1
|
Ullah SF, Oreb M, Boles E, Srivastava V, Seidl-Seiboth V, Seiboth B, Kappel L. N-acetylglucosamine sensing in the filamentous soil fungus Trichoderma reesei. FEBS J 2025. [PMID: 39954246 DOI: 10.1111/febs.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
N-acetylglucosamine (GlcNAc) is involved in diverse signaling pathways in dimorphic yeasts and bacteria and is related to morphogenetic switching, mating, stress, virulence, and cell death. Recently, GlcNAc has been shown to promote plant growth by shaping the bacterial soil community. However, the role of GlcNAc sensing in filamentous soil fungi has not been investigated. By using Trichoderma reesei as a model organism, we show here that GlcNAc impacts the expression of around 2100 genes. Carbohydrate metabolism, amino acid metabolism, and secondary metabolism were the three most strongly affected classes of eukaryotic orthologous groups (KOG classes). Two key regulators of GlcNAc catabolism, the NDT80 domain-containing transcriptional regulator RON1, and a GlcNAc sensor, NGS1, are needed for differential regulation of two-thirds of these genes. In silico structural modeling of NGS1 identified a domain with homology to the GCN5-related histone acetyltransferase from Candida albicans, which serves as a GlcNAc catabolism regulator and GlcNAc sensor. Finally, we characterized the third regulator of GlcNAc sensing in T. reesei, which is the highly specific GlcNAc transporter N-acetylglucosamine transporter (NGT1). Using a deletion mutant of ngt1, we demonstrate that GlcNAc has to enter the cell to activate the GlcNAc catabolic gene expression. Interestingly, in contrast to dimorphic yeasts, the pathways for defense and pathogenicity seem to be induced in T. reesei by external GlcNAc. Given the ancestral role of Trichoderma spp. in the fungal kingdom and the highly conserved GlcNAc catabolism cluster that includes their regulators in many species of fungi, we propose a regulatory network for GlcNAc sensing in soil fungi.
Collapse
Affiliation(s)
- Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Verena Seidl-Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Lisa Kappel
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
2
|
Liu D, Garrigues S, Culleton H, McKie VA, de Vries RP. Analysis of the molecular basis for the non-amylolytic and non-proteolytic nature of Aspergillus vadensis CBS 113365. N Biotechnol 2024; 82:25-32. [PMID: 38697469 DOI: 10.1016/j.nbt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aspergillus vadensis CBS 113365, a close relative of A. niger, has been suggested as a more favourable alternative for recombinant protein production as it does not acidify the culture medium and produces very low levels of extracellular proteases. The aim of this study was to investigate the underlying cause of the non-amylolytic and non-proteolytic phenotype of A. vadensis CBS 113365. Our results demonstrate that the non-functionality of the amylolytic transcription factor AmyR in A. vadensis CBS 113365 is primarily attributed to the lack of functionality of its gene's promoter sequence. In contrast, a different mechanism is likely causing the lack of PrtT activity, which is the main transcriptional regulator of protease production. The findings presented here not only expand our understanding of the genetic basis behind the distinct characteristics of A. vadensis CBS 113365, but also underscore its potential as a favourable alternative for recombinant protein production.
Collapse
Affiliation(s)
- Dujuan Liu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Departament of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Helena Culleton
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Megazyme International Ireland, Bray, Co. Wicklow, Ireland
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
3
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Transcription Factor Mavib-1 Negatively Regulates Conidiation by Affecting Utilization of Carbon and Nitrogen Source in Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8060594. [PMID: 35736077 PMCID: PMC9224900 DOI: 10.3390/jof8060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
Conidium is the main infection unit and reproductive unit of pathogenic fungi. Exploring the mechanism of conidiation and its regulation contributes to understanding the pathogenicity of pathogenic fungi. Vib-1, a transcription factor, was reported to participate in the conidiation process. However, the regulation mechanism of Vib-1 in conidiation is still unclear. In this study, we analyzed the function of Vib-1 and its regulation mechanism in conidiation through knocking out and overexpression of Vib-1 in entomopathogenic fungus Metarhizium acridum. Results showed that the colonial growth of Mavib-1 disruption mutant (ΔMavib-1) was significantly decreased, and conidiation was earlier compared to wild type (WT), while overexpression of Mavib-1 led to a delayed conidiation especially when carbon or nitrogen sources were insufficient. Overexpression of Mavib-1 resulted in a conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. These results indicated that Mavib-1 acted as a positive regulator in vegetative growth and a negative regulator in conidiation by affecting utilization of carbon and nitrogen sources in M. acridum. Transcription profile analysis demonstrated that many genes related to carbon and nitrogen source metabolisms were differentially expressed in ΔMavib-1 and OE strains compared to WT. Moreover, Mavib-1 affects the conidial germination, tolerance to UV-B and heat stresses, cell wall integrity, conidial surface morphology and conidial hydrophobicity in M. acridum. These findings unravel the regulatory mechanism of Mavib-1 in fungal growth and conidiation, and enrich the knowledge to conidiation pattern shift of filamentous fungi.
Collapse
|
5
|
Yang X, Huang X, Zhang L, Du L, Liu Y. The
NDT80
‐like transcription factor
CmNdt80a
affects the conidial formation and germination, mycoparasitism, and cell wall integrity of
Coniothyrium minitans. J Appl Microbiol 2022; 133:808-818. [DOI: 10.1111/jam.15575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoxiang Yang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Xiaoqin Huang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Lei Zhang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Lei Du
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
| | - Yong Liu
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd Chengdu Sichuan P.R. China
| |
Collapse
|
6
|
Role of AcndtA in cleistothecium formation, osmotic stress response, pigmentation and carbon metabolism of Aspergillus cristatus. Fungal Biol 2021; 125:749-763. [PMID: 34537171 DOI: 10.1016/j.funbio.2021.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
As the dominant fungus during the fermentation of Fuzhuan brick tea, Aspergillus cristatus is easily induced to undergo a sexual cycle under low-salt stress. However, the underlying regulatory mechanism of sexual reproduction is unclear. Here, we report a P53-like transcription factor AcndtA, which encodes an NDT80 DNA binding protein and regulates fungal reproduction, pigmentation and the stress response. Both insertion and deletion mutants of AcndtA exhibited a complete blockade of cleistothecium formation, and overexpressing AcndtA strains (OE: AcndtA) exhibited significantly reduced cleistothecium production, indicating that AcndtA plays a vital role in sexual development. Osmotic stress tests showed that overexpression of AcndtA had a negative impact on growth and conidia production. Additionally, AcndtA insertion, deletion and overexpression mutants exhibited reduced pigment formation. All the above developmental defects were reversed by the re-introduction of the AcndtA gene in ΔAcndtA. Moreover, the growth of AcndtA mutants in carbon-limited medium was better than that of the WT and OE: AcndtA strains, indicating that AcndtA is involved in carbon metabolism. Transcriptional profiling data showed that AcndtA regulated the expression of several genes related to development, osmotic stress and carbon metabolism.
