
- Fernando Pérez-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| | | | - José Antonio Vera-Núñez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, México
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| |
Collapse
|
10
|
Impact of Inoculation with Pseudomonas aestus CMAA 1215 T on the Non-target Resident Bacterial Community in a Saline Rhizosphere Soil. Curr Microbiol 2020; 78:218-228. [PMID: 33236213 DOI: 10.1007/s00284-020-02285-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
Plant growth reduction caused by osmotic stress, pathogens, and nutrient scarcity can be overcome by inoculation with plant growth-promoting rhizobacteria (PGPR). Knowing the effects of PGPR on the microbial community beyond those on plant growth can bring new options of soil microbiota management. The present study aimed to investigate the effect of inoculation with the newly described Pseudomonas aestus CMAA 1215T [a 1-aminocyclopropane-1-carboxylate (ACC) deaminase and glycine-betaine producer] on the rhizosphere bacterial community of Zea mays in natural (non-salinized) and saline soil. The bacterial community structure was assessed by sequencing the V6-V7 16S ribosomal RNA using the Ion Personal Genome Machine™. The non-metric multidimensional scaling (NMDS) of the OTU profile (ANOSIM P < 0.01) distinguishes all the treatments (with and without inoculation under saline and natural soils). Inoculated samples shared 1234 OTUs with non-inoculated soil. The most abundant classes in all samples were Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Acidobacteriia, Bacteroidia, Thermoleophilia, Verrucomicrobiae, Ktenodobacteria, and Bacilli. The inoculation, on the other hand, caused an increase in the abundance of the genera Bacillus, Bryobacter, Bradyrhizobium, "Candidatus Xiphinematobacter", and "Candidatus Udaeobacter" independent of soil salinization. "Candidatus Udaeobacter" has the largest Mean Decrease in Gini Values with higher abundance on inoculated salted soil. In addition, Pseudomonas inoculation reduced the abundance of Gammaproteobacteria and Phycisphaerae. Understanding how inoculation modifies the bacterial community is essential to manage the rhizospheric microbiome to create a multi-inoculant approach and to understand its effects on ecological function.
Collapse
|
11
|
Bera M, Mukhopadhyay B. Synthesis of the tetrasaccharide repeating unit of the O-antigen from Pseudomonas putida BIM B-1100 having rare D-Quip3NAc. Carbohydr Res 2020; 489:107955. [DOI: 10.1016/j.carres.2020.107955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
|
12
|
Alves J, Dias L, Mateus J, Marques J, Graças D, Ramos R, Seldin L, Henriques I, Silva A, Folador A. Resistome in Lake Bolonha, Brazilian Amazon: Identification of Genes Related to Resistance to Broad-Spectrum Antibiotics. Front Microbiol 2020; 11:67. [PMID: 32117110 PMCID: PMC7010645 DOI: 10.3389/fmicb.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/14/2020] [Indexed: 01/02/2023] Open
Abstract
Resistance to antibiotics is one of the most relevant public health concerns in the world. Aquatic environments play an important role because they are reservoirs for antibiotic resistance genes and antibiotic-resistant strains, contributing to the spread of resistance. The present study investigated the resistome in Lake Bolonha (three sampling sites) in the Amazon region using a metagenomics approach and culture-dependent methods. Whole-metagenome-based results showed that the most abundant phyla were Protobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. The composition of the resistome demonstrated that the genes that confer resistance to β-lactams were prevalent at all sampling sites, followed by genes conferring resistance to aminoglycosides and tetracycline. Acquired genes encoding extended-spectrum β-lactamases (e.g., blaCTX–M) and resistance to carbapenems (e.g., blaIMP and blaVIM) were detected through metagenome analysis. Bacteria were isolated from culture medium supplemented with cefotaxime or imipenem, and isolates were identified and analyzed for their antibiotic susceptibility profiles and resistance genes. In total, 98 bacterial isolates belonging to the genera Pseudomonas (37), Acinetobacter (32), Klebsiella (13), Enterobacter (9), Pantoe (3), Stenotrophomonas (3), and Methylobacterium (1) were obtained. Among isolates, the most abundant genes were blaCTX–M (28.3%), blaSHV (22.6%) and blaTEM (18.8%) in isolates from cefotaxime-supplemented medium and blaVIM (28.8%) and blaIMP (22.2%) in isolates recovered from imipenem-supplemented medium. The genes intl1 and intl2 were detected in 19.3% and 7.1% of isolates. Antibiograms showed that 94.9% (from cefotaxime-supplemented medium) and 85.7% (from imipenem-supplemented medium) of the isolates were multidrug resistant. Besides cefotaxime and imipenem, isolates were mostly resistant to aztreonam (91.8%), amoxicillin (98.8%), ampicillin (82.6%), and nalidixic acid (77.5%). Hence, the present study demonstrates that Lake Bolonha is a reservoir of bacteria resistant to antibiotics and resistance genes, some of which are of critical importance to human health.
