1
|
Bank NC, Singh V, McCourt B, Burberry A, Roberts KD, Grubb B, Rodriguez-Palacios A. Antigenic operon fragmentation and diversification mechanism in Bacteroidota impacts gut metagenomics and pathobionts in Crohn's disease microlesions. Gut Microbes 2024; 16:2350150. [PMID: 38841888 PMCID: PMC11164228 DOI: 10.1080/19490976.2024.2350150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.
Collapse
Affiliation(s)
- Nicholas C. Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D. Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Bank NC, Singh V, Grubb B, McCourt B, Burberry A, Roberts KD, Rodriguez-Palacios A. The basis of antigenic operon fragmentation in Bacteroidota and commensalism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543472. [PMID: 37398285 PMCID: PMC10312583 DOI: 10.1101/2023.06.02.543472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism within the phylum Bacteroidota remain unclear (1, 2). Using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification (3), we characterized the architecture/conservancy of the entire rfb operon in Bacteroidota. Analyzing complete genomes, we discovered that most Bacteroidota have the rfb operon fragmented into non-random gene-singlets and/or doublets/triplets, termed 'minioperons'. To reflect global operon integrity, duplication, and fragmentation principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in specific micro-niches. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes (4). DNA insertions overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based pathway inference and overestimating 'extra-species' abundance. Using bacteria from inflammatory gut-wall cavernous micro-tracts (CavFT) in Crohn's Disease (5), we illustrate that bacteria with supernumerary-fragmented operons cannot produce O-antigen, and that commensal/CavFT Bacteroidota stimulate macrophages with lower potency than Enterobacteriaceae, and do not induce peritonitis in mice. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism offers potential for novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nicholas C Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Hassan AA, Maldonado RF, Dos Santos SC, Di Lorenzo F, Silipo A, Coutinho CP, Cooper VS, Molinaro A, Valvano MA, Sá-Correia I. Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Front Microbiol 2017. [PMID: 28642745 PMCID: PMC5462993 DOI: 10.3389/fmicb.2017.01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen associated with chronic lung infections and increased risk of death in patients with cystic fibrosis (CF). In this work, we investigated the lipopolysaccharide (LPS) of clinical variants of B. cenocepacia that were collected from a CF patient over a period of 3.5 years, from the onset of infection until death by necrotizing pneumonia (cepacia syndrome). We report the chemical structure of the LPS molecule of various sequential isolates and the identification of a novel hybrid O-antigen (OAg) biosynthetic cluster. The OAg repeating unit of the LPS from IST439, the initial isolate, is a [→2)-β-D-Ribf-(1→4)-α-D-GalpNAc-(1→] disaccharide, which was not previously described in B. cenocepacia. The IST439 OAg biosynthetic gene cluster contains 7 of 23 genes that are closely homologous to genes found in B. multivorans, another member of the Burkholderia cepacia complex. None of the subsequent isolates expressed OAg. Genomic sequencing of these isolates enabled the identification of mutations within the OAg cluster, but none of these mutations could be associated with the loss of OAg. This study provides support to the notion that OAg LPS modifications are an important factor in the adaptation of B. cenocepacia to chronic infection and that the heterogeneity of OAgs relates to variation within the OAg gene cluster, indicating that the gene cluster might have been assembled through multiple horizontal transmission events.
Collapse
Affiliation(s)
- A A Hassan
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Rita F Maldonado
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Sandra C Dos Santos
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Carla P Coutinho
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PittsburghPA, United States
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University BelfastBelfast, United Kingdom
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
4
|
Senchenkova SN, Zhang Y, Perepelov AV, Guo X, Shashkov AS, Liu B, Knirel YA. Structure and Biosynthesis Gene Cluster of the O-Antigen of Escherichia coli O12. BIOCHEMISTRY (MOSCOW) 2017; 81:401-6. [PMID: 27293097 DOI: 10.1134/s0006297916040106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and two-dimensional (1)H and (13)C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-d-Glcp-(1→6)-α-d-GlcpNAc-(1→3)-α-l-FucpNAc-(1→3)-β-d-GlcpNAc-(1→. The →4)-β-d-GlcpA-(1→4)-α-d-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.