Collapse
|
7
|
Sun Y, Qian Y, Zhang J, Wang Y, Li X, Zhang W, Wang L, Liu H, Zhong Y. Extracellular protease production regulated by nitrogen and carbon sources in Trichoderma reesei. J Basic Microbiol 2021; 61:122-132. [PMID: 33393718 DOI: 10.1002/jobm.202000566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 11/07/2022]
Abstract
The filamentous fungus Trichoderma reesei is an important producer of industrial enzymes, and possesses abundant extracellular protease genes based on the genome sequence data. However, the production of extracellular proteases remains poorly understood. Here, protease production was extensively investigated on different carbon (glucose and lactose) and nitrogen sources ((NH4 )2 SO4 , NaNO3 , peptone, and corn steep liquor). It was found that protease production was dominantly regulated by nitrogen sources. Organic nitrogen sources were beneficial for protease production, while the preferred nitrogen source (NH4 )2 SO4 inhibited the expression of proteases. As for carbon sources, lactose was a more effective inducer than glucose for protease production. The protease activity was further examined by protease inhibitors, which suggested that protease activity was predominantly inhibited by phenylmethanesulfonyl fluoride (PMSF) and slightly suppressed by ethylenediaminetetraacetic acid (EDTA). Moreover, proteomic analysis revealed a total of 29 extracellular proteases, including 13 serine proteases, 6 aspartic proteases, and 10 metalloproteases. In addition, seven proteases were found to be present among all conditions. These results showed the regulatory profile of extracellular protease production in Trichoderma reesei grown on various carbon and nitrogen sources, which will facilitate the development of T. reesei to be an effective workhorse for enzyme or high-value protein production in industry.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yuanchao Qian
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Jiaxin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yifan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Xihai Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, P.R. China
| |
Collapse
|
8
|
Daranagama ND, Suzuki Y, Shida Y, Ogasawara W. Involvement of Xyr1 and Are1 for Trichodermapepsin Gene Expression in Response to Cellulose and Galactose in Trichoderma reesei. Curr Microbiol 2020; 77:1506-1517. [DOI: 10.1007/s00284-020-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
9
|
Wu VW, Thieme N, Huberman LB, Dietschmann A, Kowbel DJ, Lee J, Calhoun S, Singan VR, Lipzen A, Xiong Y, Monti R, Blow MJ, O'Malley RC, Grigoriev IV, Benz JP, Glass NL. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proc Natl Acad Sci U S A 2020; 117:6003-6013. [PMID: 32111691 PMCID: PMC7084071 DOI: 10.1073/pnas.1915611117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.
Collapse
Affiliation(s)
- Vincent W Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Nils Thieme
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lori B Huberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Axel Dietschmann
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - David J Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Yi Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Remo Monti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Matthew J Blow
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - J Philipp Benz
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
10
|
Purev E, Kondo T, Takemoto D, Niones JT, Ojika M. Identification of ε-Poly-L-lysine as an Antimicrobial Product from an Epichloë Endophyte and Isolation of Fungal ε-PL Synthetase Gene. Molecules 2020; 25:molecules25051032. [PMID: 32106587 PMCID: PMC7179176 DOI: 10.3390/molecules25051032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
The endophytic fungus Epichloë festucae is known to produce bioactive metabolites, which consequently protect the host plants from biotic and abiotic stresses. We previously found that the overexpression of vibA (a gene for transcription factor) in E. festucae strain E437 resulted in the secretion of an unknown fungicide. In the present study, the active substance was purified and chemically identified as ε-poly-L-lysine (ε-PL), which consisted of 28–34 lysine units. The productivity was 3.7-fold compared with that of the wild type strain E437. The isolated ε-PL showed inhibitory activity against the spore germination of the plant pathogens Drechslera erythrospila, Botrytis cinerea, and Phytophthora infestans at 1–10 μg/mL. We also isolated the fungal gene “epls” encoding ε-PL synthetase Epls. Overexpression of epls in the wild type strain E437 resulted in the enhanced production of ε-PL by 6.7-fold. Interestingly, overexpression of epls in the different strain E. festucae Fl1 resulted in the production of shorter ε-PL with 8–20 lysine, which exhibited a comparable antifungal activity to the longer one. The results demonstrate the first example of ε-PL synthetase gene from the eukaryotic genomes and suggest the potential of enhanced expression of vibA or/and epls genes in the Epichloë endophyte for constructing pest-tolerant plants.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
| | - Tatsuhiko Kondo
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
| | - Daigo Takemoto
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (D.T.); (J.T.N.)
| | - Jennifer T. Niones
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (D.T.); (J.T.N.)
- Philippine Rice Research Institute, Science City of Munoz, Nueva Ecija 3119, Philippines
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
- Correspondence: ; Tel.: +81-52-789-4116; Fax: +81-52-789-4118
| |
Collapse
|
11
|
Chudzicka-Ormaniec P, Macios M, Koper M, Weedall GD, Caddick MX, Weglenski P, Dzikowska A. The role of the GATA transcription factor AreB in regulation of nitrogen and carbon metabolism in Aspergillus nidulans. FEMS Microbiol Lett 2020; 366:5426211. [PMID: 30939206 PMCID: PMC6494665 DOI: 10.1093/femsle/fnz066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
In Aspergillus nidulans, nitrogen and carbon metabolism are under the control of wide-domain regulatory systems, including nitrogen metabolite repression, carbon catabolite repression and the nutrient starvation response. Transcriptomic analysis of the wild type strain grown under different combinations of carbon and nitrogen regimes was performed, to identify differentially regulated genes. Carbon metabolism predominates as the most important regulatory signal but for many genes, both carbon and nitrogen metabolisms coordinate regulation. To identify mechanisms coordinating nitrogen and carbon metabolism, we tested the role of AreB, previously identified as a regulator of genes involved in nitrogen metabolism. Deletion of areB has significant phenotypic effects on the utilization of specific carbon sources, confirming its role in the regulation of carbon metabolism. AreB was shown to regulate the expression of areA, tamA, creA, xprG and cpcA regulatory genes suggesting areB has a range of indirect, regulatory effects. Different isoforms of AreB are produced as a result of differential splicing and use of two promoters which are differentially regulated by carbon and nitrogen conditions. These isoforms are likely to be functionally distinct and thus contributing to the modulation of AreB activity.