Collapse
Affiliation(s)
- Jorianne Alves
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Larissa Dias
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Jackeline Mateus
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Marques
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Diego Graças
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Rommel Ramos
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel Henriques
- Center for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Artur Silva
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Adriana Folador
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| |
Collapse
|
13
|
Pan Y, Pan X, Xiao H, Xiao H. Structural Characteristics and Functional Implications of PM 2.5 Bacterial Communities During Fall in Beijing and Shanghai, China. Front Microbiol 2019; 10:2369. [PMID: 31681228 PMCID: PMC6798152 DOI: 10.3389/fmicb.2019.02369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/30/2019] [Indexed: 11/22/2022] Open
Abstract
Air pollution characterized by fine particulate matter (PM2.5) frequently has occurred in China, and has posed threats to human health. The physiochemical characteristics of airborne PM2.5 have been extensively studied, but its bacterial structures and functions have not yet been well studied. Herein, we focused on the structural characteristics and functional implications of airborne bacteria under different pollution levels in Beijing and Shanghai. The α- and β-diversities showed no obvious difference in two cities (p > 0.05). The dominant phyla Proteobacteria, Firmicutes, and Actinobacteria with total abundance of over 92% were found in all PM2.5 samples. The results of weighted unifrac non-metric multidimensional scaling (NMDS) suggested that air pollution was no obviously correlated with bacterial community but dispersed disorderly. Furthermore, canonical correlation analysis (CCA) and permutation test indicated that NH4+, SO42-, and wind speed were the key factors that associated with airborne bacterial community structure. Chemical components of particulate matter played more important role in structuring bacterial community than meteorological conditions based on the result of partial CCA. In addition, the annotation of metabolic pathway suggested that the predominant genus Pseudomonas was obviously correlated with disease infections. Several dominant species might contribute to organic degradation, nitrogen cycles, and ice-nuclei activities in environments. Overall, this work enhanced our understanding of functions of airborne bacteria and highlighted their potential role in atmospheric chemical progresses.
Collapse
Affiliation(s)
- Yuanyuan Pan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| | - Xianglong Pan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| | - Hongwei Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| | - Huayun Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, China
| |
Collapse
|
14
|
Yin J, Zheng W, Gao Y, Jiang C, Shi H, Diao X, Li S, Chen H, Wang H, Li R, Li A, Xia L, Yin Y, Stewart AF, Zhang Y, Fu J. Single-Stranded DNA-Binding Protein and Exogenous RecBCD Inhibitors Enhance Phage-Derived Homologous Recombination in Pseudomonas. iScience 2019; 14:1-14. [PMID: 30921732 PMCID: PMC6438905 DOI: 10.1016/j.isci.2019.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
The limited efficiency of the available tools for genetic manipulation of Pseudomonas limits fundamental research and utilization of this genus. We explored the properties of a lambda Red-like operon (BAS) from Pseudomonas aeruginosa phage Ab31 and a Rac bacteriophage RecET-like operon (RecTEPsy) from Pseudomonas syringae pv. syringae B728a. Compared with RecTEPsy, the BAS operon was functional at a higher temperature indicating potential to be a generic system for Pseudomonas. Owing to the lack of RecBCD inhibitor in the BAS operon, we added Redγ or Pluγ and found increased recombineering efficiencies in P. aeruginosa and Pseudomonas fluorescens but not in Pseudomonas putida and P. syringae. Overexpression of single-stranded DNA-binding protein enhanced recombineering in several contexts including RecET recombination in E. coli. The utility of these systems was demonstrated by engineering P. aeruginosa genomes to create an attenuated rhamnolipid producer. Our work enhances the potential for functional genomics in Pseudomonas. The BAS operon is a generic recombineering system for Pseudomonas species Single-stranded DNA-binding proteins (SSBs) can stimulate homologous recombination The heterologous gam genes can inhibit RecBCD function in Pseudomonas
Collapse
Affiliation(s)
- Jia Yin
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China; Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, 410081 Changsha, China
| | - Wentao Zheng
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Yunsheng Gao
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Chanjuan Jiang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Hongbo Shi
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Xiaotong Diao
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Shanshan Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Hanna Chen
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, 410081 Changsha, China
| | - Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Ruijuan Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Aiying Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China
| | - Liqiu Xia
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, 410081 Changsha, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, 410081 Changsha, China; Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, 410125 Changsha, China
| | - A Francis Stewart
- Biotechnology Research Center, Center for Molecular and Cellular Bioengineering, Dresden University of Technology, BioInnovationsZentrum, Tatzberg 47-51, 01307 Dresden, Germany.
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China.
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Suzhou Institute of Shandong University, 266235 Qingdao, China.
| |
Collapse
|
15
|
Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Braz J Microbiol 2018; 49:757-769. [PMID: 29866608 PMCID: PMC6175736 DOI: 10.1016/j.bjm.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.