Collapse
Affiliation(s)
- S N Senchenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016; 40:480-93. [PMID: 27075488 PMCID: PMC4931227 DOI: 10.1093/femsre/fuw007] [Citation(s) in RCA: 436] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Collapse
Affiliation(s)
- Rita F. Maldonado
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Miguel A. Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
6
|
Kenyon JJ, Hall RM. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS One 2013; 8:e62160. [PMID: 23614028 PMCID: PMC3628348 DOI: 10.1371/journal.pone.0062160] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/19/2013] [Indexed: 01/16/2023] Open
Abstract
Extracellular polysaccharides are major immunogenic components of the bacterial cell envelope. However, little is known about their biosynthesis in the genus Acinetobacter, which includes A. baumannii, an important nosocomial pathogen. Whether Acinetobacter sp. produce a capsule or a lipopolysaccharide carrying an O antigen or both is not resolved. To explore these issues, genes involved in the synthesis of complex polysaccharides were located in 10 complete A. baumannii genome sequences, and the function of each of their products was predicted via comparison to enzymes with a known function. The absence of a gene encoding a WaaL ligase, required to link the carbohydrate polymer to the lipid A-core oligosaccharide (lipooligosaccharide) forming lipopolysaccharide, suggests that only a capsule is produced. Nine distinct arrangements of a large capsule biosynthesis locus, designated KL1 to KL9, were found in the genomes. Three forms of a second, smaller variable locus, likely to be required for synthesis of the outer core of the lipid A-core moiety, were designated OCL1 to OCL3 and also annotated. Each K locus includes genes for capsule export as well as genes for synthesis of activated sugar precursors, and for glycosyltransfer, glycan modification and oligosaccharide repeat-unit processing. The K loci all include the export genes at one end and genes for synthesis of common sugar precursors at the other, with a highly variable region that includes the remaining genes in between. Five different capsule loci, KL2, KL6, KL7, KL8 and KL9 were detected in multiply antibiotic resistant isolates belonging to global clone 2, and two other loci, KL1 and KL4, in global clone 1. This indicates that this region is being substituted repeatedly in multiply antibiotic resistant isolates from these clones.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
7
|
Abstract
Lipopolysaccharide on the surface of Escherichia coli constitutes the O antigens which are important virulence factors that are targets of both the innate and adaptive immune systems and play a major role in host-pathogen interactions. O antigens are responsible for antigenic specificity of the strain and determine the O serogroup. The designation of O serogroups is important for classifying E. coli strains, for epidemiological studies, in tracing the source of outbreaks of gastrointestinal or other illness, and for linking the source to the infection. For conventional serogroup identification, serotyping by agglutination reactions against antisera developed for each of the O serogroups has been used. In the last decade, many O-antigen gene clusters that encode for the enzymes responsible for the synthesis of the variable oligosaccharide region on the surface of the bacteria have been sequenced and characterized. Unique gene sequences within the O-antigen gene clusters have been targeted for identification and detection of many O groups using the polymerase chain reaction and microarrays. This review summarizes current knowledge on the DNA sequences of the O-antigen gene clusters, genetic-based methods for O-group determination and detection of pathogenic E. coli based on O-antigen and virulence gene detection, and provides perspectives on future developments in the field.
Collapse
|
8
|
Claus H, Stummeyer K, Batzilla J, Mühlenhoff M, Vogel U. Amino acid 310 determines the donor substrate specificity of serogroup W-135 and Y capsule polymerases of Neisseria meningitidis. Mol Microbiol 2008; 71:960-71. [PMID: 19170877 DOI: 10.1111/j.1365-2958.2008.06580.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The capsular polysaccharides of serogroup W-135 and Y meningococci are sialic acid-containing heteropolymers, with either galactose or glucose as the second sugar residue. As shown previously, sequences of the predicted enzymes that catalyse capsule polymerization, i.e. SiaD(W-135) and SiaD(Y), differ in only a few amino acids. By in vitro assays with purified recombinant proteins, SiaD(W-135) and SiaD(Y) were now confirmed to be the capsule polymerases harbouring both hexosyltransferase and sialyltransferase activity. In order to identify amino acids crucial for substrate specificity of the capsule polymerases, polymorphic sites were narrowed down by DNA sequence comparisons and subsequent site-directed mutagenesis. Serogroup-specific amino acids were restricted to the N-terminal part of the proteins. Exclusively amino acid 310, located within the nucleotide recognition domain of the enzymes' predicted hexosyltransferase moiety, accounted for substrate specificity as shown by immunochemistry and in vitro activity assay. Pro-310 determined galactosyltransferase activity that resulted in a serogroup W-135 capsule and Gly-310 determined glucosyltransferase activity that resulted in a serogroup Y capsule. In silico analysis revealed a similar amino acid-based association in other members of the same glycosyltransferase family irrespective of the bacterial species.