Collapse
Affiliation(s)
- Patrycja Chudzicka-Ormaniec
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Maria Macios
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Gareth D Weedall
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Mark X Caddick
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Piotr Weglenski
- Centre of New Technologies, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Dzikowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5A, 02-106 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Wessel EM, Tomich JM, Todd RB. Biodegradable Drug-Delivery Peptide Nanocapsules. ACS OMEGA 2019; 4:20059-20063. [PMID: 31788640 PMCID: PMC6882115 DOI: 10.1021/acsomega.9b03245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Branched amphiphilic peptide capsules (BAPCs) are an efficient transport system that can deliver nucleic acids, small proteins, and solutes. The ability of BAPCs to break down is essential to their adoption as a delivery vehicle for human and agricultural applications. Until now, however, BAPCs were shown to be inert to mammalian degradation systems. Here, we demonstrate, using BAPCs encapsulating the toxic urea analogue thiourea, that the common soil fungus Aspergillus nidulans can degrade BAPCs. We provide evidence that this degradation is extracellular through the action of secreted proteases. Our data indicate that BAPCs are likely biodegradable in the environment.
Collapse
Affiliation(s)
- Emily M. Wessel
- Department
of Biochemistry and Molecular Biophysics, Kansas State University, 206 Burt Hall, Manhattan, Kansas 66506, United
States
| | - John M. Tomich
- Department
of Biochemistry and Molecular Biophysics, Kansas State University, 206 Burt Hall, Manhattan, Kansas 66506, United
States
| | - Richard B. Todd
- Department
of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton
Plant Sciences Center, Manhattan, Kansas 66506, United
States
| |
Collapse
|
13
|
Snyman C, Theron LW, Divol B. Understanding the regulation of extracellular protease gene expression in fungi: a key step towards their biotechnological applications. Appl Microbiol Biotechnol 2019; 103:5517-5532. [PMID: 31129742 DOI: 10.1007/s00253-019-09902-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
The secretion of proteases by certain species of yeast and filamentous fungi is of importance not only for their biological function and survival, but also for their biotechnological application to various processes in the food, beverage, and bioprocessing industries. A key step towards understanding the role that these organisms play in their environment, and how their protease-secreting ability may be optimally utilised through industrial applications, involves an evaluation of those factors which influence protease production. The objective of this review is to provide an overview of the findings from investigations directed at elucidating the regulatory mechanisms underlying extracellular protease secretion in yeast and filamentous fungi, and the environmental stimuli that elicit these responses. The influence of nitrogen-, carbon-, and sulphur-containing compounds, as well as proteins, temperature, and pH, on extracellular protease regulation, which is frequently exerted at the transcriptional level, is discussed in particular depth. Protease-secreting organisms of biotechnological interest are also presented in this context, in an effort to explore the areas of industrial significance that could possibly benefit from such knowledge. In this way, the establishment of a platform of existing knowledge regarding fungal protease regulation is attempted, with the particular goal of aiding in the practical application of these organisms to processes that require secretion of this enzyme.
Collapse
Affiliation(s)
- C Snyman
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - L W Theron
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
14
|
Katz ME. Nutrient sensing-the key to fungal p53-like transcription factors? Fungal Genet Biol 2018; 124:8-16. [PMID: 30579885 DOI: 10.1016/j.fgb.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023]
Abstract
The mammalian tumour suppressor protein, p53, plays an important role in cell cycle control, DNA repair and apoptotic cell death. Transcription factors belonging to the "p53-like" superfamily are found exclusively in the Amorphea branch of eukaryotes, which includes animals, fungi and slime molds. Many members of the p53-like superfamily (proteins containing p53, Rel/Dorsal, T-box, STAT, Runt, Ndt80, and the CSL DNA-binding domains) are involved in development. Two families of p53-like proteins (Ndt80 and CSL) are widespread in fungi as well as animals. The Basidiomycetes and the Ascomycetes have undergone reciprocal loss of the Ndt80 and CSL classes of transcription factors, with the CSL class preserved in only one branch of Ascomycetes and the Ndt80 class found in only one branch of Basidiomycetes. Recent studies have greatly expanded the known functions of fungal Ndt80-like proteins and shown that they play important roles in sexual reproduction, cell death, N-acetylglucosamine sensing and catabolism, secondary metabolism, and production of extracellular hydrolases such as proteases, chitinases and cellulases. In the opportunistic pathogen, Candida albicans, Ndt80-like proteins are essential for hyphal growth and virulence and also play a role in antifungal resistance. These recent studies have confirmed that nutrient sensing is a common feature of fungal Ndt80-like proteins and is also found in fungal CSL-like transcription factors, which in animals is the mediator of Notch signalling. Thus, nutrient sensing may represent the ancestral role of the p53-like superfamily.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
15
|
Yan YS, Zhao S, Liao LS, He QP, Xiong YR, Wang L, Li CX, Feng JX. Transcriptomic profiling and genetic analyses reveal novel key regulators of cellulase and xylanase gene expression in Penicillium oxalicum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:279. [PMID: 29201143 PMCID: PMC5700522 DOI: 10.1186/s13068-017-0966-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND The transition to a more environmentally friendly economy has prompted studies of modern biorefineries, including the utilization of low-value lignocellulose. The major challenge facing the widespread application of biorefineries is the high cost of enzymes that can efficiently hydrolyze recalcitrant cellulose to sugars. Penicillium oxalicum produces large amounts of plant-cell-wall-degrading enzymes, but their production is tightly controlled by complex regulatory networks, resulting in low yields of the native enzymes. Regulatory genes have been the targets of genetic engineering to improve enzyme production in microorganisms. In this study, we used transcriptomic profiling and genetic analyses to screen for and identify novel key regulators of cellulase and xylanase gene expression in P. oxalicum. RESULTS A comparative analysis of the transcriptomes of P. oxalicum HP7-1 on different carbon sources, including glucose, wheat bran, and wheat bran plus Avicel, identified 40 candidate genes regulating the expression of cellulolytic enzyme genes. Deletion mutants of 31 candidate genes were constructed in P. oxalicum ∆PoxKu70 and 11 resultant mutants showed significant changes in their filter-paper cellulase production compared with the parental strain ∆PoxKu70. Among these 11 mutants, ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD showed the most significant reduction in the enzyme production (96.8, 75.9, and 58.5%, respectively). Ten of these 11 genes are here reported to be involved in cellulase production for the first time. Further tests revealed that ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD displayed significantly reduced xylanase production, whereas ΔPoxCxrA produced negligible xylanase. Interestingly, ΔPoxCxrB and ΔPoxNsdD showed significantly increased β-glucosidase production. Real-time quantitative reverse transcription-PCR and an electrophoretic mobility shift assay (EMSA) showed that PoxCxrA, PoxCxrB, and PoxNsdD regulate the expression of one another, but the mode of regulation changes dynamically during the growth of fungal cells in the presence of cellulose. EMSA showed that PoxCxrA, PoxCxrB, and PoxNsdD directly bind the putative promoters of major cellulase and xylanase genes. CONCLUSIONS We have detected and identified three key new regulatory genes, PoxCxrA, PoxCxrB, and PoxNsdD, that directly and indirectly regulate the expression of cellulase and xylanase genes in P. oxalicum. This study provides novel insights into the regulatory mechanisms of fungal cellulase and xylanase gene expression.