Collapse
|
16
|
Touceda-González M, Prieto-Fernández Á, Renella G, Giagnoni L, Sessitsch A, Brader G, Kumpiene J, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Janssen J, Mench M, Müller I, Neu S, Puschenreiter M, Siebielec G, Vangronsveld J, Kidd PS. Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:237-251. [PMID: 28802993 DOI: 10.1016/j.envpol.2017.07.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
Collapse
Affiliation(s)
- M Touceda-González
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain.
| | - Á Prieto-Fernández
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain
| | - G Renella
- University of Florence, Department of Agrifood Production and Environmental Sciences, P.le delle Cascine 18, I-50144 Florence, Italy
| | - L Giagnoni
- University of Florence, Department of Agrifood Production and Environmental Sciences, P.le delle Cascine 18, I-50144 Florence, Italy
| | - A Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, 3430 Tulln, Austria
| | - G Brader
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, 3430 Tulln, Austria
| | - J Kumpiene
- Luleå University of Technology, Waste Science & Technology, SE-97187 Luleå, Sweden
| | - I Dimitriou
- Swedish University of Agriculture Sciences, Department of Crop Production Ecology, SE-750 07 Uppsala, Sweden
| | - J Eriksson
- Swedish University of Agriculture Sciences, Department of Soil and Environment, SE-750 07 Uppsala, 17, Sweden
| | - W Friesl-Hanl
- AIT Austrian Institute of Technology GmbH, Center for Energy, 3430 Tulln, Austria
| | - R Galazka
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - J Janssen
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan building D, B-3590 Diepenbeek, Belgium
| | - M Mench
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France
| | - I Müller
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - S Neu
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - M Puschenreiter
- University of Natural Resources and Life Sciences Vienna - BOKU, Department of Forest and Soil Sciences, 3430 Tulln, Austria
| | - G Siebielec
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - J Vangronsveld
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan building D, B-3590 Diepenbeek, Belgium
| | - P S Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain
| |
Collapse
|
17
|
Min J, Wang B, Hu X. Effect of inoculation of Burkholderia sp. strain SJ98 on bacterial community dynamics and para-nitrophenol, 3-methyl-4-nitrophenol, and 2-chloro-4-nitrophenol degradation in soil. Sci Rep 2017; 7:5983. [PMID: 28729667 PMCID: PMC5519733 DOI: 10.1038/s41598-017-06436-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
para-Nitrophenol (PNP), 3-methyl-4-nitrophenol (3M4NP), and 2-chloro-4-nitrophenol (2C4NP) are highly toxic compounds that have caused serious environmental issues. We inoculated an artificially contaminated soil with Burkholderia sp. strain SJ98, which has the ability to degrade PNP, 3M4NP, and 2C4NP, and quantified bioremediation. There was accelerated degradation of all nitrophenols in inoculated treatments compared to the un-inoculated treatments. The indigenous bacteria were able to degrade PNP, but not 3M4NP or 2C4NP. Real-time PCR targeting the catabolic gene pnpA showed that levels of strain SJ98 remained stable over the incubation period. High-throughput sequencing revealed that both contamination and bioaugmentation influenced the bacterial community structure. Bioaugmentation seemed to protect Kineosporia, Nitrososphaera, and Schlesneria from nitrophenol inhibition, as well as led to a sharp increase in the abundance of Nonomuraea, Kribbella, and Saccharopolyspora. There was a significant increase in the relative abundances of Thermasporomyces, Actinomadura, and Streptomyces in both contaminated and bioaugmented treatments; this indicated that these bacteria are likely directly related to nitrophenol degradation. To our knowledge, this is the first report of the simultaneous removal of PNP, 3M4NP, and 2C4NP using bioaugmentation. This study provides valuable insights into the bioremediation of soils contaminated with nitrophenols.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Bin Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
| |
Collapse
|
18
|
Oliveira V, Gomes NCM, Santos M, Almeida A, Lillebø AI, Ezequiel J, Serôdio J, Silva AMS, Simões MMQ, Rocha SM, Cunha Â. Effects of the Inoculant Strain Pseudomonas sp. SPN31 nah + and of 2-Methylnaphthalene Contamination on the Rhizosphere and Endosphere Bacterial Communities of Halimione portulacoides. Curr Microbiol 2017; 74:575-583. [DOI: 10.1007/s00284-017-1197-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/08/2017] [Indexed: 01/19/2023]
|
19
|
Touceda-González M, Álvarez-López V, Prieto-Fernández Á, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 186:301-313. [PMID: 27817970 DOI: 10.1016/j.jenvman.2016.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/29/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
(Aided) phytostabilisation has been proposed as a suitable technique to decrease the environmental risks associated with metal(loid)-enriched mine tailings. Field scale evaluations are needed for demonstrating their effectiveness in the medium- to long-term. A field trial was implemented in spring 2011 in Cu-rich mine tailings in the NW of Spain. The tailings were amended with composted municipal solid wastes and planted with Salix spp., Populus nigra L. or Agrostis capillaris L. cv. Highland. Plant growth, nutritive status and metal accumulation, and soil physico- and bio-chemical properties, were monitored over three years (four years for plant growth). The total bacterial community, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae were studied by DGGE of 16s rDNA fragments. Compost amendment improved soil properties such as pH, CEC and fertility, and decreased soil Cu availability, leading to the establishment of a healthy vegetation cover. Both compost-amendment and plant root activity stimulated soil enzyme activities and induced important shifts in the bacterial community structure over time. The woody plant, S. viminalis, and the grassy species, A. capillaris, showed the best results in terms of plant growth and biomass production. The beneficial effects of the phytostabilisation process were maintained at least three years after treatment.