Collapse
Affiliation(s)
- Heike Claus
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
9
|
Beutin L, Wang Q, Naumann D, Han W, Krause G, Leomil L, Wang L, Feng L. Relationship between O-antigen subtypes, bacterial surface structures and O-antigen gene clusters in Escherichia coli O123 strains carrying genes for Shiga toxins and intimin. J Med Microbiol 2007; 56:177-184. [PMID: 17244797 DOI: 10.1099/jmm.0.46775-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli O123 strains express a broad spectrum of phenotypes, H serotypes and virulence markers and are able to colonize and to cause disease in different hosts including humans. In this study, two subtypes of E. coli O123 antigen (group I and group II) have been identified based on their cross-reactions with other E. coli O antigens. Investigation of the relationship between O123 group I and group II strains by O serotyping and Fourier transform infrared spectroscopy of whole bacteria revealed surface structural differences between these two groups of E. coli O123 strains. Nucleotide sequence analysis of the O-antigen gene clusters of two E. coli O123 strains representing O123 group I and group II revealed no change at the amino acid level. These findings indicate that the differences in the surface structures of group I and group II strains are not related to genetic heterogeneity in their O-antigen gene clusters. A PCR assay based on O123 antigen-specific wzx and wzy genes was developed and found to be suitable for reliable detection of all subtypes of E. coli O123 strains, which bears an advantage over traditional serological detection.
Collapse
Affiliation(s)
- Lothar Beutin
- National Reference Laboratory for Escherichia coli, Centre for Infectiology and Pathogen Characterization, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Quan Wang
- Tianjin Key Laboratory for Microbial Functional Genomics, TEDA College, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| | - Dieter Naumann
- Robert Koch Institute, P13, Nordufer 20, D-13353 Berlin, Germany
| | - Weiqing Han
- Tianjin Key Laboratory for Microbial Functional Genomics, TEDA College, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| | - Gladys Krause
- National Reference Laboratory for Escherichia coli, Centre for Infectiology and Pathogen Characterization, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Luciana Leomil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Lei Wang
- Tianjin Key Laboratory for Microbial Functional Genomics, TEDA College, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| | - Lu Feng
- Tianjin Key Laboratory for Microbial Functional Genomics, TEDA College, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| |
Collapse
|
10
|
Clermont O, Johnson JR, Menard M, Denamur E. Determination of Escherichia coli O types by allele-specific polymerase chain reaction: application to the O types involved in human septicemia. Diagn Microbiol Infect Dis 2006; 57:129-36. [PMID: 17020797 DOI: 10.1016/j.diagmicrobio.2006.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/27/2006] [Accepted: 08/09/2006] [Indexed: 11/23/2022]
Abstract
Escherichia coli can be serotyped by determination of somatic (O), capsular (K), and flagellar (H) antigens, and clear associations exist between specific O antigens and pathogenic behavior. However, E. coli is very challenging to O type with traditional serologic methods, making new methods for E. coli somatic antigen detection highly desirable. Here, we describe a simple alternative molecular method for determination of the E. coli O type based on allele-specific polymerase chain reaction amplification of the 5' portion of the rfb locus. We present our application of this new method to the detection of the 12 principal O types (O1, O2, O4, O6, O7, O12, O15, O16, O18, O25, O75, and O157) found among bloodstream isolates of E. coli. This method allowed us to determine the O types of 153 strains previously typed using reference methods with an accuracy exceeding 90%. Moreover, some rough or nonagglutinating strains can be successfully typed.
Collapse
Affiliation(s)
- Olivier Clermont
- Institut National de la Santé et de la Recherche Médicale (INSERM) U722 and Faculté de Médecine Xavier Bichat, Université Paris 7 Denis Diderot, 75018 Paris, France.
| | | | | | | |
Collapse
|