Collapse
Affiliation(s)
- Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi-Peng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Ya-Ru Xiong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Long Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
16
|
Role of HxkC, a mitochondrial hexokinase-like protein, in fungal programmed cell death. Fungal Genet Biol 2016; 97:36-45. [DOI: 10.1016/j.fgb.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/21/2022]
|
17
|
Doyle CE, Kitty Cheung H, Spence KL, Saville BJ. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genet Biol 2016; 94:54-68. [DOI: 10.1016/j.fgb.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
18
|
Shahi S, Fokkens L, Houterman PM, Rep M. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis. Fungal Genet Biol 2016; 95:49-57. [PMID: 27531696 DOI: 10.1016/j.fgb.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022]
Abstract
Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.
Collapse
Affiliation(s)
- Shermineh Shahi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra M Houterman
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
|
20
|
Mukherjee S, Chandrababunaidu MM, Panda A, Khowala S, Tripathy S. Tricking Arthrinium malaysianum into Producing Industrially Important Enzymes Under 2-Deoxy D-Glucose Treatment. Front Microbiol 2016; 7:596. [PMID: 27242677 PMCID: PMC4865484 DOI: 10.3389/fmicb.2016.00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 01/24/2023] Open
Abstract
This study catalogs production of industrially important enzymes and changes in transcript expression caused by 2-deoxy D-glucose (2-DG) treatment in Arthrinium malaysianum cultures. Carbon Catabolite Repression (CCR) induced by 2-DG in this species is cAMP independent unlike many other organisms. Higher levels of secreted endoglucanase (EG), β-glucosidase (BGL), β-xylosidase (BXL), and filter paper activity assay (FPase) enzymes under 2-DG treatment can be exploited for commercial purposes. An integrated RNA sequencing and quantitative proteomic analysis was performed to investigate the cellular response to 2-DG in A. malaysianum. Analysis of RNASeq data under 2-DG treated and control condition reveals that 56% of the unigenes do not have any known similarity to proteins in non-redundant database. Gene Ontology IDs were assigned to 36% of the transcripts (13260) and about 5207 (14%) were mapped to Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). About 1711 genes encoding 2691 transcripts were differentially expressed in treated vs. control samples. Out of the 2691 differentially expressed transcripts, only 582 have any known function. The most up regulated genes belonged to Pentose Phosphate Pathways and carbohydrate degradation class as expected. In addition, genes involved in protein folding, binding, catalytic activity, DNA repair, and secondary metabolites were up-regulated under 2-DG treatment. Whereas genes encoding glycosylation pathways, growth, nutrient reservoir activity was repressed. Gene ontology analysis of the differentially expressed genes indicates metabolic process (35%) is the pre-dominant class followed by carbohydrate degradation (11%), protein folding, and trafficking (6.2%) and transport (5.3%) classes. Unlike other organisms, conventional unfolded protein response (UPR) was not activated in either control or treated conditions. Major enzymes secreted by A. malaysianum are those degrading plant polysaccharides, the most dominant ones being β-glucosidase, as demonstrated by the 2D gel analysis. A set of 7 differentially expressed mRNAs were validated by qPCR. Transmission electron microscopy analyses demonstrated that the 2-DG treated cell walls of hyphae showed significant differences in the cell-wall thickness. Overall 2-DG treatment in A. malaysianum induced secretion of large amount of commercially viable enzymes compared to other known species.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Mathu Malar Chandrababunaidu
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Arijit Panda
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Suman Khowala
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| |
Collapse
|
21
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
22
|
Kappel L, Gaderer R, Flipphi M, Seidl-Seiboth V. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1. Mol Microbiol 2016; 99:640-57. [PMID: 26481444 PMCID: PMC4950302 DOI: 10.1111/mmi.13256] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/28/2022]
Abstract
Chitin is an important structural constituent of fungal cell walls composed of N-acetylglucosamine (GlcNAc) monosaccharides, but catabolism of GlcNAc has not been studied in filamentous fungi so far. In the yeast Candida albicans, the genes encoding the three enzymes responsible for stepwise conversion of GlcNAc to fructose-6-phosphate are clustered. In this work, we analysed GlcNAc catabolism in ascomycete filamentous fungi and found that the respective genes are also clustered in these fungi. In contrast to C. albicans, the cluster often contains a gene for an Ndt80-like transcription factor, which we named RON1 (regulator of N-acetylglucosamine catabolism 1). Further, a gene for a glycoside hydrolase 3 protein related to bacterial N-acetylglucosaminidases can be found in the GlcNAc gene cluster in filamentous fungi. Functional analysis in Trichoderma reesei showed that the transcription factor RON1 is a key activator of the GlcNAc gene cluster and essential for GlcNAc catabolism. Furthermore, we present an evolutionary analysis of Ndt80-like proteins in Ascomycota. All GlcNAc cluster genes, as well as the GlcNAc transporter gene ngt1, and an additional transcriptional regulator gene, csp2, encoding the homolog of Neurospora crassa CSP2/GRHL, were functionally characterised by gene expression analysis and phenotypic characterisation of knockout strains in T. reesei.