Collapse
Affiliation(s)
- M Touceda-González
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - V Álvarez-López
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - Á Prieto-Fernández
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - B Rodríguez-Garrido
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - C Trasar-Cepeda
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - M Mench
- BIOGECO, UMR INRA 1202, Université de Bordeaux, allée G. St Hilaire, CS50023, F-33615 Pessac cedex, France
| | - M Puschenreiter
- University of Natural Resources and Life Sciences, Department of Forest- and Soil Sciences, Konrad Lorenzstraße 24, A-3430 Tulln, Austria
| | - C Quintela-Sabarís
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain
| | - F Macías-García
- Centro de Valorización Ambiental del Norte, S.L., Lugar La Mina, s/n. 15822, Touro, A Coruña, Spain
| | - P S Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain.
| |
Collapse
|
20
|
Pinto AP, Rodrigues SC, Caldeira AT, Teixeira DM. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1372-1381. [PMID: 26479911 DOI: 10.1016/j.scitotenv.2015.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
An approach to reduce the contamination of water sources with pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively.. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process, working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the early stages.
Collapse
Affiliation(s)
- A P Pinto
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, Évora University, Portugal.
| | - S C Rodrigues
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A T Caldeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| | - D M Teixeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| |
Collapse
|
21
|
Dealtry S, Nour EH, Holmsgaard PN, Ding GC, Weichelt V, Dunon V, Heuer H, Hansen LH, Sørensen SJ, Springael D, Smalla K. Exploring the complex response to linuron of bacterial communities from biopurification systems by means of cultivation-independent methods. FEMS Microbiol Ecol 2015; 92:fiv157. [DOI: 10.1093/femsec/fiv157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 02/03/2023] Open
|
22
|
Yim B, Winkelmann T, Ding GC, Smalla K. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis - contribution to improved aboveground apple plant growth? Front Microbiol 2015; 6:1224. [PMID: 26635733 PMCID: PMC4654428 DOI: 10.3389/fmicb.2015.01224] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.
Collapse
Affiliation(s)
- Bunlong Yim
- Section of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz Universität Hannover Hannover, Germany
| | - Traud Winkelmann
- Section of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz Universität Hannover Hannover, Germany
| | - Guo-Chun Ding
- College of Resources and Environmental Sciences, China Agricultural University Beijing, China ; Beijing Key Laboratory of Biodiversity and Organic farming, China Agricultural University Beijing, China
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants Braunschweig, Germany
| |
Collapse
|
23
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Ruiz-Herrera J, León-Ramírez C, Vera-Nuñez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. THE NEW PHYTOLOGIST 2015; 207:769-777. [PMID: 25754368 DOI: 10.1111/nph.13359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
We observed that the maize pathogenic fungus Ustilago maydis grew in nitrogen (N)-free media at a rate similar to that observed in media containing ammonium nitrate, suggesting that it was able to fix atmospheric N2 . Because only prokaryotic organisms have the capacity to reduce N2 , we entertained the possibility that U. maydis was associated with an intracellular bacterium. The presence of nitrogenase in the fungus was analyzed by acetylene reduction, and capacity to fix N2 by use of (15) N2 . Presence of an intracellular N2 -fixing bacterium was analyzed by PCR amplification of bacterial 16S rRNA and nifH genes, and by microscopic observations. Nitrogenase activity and (15) N incorporation into the cells proved that U. maydis fixed N2 . Light and electron microscopy, and fluorescence in situ hybridization (FISH) experiments revealed the presence of intracellular bacteria related to Bacillus pumilus, as evidenced by sequencing of the PCR-amplified fragments. These observations reveal for the first time the existence of an endosymbiotic N2 -fixing association involving a fungus and a bacterium.
Collapse
Affiliation(s)
- José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Claudia León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Antonio Vera-Nuñez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Alejandro Sánchez-Arreguín
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Unidad Zacatenco, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Holjes Salgado-Lugo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Juan José Peña-Cabriales
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| |
Collapse
|
25
|
Abstract
Pseudomonas putida strain SJ3, which possesses caprolactam-degrading ability, was isolated from dyeing industry wastewater in Daegu, Republic of Korea. Here, we describe the draft genome sequence and annotation of the strain. The 5,596,765-bp-long genome contains 4,293 protein-coding genes and 68 RNA genes with 61.70% G+C content.
Collapse
|
26
|
Felux AK, Franchini P, Schleheck D. Permanent draft genome sequence of sulfoquinovose-degrading Pseudomonas putida strain SQ1. Stand Genomic Sci 2015; 10:42. [PMID: 27408681 PMCID: PMC4940961 DOI: 10.1186/s40793-015-0033-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas putida SQ1 was isolated for its ability to utilize the plant sugar sulfoquinovose (6-deoxy-6-sulfoglucose) for growth, in order to define its SQ-degradation pathway and the enzymes and genes involved. Here we describe the features of the organism, together with its draft genome sequence and annotation. The draft genome comprises 5,328,888 bp and is predicted to encode 5,824 protein-coding genes; the overall G + C content is 61.58 %. The genome annotation is being used for identification of proteins that might be involved in SQ degradation by peptide fingerprinting-mass spectrometry.
Collapse
Affiliation(s)
- Ann-Katrin Felux
- />Department of Biology, University of Konstanz, Konstanz, Germany
- />Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- />Department of Biology, University of Konstanz, Konstanz, Germany
- />Genomics Center Konstanz, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- />Department of Biology, University of Konstanz, Konstanz, Germany
- />Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
27
|
Isolation of NDM-1-producing multidrug-resistant Pseudomonas putida from a paediatric case of acute gastroenteritis, India. New Microbes New Infect 2015; 5:5-9. [PMID: 25893095 PMCID: PMC4398820 DOI: 10.1016/j.nmni.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/06/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas putida is an uncommon opportunistic pathogen, usually susceptible to antimicrobial agents. Data concerning resistance to antimicrobial agents in clinical P. putida isolates are limited. To the best of our knowledge we report for the first time the isolation of NDM-1-producing multidrug-resistant P. putida from a case of acute gastroenteritis. The isolate showed resistance to a wide range of antimicrobials, including fluoroquinolones, third-generation cephalosporins and carbapenems. The isolate also exhibited multiple mutations in the quinolone resistance determining region and showed the presence of qepA, bla TEM , bla OXA1 and bla OXA7 genes. The present study highlights the importance of looking for the relatively rare aetiological agents in clinical samples that do not yield common pathogens.
Collapse
|
28
|
Role of RNase on microbial community analysis in the rice and wheat plants soil by 16S rDNA-DGGE. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s12892-014-0071-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Schreiter S, Sandmann M, Smalla K, Grosch R. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS One 2014; 9:e103726. [PMID: 25099168 PMCID: PMC4123886 DOI: 10.1371/journal.pone.0103726] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6) colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected the bottom rot disease severity.
Collapse
Affiliation(s)
- Susanne Schreiter
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Department Plant Health, Großbeeren, Germany
| | - Martin Sandmann
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Department Plant Health, Großbeeren, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V., Department Plant Health, Großbeeren, Germany
| |
Collapse
|
30
|
Marques JM, da Silva TF, Vollu RE, Blank AF, Ding GC, Seldin L, Smalla K. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 2014; 88:424-35. [PMID: 24597529 DOI: 10.1111/1574-6941.12313] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/21/2014] [Accepted: 02/23/2014] [Indexed: 11/30/2022] Open
Abstract
The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere. Pyrosequencing analysis showed that the IPB-149 and IPB-052 (both with high starch content) displayed similar bacterial composition in the tuber rhizosphere, while IPB-137 with the lowest starch content was distinct. In comparison with bulk soil, higher 16S rRNA gene copy numbers (qPCR) and numerous genera with significantly increased abundance in the tuber rhizosphere of IPB-137 (Sphingobium, Pseudomonas, Acinetobacter, Stenotrophomonas, Chryseobacterium) indicated a stronger rhizosphere effect. The genus Bacillus was strongly enriched in the tuber rhizosphere samples of all sweet potato genotypes studied, while other genera showed a plant genotype-dependent abundance. This is the first report on the molecular identification of bacteria being associated with the tuber rhizosphere of different sweet potato genotypes.