Collapse
Affiliation(s)
- Lisa Kappel
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Romana Gaderer
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
23
|
Extreme Diversity in the Regulation of Ndt80-Like Transcription Factors in Fungi. G3-GENES GENOMES GENETICS 2015; 5:2783-92. [PMID: 26497142 PMCID: PMC4683649 DOI: 10.1534/g3.115.021378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiaeNdt80 protein is the founding member of a class of p53-like transcription factors that is known as the NDT80/PhoG-like DNA-binding family. The number of NDT80-like genes in different fungi is highly variable and their roles, which have been examined in only a few species, include regulation of meiosis, sexual development, biofilm formation, drug resistance, virulence, the response to nutrient stress and programmed cell death. The protein kinase Ime2 regulates the single NDT80 gene present in S. cerevisiae. In this study we used a genetic approach to investigate whether the Aspergillus nidulansIme2 homolog, ImeB, and/or protein kinases MpkC, PhoA and PhoB regulate the two NDT80-like genes (xprG and ndtA) in A. nidulans. Disruption of imeB, but not mpkC, phoA or phoB, led to increased extracellular protease activity and a defect in mycotoxin production similar to the xprG1 gain-of-function mutation. Quantitative RT-PCR showed that ImeB is a negative regulator of xprG expression and XprG is a negative regulator of xprG and ndtA expression. Thus, in contrast to Ime2, which is a positive regulator of NDT80 in S. cerevisiae, ImeB is a negative regulator as in Neurospora crassa. However, the ability of Ndt80 to autoregulate NDT80 is conserved in A. nidulans though the autoregulatory effect is negative rather than positive. Unlike N. crassa, a null mutation in imeB does not circumvent the requirement for XprG or NdtA. These results show that the regulatory activities of Ime2 and Ndt80-like proteins display an extraordinarily level of evolutionary flexibility.
Collapse
|
24
|
Katz ME, Buckland R, Hunter CC, Todd RB. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation. Fungal Genet Biol 2015; 83:10-18. [DOI: 10.1016/j.fgb.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
|
25
|
Landowski CP, Huuskonen A, Wahl R, Westerholm-Parvinen A, Kanerva A, Hänninen AL, Salovuori N, Penttilä M, Natunen J, Ostermeier C, Helk B, Saarinen J, Saloheimo M. Enabling Low Cost Biopharmaceuticals: A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma reesei. PLoS One 2015; 10:e0134723. [PMID: 26309247 PMCID: PMC4550459 DOI: 10.1371/journal.pone.0134723] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 11/22/2022] Open
Abstract
The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant.
Collapse
Affiliation(s)
| | - Anne Huuskonen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Niones JT, Takemoto D. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae. EUKARYOTIC CELL 2015; 14:13-24. [PMID: 24906411 PMCID: PMC4279024 DOI: 10.1128/ec.00034-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023]
Abstract
Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes.
Collapse
Affiliation(s)
- Jennifer T Niones
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
27
|
Xiong Y, Sun J, Glass NL. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa. PLoS Genet 2014; 10:e1004500. [PMID: 25144221 PMCID: PMC4140635 DOI: 10.1371/journal.pgen.1004500] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
Filamentous fungi that thrive on plant biomass are the major producers of hydrolytic enzymes used to decompose lignocellulose for biofuel production. Although induction of cellulases is regulated at the transcriptional level, how filamentous fungi sense and signal carbon-limited conditions to coordinate cell metabolism and regulate cellulolytic enzyme production is not well characterized. By screening a transcription factor deletion set in the filamentous fungus Neurospora crassa for mutants unable to grow on cellulosic materials, we identified a role for the transcription factor, VIB1, as essential for cellulose utilization. VIB1 does not directly regulate hydrolytic enzyme gene expression or function in cellulosic inducer signaling/processing, but affects the expression level of an essential regulator of hydrolytic enzyme genes, CLR2. Transcriptional profiling of a Δvib-1 mutant suggests that it has an improper expression of genes functioning in metabolism and energy and a deregulation of carbon catabolite repression (CCR). By characterizing new genes, we demonstrate that the transcription factor, COL26, is critical for intracellular glucose sensing/metabolism and plays a role in CCR by negatively regulating cre-1 expression. Deletion of the major player in CCR, cre-1, or a deletion of col-26, did not rescue the growth of Δvib-1 on cellulose. However, the synergistic effect of the Δcre-1; Δcol-26 mutations circumvented the requirement of VIB1 for cellulase gene expression, enzyme secretion and cellulose deconstruction. Our findings support a function of VIB1 in repressing both glucose signaling and CCR under carbon-limited conditions, thus enabling a proper cellular response for plant biomass deconstruction and utilization.
Collapse
Affiliation(s)
- Yi Xiong
- Plant and Microbial Biology Department and The Energy Biosciences Institute, The University of California, Berkeley, Berkeley, California, United States of America
| | - Jianping Sun
- Plant and Microbial Biology Department and The Energy Biosciences Institute, The University of California, Berkeley, Berkeley, California, United States of America
| | - N. Louise Glass
- Plant and Microbial Biology Department and The Energy Biosciences Institute, The University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
28
|
The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response. G3-GENES GENOMES GENETICS 2014; 4:49-62. [PMID: 24192833 PMCID: PMC3887539 DOI: 10.1534/g3.113.008607] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic stress, AtmA appears to perform a role in the regulation of TOR signaling, involving the retrograde and SnfA pathways. Thus, AtmA may represent a link between mitochondrial function and cell cycle or growth, possibly through the influence of the TOR and XprG function.