Collapse
Affiliation(s)
- Joana M Marques
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Reis I, Almeida CMR, Magalhães CM, Cochofel J, Guedes P, Basto MCP, Bordalo AA, Mucha AP. Bioremediation potential of microorganisms from a sandy beach affected by a major oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3634-3645. [PMID: 24271736 DOI: 10.1007/s11356-013-2365-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
The aim of this work was to evaluate the bioremediation potential of microorganisms from intertidal sediments of a sandy beach affected by a major oil spill 7 years before and subject to chronic petroleum contamination since then. For that, the response of microorganisms to a new oil contamination was assessed in terms of community structure, abundance, and capacity to degrade hydrocarbons. Experiments were carried out under laboratory-controlled conditions by mixing sediment with crude oil with three different nitrogen supplementations in 50 ml serum bottles under constant shake for 15 days. Autochthonous microorganisms were able to respond to the new oil contamination by increasing their abundance (quantified by DAPI) and changing the community structure (evaluated by DGGE). This response was particularly clear for some specific bacterial groups such as Pseudomonas, Actinomycetales, and Betaproteobacteria. These communities presented an important potential for hydrocarbon degradation (up to 85 % for TPHs and 70 % for total PAHs), being the biodegradation stimulated by addition of an appropriate amount of nitrogen.
Collapse
Affiliation(s)
- Izabela Reis
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nunes OC, Lopes AR, Manaia CM. Microbial degradation of the herbicide molinate by defined cultures and in the environment. Appl Microbiol Biotechnol 2013; 97:10275-91. [DOI: 10.1007/s00253-013-5316-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
|
33
|
Wang F, Fekete A, Harir M, Chen X, Dörfler U, Rothballer M, Jiang X, Schmitt-Kopplin P, Schroll R. Soil remediation with a microbial community established on a carrier: strong hints for microbial communication during 1,2,4-Trichlorobenzene degradation. CHEMOSPHERE 2013; 92:1403-1409. [PMID: 23601124 DOI: 10.1016/j.chemosphere.2013.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
The objective of the present study was to get more insight into the mechanisms that govern the high mineralization potential of a microbial community attached on a carrier material, as we found in an earlier study (Wang et al., 2010). A 1,2,4-Trichlorobenzene (1,2,4-TCB) degrading microbial community - attached (MCCP) and non-attached (MCLM) on clay particles - was inoculated into a simplified mineral medium system. Signaling molecules (AHLs), cell growth and 1,2,4-TCB mineralization were measured at different sampling points. The production of AHLs in the MCCP system increased continuously with increasing key degrader (Bordetella sp.) cell growth and a positive correlation was observed between the production of AHLs and 1,2,4-TCB mineralization. In the MCLM system, however, 1,2,4-TCB mineralization was lower than in the MCCP system; the AHLs production per Bordetella cell was higher than in MCCP and there was no correlation between AHLs and mineralization. Moreover, in the MCCP system less different AHLs were produced than in the MCLM system. These results indicate that a microbial community attached on a carrier material has an advantage over a non-attached community: it produces signaling molecules with much less energy and effort to achieve a well-directed cell-to-cell communication resulting in a high and effective mineralization.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Prabhakar A, Bishop AH. Comparative studies to assess bacterial communities on the clover phylloplane using MLST, DGGE and T-RFLP. World J Microbiol Biotechnol 2013; 30:153-61. [DOI: 10.1007/s11274-013-1434-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/10/2013] [Indexed: 11/28/2022]
|
35
|
Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 2013; 79:4493-5. [PMID: 23645194 DOI: 10.1128/aem.01133-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food.
Collapse
|
36
|
Mello A, Ding GC, Piceno YM, Napoli C, Tom LM, DeSantis TZ, Andersen GL, Smalla K, Bonfante P. Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS One 2013; 8:e61945. [PMID: 23667413 PMCID: PMC3640031 DOI: 10.1371/journal.pone.0061945] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The development of Tuber melanosporum mycorrhizal symbiosis is associated with the production of an area devoid of vegetation (commonly referred to by the French word 'brûlé') around the symbiotic plants and where the fruiting bodies of T. melanosporum are usually collected. The extent of the ecological impact of such an area is still being discovered. While the relationship between T. melanosporum and the other fungi present in the brûlé has been assessed, no data are available on the relationship between this fungus and the bacteria inhabiting the brûlé. METHODOLOGY/PRINCIPAL FINDINGS We used DGGE and DNA microarrays of 16S rRNA gene fragments to compare the bacterial and archaeal communities inside and outside of truffle brûlés. Soil samples were collected in 2008 from four productive T. melanosporum/Quercus pubescens truffle-grounds located in Cahors, France, showing characteristic truffle brûlé. All the samples were analyzed by DGGE and one truffle-ground was analyzed also using phylogenetic microarrays. DGGE profiles showed differences in the bacterial community composition, and the microarrays revealed a few differences in relative richness between the brûlé interior and exterior zones, as well as differences in the relative abundance of several taxa. CONCLUSIONS/SIGNIFICANCE The different signal intensities we have measured for members of bacteria and archaea inside versus outside the brûlé are the first demonstration, to our knowledge, that not only fungal communities, but also other microorganisms are affected by T. melanosporum. Firmicutes (e.g., Bacillus), several genera of Actinobacteria, and a few Cyanobacteria had greater representation inside the brûlé compared with outside, whereas Pseudomonas and several genera within the class Flavobacteriaceae had higher relative abundances outside the brûlé. The findings from this study may contribute to future searches for microbial bio-indicators of brûlés.
Collapse
|
37
|
Panov AV, Esikova TZ, Sokolov SL, Kosheleva IA, Boronin AM. Influence of soil pollution on the composition of a microbial community. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Ding GC, Piceno YM, Heuer H, Weinert N, Dohrmann AB, Carrillo A, Andersen GL, Castellanos T, Tebbe CC, Smalla K. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem. PLoS One 2013; 8:e59497. [PMID: 23527207 PMCID: PMC3603937 DOI: 10.1371/journal.pone.0059497] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years) of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE) analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes) correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.
Collapse
Affiliation(s)
- Guo-Chun Ding
- Institute for Epidemiology and Pathogen Diagnostics - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Yvette M. Piceno
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Nicole Weinert
- Institute for Epidemiology and Pathogen Diagnostics - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Anja B. Dohrmann
- Institute for Biodiversity, Johann Heinrich von Thünen-Institut (TI), Braunschweig, Germany
| | - Angel Carrillo
- Centro de Investigaciones biologicas del Noroeste, S.C. La Paz, Mexico
| | - Gary L. Andersen
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | | | - Christoph C. Tebbe
- Institute for Biodiversity, Johann Heinrich von Thünen-Institut (TI), Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
39
|
Ding GC, Pronk GJ, Babin D, Heuer H, Heister K, Kögel-Knabner I, Smalla K. Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiol Ecol 2013; 86:15-25. [DOI: 10.1111/1574-6941.12070] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/17/2012] [Accepted: 12/27/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Guo-Chun Ding
- Julius Kühn-Institut (JKI); Federal Research Centre for Cultivated Plants; Braunschweig; Germany
| | | | - Doreen Babin
- Julius Kühn-Institut (JKI); Federal Research Centre for Cultivated Plants; Braunschweig; Germany
| | - Holger Heuer
- Julius Kühn-Institut (JKI); Federal Research Centre for Cultivated Plants; Braunschweig; Germany
| | - Katja Heister
- Lehrstuhl für Bodenkunde; Technische Universität München; Freising-Weihenstephan; Germany
| | | | - Kornelia Smalla
- Julius Kühn-Institut (JKI); Federal Research Centre for Cultivated Plants; Braunschweig; Germany
| |
Collapse
|
40
|
Chi XQ, Zhang JJ, Zhao S, Zhou NY. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:33-41. [PMID: 22982551 DOI: 10.1016/j.envpol.2012.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/25/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
A consortium consisting of para-nitrophenol utilizer Pseudomonas sp. strain WBC-3, meta-nitrophenol utilizer Cupriavidus necator JMP134 and ortho-nitrophenol utilizer Alcaligenes sp. strain NyZ215 was inoculated into soil contaminated with three nitrophenol isomers for bioaugmentation. Accelerated removal of all nitrophenols was achieved in inoculated soils compared to un-inoculated soils, with complete removal of nitrophenols in inoculated soils occurring between 2 and 16 days. Real-time polymerase chain reaction (PCR) targeting nitrophenol-degradation functional genes indicated that the three strains survived and were stable over the course of the incubation period. The abundance of total indigenous bacteria (measured by 16S rRNA gene real-time PCR) was slightly negatively impacted by the nitrophenol contamination. Denaturing gradient gel electrophoresis profiles of total and group-specific indigenous community suggested a dynamic change in species richness occurred during the bioaugmentation process. Furthermore, Pareto-Lorenz curves and Community organization parameters indicated that the bioaugmentation process had little impact on species evenness within the microbial community.
Collapse
Affiliation(s)
- Xiang-Qun Chi
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
41
|
Ding GC, Heuer H, Smalla K. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbiol 2012; 3:290. [PMID: 22934091 PMCID: PMC3423926 DOI: 10.3389/fmicb.2012.00290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH). Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21, and 63 were analyzed based on PCR-amplified 16S rRNA gene fragments. Denaturing gradient gel electrophoresis (DGGE) fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta-, or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.