Collapse
|
29
|
Noble LM, Andrianopoulos A. Fungal genes in context: genome architecture reflects regulatory complexity and function. Genome Biol Evol 2013; 5:1336-52. [PMID: 23699226 PMCID: PMC3730340 DOI: 10.1093/gbe/evt077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
30
|
Katz ME, Braunberger K, Yi G, Cooper S, Nonhebel HM, Gondro C. A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Res 2013; 2:72. [PMID: 24358888 PMCID: PMC3821154 DOI: 10.12688/f1000research.2-72.v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/11/2022] Open
Abstract
The
Aspergillus nidulans xprG gene encodes a putative transcriptional activator that is a member of the Ndt80 family in the p53-like superfamily of proteins. Previous studies have shown that XprG controls the production of extracellular proteases in response to starvation. We undertook transcriptional profiling to investigate whether XprG has a wider role as a global regulator of the carbon nutrient stress response. Our microarray data showed that the expression of a large number of genes, including genes involved in secondary metabolism, development, high-affinity glucose uptake and autolysis, were altered in an
xprGΔ null mutant. Many of these genes are known to be regulated in response to carbon starvation. We confirmed that sterigmatocystin and penicillin production is reduced in
xprG
- mutants. The loss of fungal mass and secretion of pigments that accompanies fungal autolysis in response to nutrient depletion was accelerated in an
xprG1 gain-of-function mutant and decreased or absent in an
xprG
- mutant. The results support the hypothesis that XprG plays a major role in the response to carbon limitation and that nutrient sensing may represent one of the ancestral roles for the p53-like superfamily. Disruption of the AN6015 gene, which encodes a second Ndt80-like protein, showed that it is required for sexual reproduction in
A. nidulans.
Collapse
Affiliation(s)
- Margaret E Katz
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Kathryn Braunberger
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Gauncai Yi
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia ; Current address: Nanjing Hospital for Women & Children's Health, Nanjing Medical University, Nanjing City, 210004, China
| | - Sarah Cooper
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Heather M Nonhebel
- Department of Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia
| | - Cedric Gondro
- The Centre for Genetic Analysis and Applications, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
31
|
Szilágyi M, Miskei M, Karányi Z, Lenkey B, Pócsi I, Emri T. Transcriptome changes initiated by carbon starvation in Aspergillus nidulans. MICROBIOLOGY-SGM 2012; 159:176-190. [PMID: 23154970 DOI: 10.1099/mic.0.062935-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon starvation is a common stress for micro-organisms both in nature and in industry. The carbon starvation stress response (CSSR) involves the regulation of several important processes including programmed cell death and reproduction of fungi, secondary metabolite production and extracellular hydrolase formation. To gain insight into the physiological events of CSSR, DNA microarray analyses supplemented with real-time RT-PCR (rRT-PCR) experiments on 99 selected genes were performed. These data demonstrated that carbon starvation induced very complex changes in the transcriptome. Several genes contributing to protein synthesis were upregulated together with genes involved in the unfolded protein stress response. The balance between biosynthesis and degradation moved towards degradation in the case of cell wall, carbohydrate, lipid and nitrogen metabolism, which was accompanied by the production of several hydrolytic enzymes and the induction of macroautophagy. These processes provide the cultures with long-term survival by liberating nutrients through degradation of the cell constituents. The induced synthesis of secondary metabolites, antifungal enzymes and proteins as well as bacterial cell wall-degrading enzymes demonstrated that carbon-starving fungi should have marked effects on the micro-organisms in their surroundings. Due to the increased production of extracellular and vacuolar enzymes during carbon starvation, the importance of the endoplasmic reticulum increased considerably.
Collapse
Affiliation(s)
- Melinda Szilágyi
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Márton Miskei
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- Department of Medicine, University of Debrecen, Nagyerdei Körút 98, 4032 Debrecen, Hungary
| | - Béla Lenkey
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - István Pócsi
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
32
|
Bongiorno VA, Ferreira da Cruz A, Nunis da Silva A, Corrêa LC. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii. Can J Microbiol 2012; 58:1104-11. [PMID: 22913304 DOI: 10.1139/w2012-090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.
Collapse
|
33
|
Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2012; 2:97. [PMID: 22891165 PMCID: PMC3412994 DOI: 10.3389/fonc.2012.00097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
Collapse
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Nir Goldfinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| |
Collapse
|
34
|
Diversification of a protein kinase cascade: IME-2 is involved in nonself recognition and programmed cell death in Neurospora crassa. Genetics 2012; 192:467-82. [PMID: 22813893 PMCID: PMC3454877 DOI: 10.1534/genetics.112.142612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Kinase cascades and the modification of proteins by phosphorylation are major mechanisms for cell signaling and communication, and evolution of these signaling pathways can contribute to new developmental or environmental response pathways. The Saccharomyces cerevisiae kinase Ime2 has been well characterized for its role in meiosis. However, recent studies have revealed alternative functions for Ime2 in both S. cerevisiae and other fungi. In the filamentous fungus Neurospora crassa, the IME2 homolog (ime-2) is not required for meiosis. Here we determine that ime-2 interacts genetically with a transcription factor vib-1 during nonself recognition and programmed cell death (PCD). Mutations in vib-1 (Δvib-1) suppress PCD due to nonself recognition events; however, a Δvib-1 Δime-2 mutant restored wild-type levels of cell death. A role for ime-2 in the post-translational processing and localization of a mitochondrial matrix protein was identified, which may implicate mitochondria in N. crassa nonself recognition and PCD. Further, Δvib-1 strains do not produce extracellular proteases, but protease secretion reverted to near wild-type levels in a Δvib-1 Δime-2 strain. Mass spectrometry analysis revealed that the VIB-1 protein is phosphorylated at several sites, including a site that matches the IME-2 consensus. The genetic and biochemical data for ime-2 and vib-1 indicate that IME-2 is a negative regulator of VIB-1 and suggest parallel negative regulation by IME-2 of a cell death pathway in N. crassa that functions in concert with the VIB-1 cell death pathway. Thus, IME2 kinase function has evolved following the divergence of S. cerevisiae and N. crassa and provides insight into the evolution of kinases and their regulatory targets.
Collapse
|
35
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Lafontaine DL, Smith ML. Diverse interactions mediate asymmetric incompatibility by the het-6 supergene complex in Neurospora crassa. Fungal Genet Biol 2011; 49:65-73. [PMID: 22094057 DOI: 10.1016/j.fgb.2011.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
Abstract
Heterokaryon incompatibility (HI) in filamentous fungi is a form of nonself recognition that operates during the vegetative phase of the life cycle. One HI gene complex in Neurospora crassa, the het-6 locus, comprises two incompatibility genes, het-6 and un-24, each having two allelic variants, Oak Ridge (OR) and Panama (PA). The un-24 gene also encodes the large subunit of ribonucleotide reductase while het-6 appears to be a member of a repetitive gene family with no other known function aside from HI. These two genes are in severe linkage disequilibrium such that only un-24(OR)het-6(OR) and un-24(PA)het-6(PA) haplotypes occur in nature. In this study we unravel several genetic interactions that govern the HI functions of this gene complex. We use novel un-24(PA)het-6(OR) strains and het-6 deletion strains to demonstrate that nonallelic interactions occur between un-24 and het-6 and reveal an allelic incompatibility interaction between the OR and PA forms of un-24 that is asymmetrically enhanced by the presence of het-6(OR) or het-6(PA). We also show how two allelic forms of vib-1, a suppressor of het-c- and mat-associated incompatibility, differentially act as recessive suppressors of HI associated with nonallelic interactions between un-24(PA) and het-6(OR). In contrast, vib-1 is a dominant suppressor of HI associated with allelic differences at un-24 and a dominant partial suppressor of the un-24(OR) and het-6(PA) nonallelic interaction. The range of suppressor activities is largely explained by an interesting differential effect on het-6(OR) and het-6(PA) transcript levels by VIB-1.
Collapse
|
37
|
Szilágyi M, Kwon NJ, Bakti F, M-Hamvas M, Jámbrik K, Park H, Pócsi I, Yu JH, Emri T. Extracellular proteinase formation in carbon starving Aspergillus nidulans cultures--physiological function and regulation. J Basic Microbiol 2011; 51:625-34. [PMID: 21953444 DOI: 10.1002/jobm.201100068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/24/2011] [Indexed: 11/09/2022]
Abstract
Extracellular proteinase formation in carbon depleted cultures of the model filamentous fungus Aspergillus nidulans was studied to elucidate its regulation and possible physiological function. As demonstrated by gene deletion, culture optimization, microbial physiological and enzymological experiments, the PrtA and PepJ proteinases of A. nidulans did not appear to play a decisive role in the autolytic decomposition of fungal cells under the conditions we tested. However, carbon starvation induced formation of the proteinases observable in autolytic cultures. Similar to other degradative enzymes, production of proteinase was regulated by FluG-BrlA asexual developmental signaling and modulated by PacC-dependent pH-responsive signaling. Under the same carbon starved culture conditions, alterations of CreA, MeaB or heterotrimeric G protein mediated signaling pathways caused less significant changes in the formation of extracellular proteinases. Taken together, these results indicate that while the accumulation of PrtA and PepJ is tightly coupled to the initiation of autolysis, they are not essential for autolytic cell wall degradation in A. nidulans. Thus, as Aspergillus genomes contain a large group of genes encoding proteinases with versatile physiological functions, selective control of proteinase production in fungal cells is needed for the improved industrial use of fungi.
Collapse
Affiliation(s)
- Melinda Szilágyi
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meiotic regulators Ndt80 and ime2 have different roles in Saccharomyces and Neurospora. Genetics 2010; 185:1271-82. [PMID: 20519745 DOI: 10.1534/genetics.110.117184] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a highly regulated process in eukaryotic species. The filamentous fungus Neurospora crassa has been shown to be missing homologs of a number of meiotic initiation genes conserved in Saccharomyces cerevisiae, but has three homologs of the well-characterized middle meiotic transcriptional regulator NDT80. In this study, we evaluated the role of all three NDT80 homologs in the formation of female reproductive structures, sexual development, and meiosis. We found that none of the NDT80 homologs were required for meiosis and that even the triple mutant was unaffected. However, strains containing mutations in NCU09915 (fsd-1) were defective in female sexual development and ascospore maturation. vib-1 was a major regulator of protoperithecial development in N. crassa, and double mutants carrying deletions of both vib-1 (NCU03725) and fsd-1 exhibited a synergistic effect on the timing of female reproductive structure (protoperithecia) formation. We further evaluated the role of the N. crassa homolog of IME2, a kinase involved in initiation of meiosis in S. cerevisiae. Strains containing mutations in ime-2 showed unregulated development of protoperithecia. Genetic analysis indicated that mutations in vib-1 were epistatic to ime-2, suggesting that IME-2 may negatively regulate VIB-1 activity. Our data indicate that the IME2/NDT80 pathway is not involved in meiosis in N. crassa, but rather regulates the formation of female reproductive structures.
Collapse
|
39
|
A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 2009; 77:4041-50. [PMID: 19564390 DOI: 10.1128/iai.00425-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence of the fungal pathogen Aspergillus fumigatus is in part based on the saprophytic lifestyle that this mold has evolved. A crucial function for saprophytism resides in secreted proteases that allow assimilation of proteinaceous substrates. The impact of extracellular proteolytic activities on the pathogenesis of aspergillosis, however, remains controversial. In order to address this issue, characterization of a conserved regulatory factor, PrtT, that acts on expression of secreted proteases was pursued. Expression of PrtT appears to be regulated posttranscriptionally, and the existence of an mRNA leader sequence implies translational control via eIF2alpha kinase signaling. Phenotypic classification of a prtTDelta deletion mutant revealed that expression of several major extracellular proteases is PrtT dependent, resulting in the inability to utilize protein as a nutritional source. Certain genes encoding secreted proteases are not regulated by PrtT. Most strikingly, the deletant strain is not attenuated in virulence when tested in a leukopenic mouse model, which makes a strong case for reconsidering any impact of secreted proteases in pulmonary aspergillosis.
Collapse
|
40
|
PepJ is a new extracellular proteinase of Aspergillus nidulans. Folia Microbiol (Praha) 2009; 54:105-9. [DOI: 10.1007/s12223-009-0015-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/06/2009] [Indexed: 10/20/2022]
|
41
|
Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans. Genetics 2009; 181:1239-47. [PMID: 19204378 DOI: 10.1534/genetics.108.095315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
XprG, a putative p53-like transcriptional activator, regulates production of extracellular proteases in response to nutrient limitation and may also have a role in programmed cell death. To identify genes that may be involved in the XprG regulatory pathway, xprG2 revertants were isolated and shown to carry mutations in genes which we have named sogA-C (suppressors of xprG). The translocation breakpoint in the sogA1 mutant was localized to a homolog of Saccharomyces cerevisiae VPS5 and mapping data indicated that sogB was tightly linked to a VPS17 homolog. Complementation of the sogA1 and sogB1 mutations and identification of nonsense mutations in the sogA2 and sogB1 alleles confirmed the identification. Vps17p and Vps5p are part of a complex involved in sorting of vacuolar proteins in yeast and regulation of cell-surface receptors in mammals. Protease zymograms indicate that mutations in sogA-C permit secretion of intracellular proteases, as in S. cerevisiae vps5 and vps17 mutants. In contrast to S. cerevisiae, the production of intracellular protease was much higher in the mutants. Analysis of serine protease gene expression suggests that an XprG-independent mechanism for regulation of extracellular protease gene expression in response to carbon starvation exists and is activated in the pseudorevertants.