Collapse
Affiliation(s)
- Guo-Chun Ding
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants Braunschweig, Germany
| | | | | |
Collapse
|
42
|
Ding GC, Heuer H, He Z, Xie J, Zhou J, Smalla K. More functional genes and convergent overall functional patterns detected by geochip in phenanthrene-spiked soils. FEMS Microbiol Ecol 2012; 82:148-56. [DOI: 10.1111/j.1574-6941.2012.01413.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Guo-Chun Ding
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Holger Heuer
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Zhili He
- Institute for Environmental Genomics and Department of Botany and Microbiology; University of Oklahoma; Norman; OK; USA
| | - Jianping Xie
- Institute for Environmental Genomics and Department of Botany and Microbiology; University of Oklahoma; Norman; OK; USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Botany and Microbiology; University of Oklahoma; Norman; OK; USA
| | - Kornelia Smalla
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| |
Collapse
|
43
|
Molinate biodegradation in soils: natural attenuation versus bioaugmentation. Appl Microbiol Biotechnol 2012; 97:2691-700. [PMID: 22543452 DOI: 10.1007/s00253-012-4096-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
The aims of the present study were to assess the potential of natural attenuation or bioaugmentation to reduce soil molinate contamination in paddy field soils and the impact of these bioremediation strategies on the composition of soil indigenous microbiota. A molinate mineralizing culture (mixed culture DC) was used as inoculum in the bioaugmentation assays. Significantly higher removal of molinate was observed in bioaugmentation than in natural attenuation microcosms (63 and 39 %, respectively) after 42 days of incubation at 22 °C. In the bioaugmentation assays, the impact of Gulosibacter molinativorax ON4(T) on molinate depletion was observed since the gene encoding the enzyme responsible for the initial molinate breakdown (harboured by that actinobacterium) was only detected in inoculated microcosms. Nevertheless, the exogenous mixed culture DC did not overgrow as the heterotrophic counts of the bioaugmentation microcosms were not significantly different from those of natural attenuation and controls. Moreover, the actinobacterial clone libraries generated from the bioaugmentation microcosms did not include any 16S rRNA gene sequences with significant similarity to that of G. molinativorax ON4(T). The multivariate analysis of the 16S rRNA DGGE patterns of the soil microcosm suggested that the activity of mixed culture DC did not affect the soil bacterial community structure since the DGGE patterns of the bioaugmentation microcosms clustered with those of natural attenuation and controls. Although both bioremediation approaches removed molinate without indigenous microbiota perturbation, the results suggested that bioaugmentation with mixed culture DC was more effective to treat soils contaminated with molinate.
Collapse
|
44
|
Xue QY, Ding GC, Li SM, Yang Y, Lan CZ, Guo JH, Smalla K. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains – an improved strategy for selecting biocontrol agents. Appl Microbiol Biotechnol 2012; 97:1361-71. [DOI: 10.1007/s00253-012-4021-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/01/2022]
|
45
|
Zhang J, Lin X, Liu W, Wang Y, Zeng J, Chen H. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils. J Environ Sci (China) 2012; 24:1476-1482. [PMID: 23513690 DOI: 10.1016/s1001-0742(11)60951-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effectiveness of in-situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) may be inhibited by low nutrients and organic carbon. To evaluate the effect of organic wastes on the PAHs removal efficiency of a plant-microbe remediation system, contaminated agricultural soils were amended with different dosages of sewage sludge (SS) and cattle manure (CM) in the presence of alfalfa (Medicago sativa L.) and PAHs-degraders (Bacillus sp. and Flavobacterium sp.). The results indicated that the alfalfa mean biomasses varied from 0.56 to 2.23 g/pot in root dry weight and from 1.80 to 4.88 g/pot in shoot dry weight. Low dose amendments, with rates of SS at 0.1% and CM at 1%, had prominent effects on plant growth and soil PAHs degradation. After 60-day incubation, compared with about 5.6% in the control, 25.8% PAHs removal was observed for treatments in the presence of alfalfa and PAHs-degraders; furthermore, when amended with different dosages of SS and CM, the removed PAHs from soils increased by 35.5%-44.9% and 25.5%-42.3%, respectively. In particular, the degradation of high-molecular-weight PAHs was up to 42.4%. Dehydrogenase activities (DH) ranged between 0.41 and 1.83 microg triphenylformazan/(g dry soil x hr) and the numbers of PAHs-degrading microbes (PDM) ranged from 1.14 x 10(6) to 16.6 x 10(6) most-probable-number/g dry soil. Further investigation of the underlying microbial mechanism revealed that both DH and PDM were stimulated by the addition of organic wastes and significantly correlated with the removal ratio of PAHs. In conclusion, the effect of organic waste application on soil PAHs removal to a great extent is dependent on the interactional effect of nutrients and dissolved organic matter in organic waste and soil microorganisms.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | | | | | |
Collapse
|
46
|
Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2011; 2:589. [DOI: 10.1038/ncomms1597] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/16/2011] [Indexed: 11/08/2022] Open
|
47
|
Inoue D, Yamazaki Y, Tsutsui H, Sei K, Soda S, Fujita M, Ike M. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community. Biodegradation 2011; 23:263-76. [DOI: 10.1007/s10532-011-9505-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/06/2011] [Indexed: 10/17/2022]
|
48
|
Akhmetov LI, Filonov AE, Puntus IF, Kosheleva IA, Nechaeva IA, Yonge DR, Petersen JN, Boronin AM. Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261708010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME JOURNAL 2010; 5:403-13. [PMID: 20861922 DOI: 10.1038/ismej.2010.142] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.
Collapse
|
50
|
Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010. [DOI: 10.1111/j.1574-6941.2010.00962.x 276-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|