Collapse
|
42
|
Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 2008; 45:1591-9. [DOI: 10.1016/j.fgb.2008.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
|
43
|
Emri T, Szilágyi M, Justyák A, Pócsi I. Heterotrimeric G protein mediated regulation of proteinase production in Aspergillus nidulans. Acta Microbiol Immunol Hung 2008; 55:111-7. [PMID: 18595316 DOI: 10.1556/amicr.55.2008.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular proteinase production induced by carbon starvation was studied in a series of heterotrimeric G protein signaling pathway mutants of Aspergillus nidulans. All the mutants tested--including deltafadA (Galpha), deltasfaD (Gbeta), deltagpgA (Ggamma) and deltasfgA (regulator of FadA signaling)--showed an elevated proteinase production after glucose depletion. Our results strongly support the view that during growth, FadA/SfaD/GpgA G protein signaling inhibits proteinase production via both Galpha and Gbetagamma subunits, and all conditions, which are not sufficient to support vegetative growth and, hence, inhibit this type of G protein signaling, elevate extracellular proteinase activities.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary.
| | | | | | | |
Collapse
|
44
|
Katz ME, Bernardo SM, Cheetham BF. The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 2008; 54:47-55. [PMID: 18512059 DOI: 10.1007/s00294-008-0198-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/26/2022]
Abstract
In Aspergillus nidulans, production of extracellular proteases in response to carbon starvation and to a lesser extent nitrogen starvation is controlled by XprG, a putative transcriptional activator. In this study the role of genes involved in carbon catabolite repression and the role of protein as an inducer of extracellular protease gene expression were examined. The addition of exogenous protein to the growth medium did not increase extracellular protease activity whether or not additional carbon or nitrogen sources were present indicating that induction does not play a major role in the regulation of extracellular proteases. Northern blot analysis confirmed that protein is not an inducer of the major A. nidulans protease, PrtA. Mutations in the creA, creB and creC genes increased extracellular protease levels in medium lacking a carbon source suggesting that they may have a role in the response to carbon starvation as well as carbon catabolite repression. Analysis of glkA4 frA2 and creADelta4 mutants showed that the loss of glucose signalling or the DNA-binding protein which mediates carbon catabolite repression did not abolish glucose repression but did increase extracellular protease activity. This increase was XprG-dependent indicating that the effect of these genes may be through modulation of XprG activity.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| | | | | |
Collapse
|
45
|
Bernardo SMH, Gray KA, Todd RB, Cheetham BF, Katz ME. Characterization of regulatory non-catalytic hexokinases in Aspergillus nidulans. Mol Genet Genomics 2007; 277:519-32. [PMID: 17226029 DOI: 10.1007/s00438-006-0203-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022]
Abstract
Hexokinases catalyse the first step in glucose metabolism and play a role in glucose sensing in mammals, plants and fungi. We describe a new class of hexokinases that appear to be solely regulatory in function. The Aspergillus nidulans hxkD gene (formerly named xprF) encodes a hexokinase-like protein. We constructed hxkDDelta gene disruption mutants which showed increased levels of extracellular protease in response to carbon starvation. The hxkDDelta mutations are not completely recessive, indicating that the level of the gene product is critical. Transcript levels of hxkD increase during carbon starvation and this response is not dependent on functional HxkD. A gene encoding a second atypical hexokinase (HxkC) was identified. The hxkCDelta gene disruption mutant exhibits a phenotype similar, but not identical, to hxkDDelta mutants. As with hxkD, mutations in hxkC are suppressed by loss-of-function mutations in xprG, which encodes a putative transcriptional activator involved in the response to nutrient limitation. We show that GFP-tagged HxkD was found only in nuclei suggesting a regulatory role for HxkD. GFP-tagged HxkC was associated with mitochondria. Homologs of hxkC and hxkD are conserved in multi-cellular fungi. Genes encoding atypical hexokinases are present in many genome sequence databases. Thus, non-catalytic hexokinases may be widespread.
Collapse
Affiliation(s)
- Stella M H Bernardo
- Molecular and Cellular Biology, University of New England, Armidale, NSW, Australia
| | | | | | | | | |
Collapse
|
46
|
Glass NL, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 2006; 9:553-8. [PMID: 17035076 DOI: 10.1016/j.mib.2006.09.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Non-self recognition resulting in programmed cell death is a ubiquitous phenomenon in filamentous ascomycete fungi and is termed heterokaryon incompatibility (HI). Recent analyses show that genes containing predicted HET domains are often involved in HI; however, the function of the HET domain is unknown. Autophagy is induced as a consequence of HI, whereas the presence of a predicted transcription factor, VIB-1, is required for HI. Morphological features associated with apoptosis in filamentous fungi are induced by various stresses and drugs, and also during HI. Future analyses will reveal whether common or different genetic mechanisms trigger death by non-self recognition and death by various environmental onslaughts.
Collapse
Affiliation(s)
- N Louise Glass
- The Plant and Microbial Biology Department, The University of California Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
47
|
Dementhon K, Iyer G, Glass NL. VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa. EUKARYOTIC CELL 2006; 5:2161-73. [PMID: 17012538 PMCID: PMC1694810 DOI: 10.1128/ec.00253-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as Neurospora crassa, nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at het loci. In N. crassa, mutations at the vib-1 locus suppress nonself recognition and HI mediated by genetic differences at het-c/pin-c, mat, and un-24/het-6. vib-1 is a homolog of Saccharomyces cerevisiae NDT80, which is a transcriptional activator of genes during meiosis. For this study, we determined that vib-1 encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI. vib-1 is required for the expression of genes involved in nonself recognition and HI, including pin-c, tol, and het-6; all of these genes encode proteins containing a HET domain. vib-1 is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in N. crassa.
Collapse
Affiliation(s)
- Karine Dementhon
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|