1
|
Zhao N, Liu Q, Zhu M, Zhu L, Yang J. The Hog1-Nmd5 signaling pathway regulates asexual development, lipid metabolism, stress response, trap morphogenesis, and secondary metabolism of Arthrobotrys oligospora. Virulence 2025; 16:2468294. [PMID: 39973133 PMCID: PMC11845025 DOI: 10.1080/21505594.2025.2468294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/05/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025] Open
Abstract
The high-osmolarity glycerol (HOG) signalling pathway, comprising Ste11/Ssk2/Ssk22 (MAPKKK), Pbs2 (MAPKK), and Hog1 (MAPK), is an important and conserved pathway in fungi. However, the functions and downstream regulatory factors of Hog1 in nematode-trapping (NT) fungi remain poorly understood. Here, three proteins (AoNmd5, AoPyp1, and AoPtp) interacting with Hog1 were screened in a representative NT fungus Arthrobotrys oligospora using yeast screening library and verified using yeast two-hybrid (Y2H) assay. The function of AoNmd5 was furtherly characterized by phenotypic comparison, staining technique, and multi-omics analyses. AoNmd5 was essential for vegetative growth, conidial development, trap morphogenesis, and nematode predation ability. In addition, AoNmd5 played crucial roles in endocytosis, lipid metabolism, reactive oxygen species, stress response, autophagy, and other metabolic processes. Furthermore, we constructed an AoNmd5 interaction network based on transcriptomic analysis and Y2H, revealing its significant role in the respiratory chain and redox processes as well as its interaction with the small GTPase Ran1, which mediates Hog1 nucleocytoplasmic shuttling. These findings suggest that the Hog1-Nmd5 signalling pathway has pleiotropic roles in A. oligospora. This study deepens our understanding of the HOG pathway and its interaction with importins in NT fungi.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, P. R. China
| |
Collapse
|
2
|
Diao Y, Xiong X, Jin J, Yu C, Tian Y, Zhao C, Wu Y, Liu H. Mitogen-activated protein (MAP) kinase signalling pathway VmMkh1-VmMkk1-VmSpm1 regulates cell wall integrity in Valsamali. Microb Pathog 2025; 198:107194. [PMID: 39631571 DOI: 10.1016/j.micpath.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Apple Valsa canker disease, caused by Valsa mali Miyabe et Yamada, seriously endangers the healthy growth of apple trees. Mitogen-Activated Protein Kinase (MAPK) signaling pathway is an important pathway to transmit signals stimulated by environmental stress. In this study, we identify and functionally characterize MAPKKK VmMkh1, MAPKK VmMkk1 and MAPK VmSpm1. VmMkh1 and VmMkk1 positively regulate the phosphorylation of VmSpm1. The radial growth rate of the VmSpm1 deletion mutant was reduced by approximately 31 %. There was no significant difference in growth rate between the VmMkh1 and VmMkk1 mutant and the wild-type. VmMkh1 hyphe branches into a curved shape. The VmMkh1, VmMkk1, and VmSpm1 deletion mutant produced fewer conidia than the wild-type strain at 20 days post inoculation. Moreover, the VmMkh1, VmMkk1, and VmSpm1 deletion mutant slows conidial germination. The hyphal growth of VmMkh1, VmMkk1, and VmSpm1 deletion mutants are significantly inhibited on media containing NaCl, KCl, sorbitol (high osmotic stresses). The hyphal growth of VmMkh1, VmMkk1, and VmSpm1 deletion mutants are significantly inhibited on media containing Congo red, CFW, SDS, and Lysing encymes (Cell wall stress agents). A looser distribution of spacers in VmMkh1, VmMkk1, and VmSpm1 deletion mutants compared with the wild-type strain. The size of lesions on apple fruits and branches inoculated with VmSpm1 deletion mutant showed a reduction of approximately 46 % and 43 %, respectively, after 9 dpi. Overall, our findings demonstrate that VmMkh1, VmMkk1, and VmSpm1 are involved in regulating the growth and development, colony surface hydrophobicity, osmotic stress, cell wall integrity maintenance, carbon and nitrogen source utilization, septa formation, and pathogenicity of Valsa mali.
Collapse
Affiliation(s)
- Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - YeHan Tian
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chunqing Zhao
- Development of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yueming Wu
- Development of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
3
|
Liu Y, Yuan J, Li Y, Bi Y, Prusky DB. The sensor protein AaSho1 regulates infection structures differentiation, osmotic stress tolerance and virulence via MAPK module AaSte11-AaPbs2-AaHog1 in Alternaria alternata. Comput Struct Biotechnol J 2024; 23:1594-1607. [PMID: 38680872 PMCID: PMC11047198 DOI: 10.1016/j.csbj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
The high-osmolarity-sensitive protein Sho1 functions as a key membrane receptor in phytopathogenic fungi, which can sense and respond to external stimuli or stresses, and synergistically regulate diverse fungal biological processes through cellular signaling pathways. In this study, we investigated the biological functions of AaSho1 in Alternaria alternata, the causal agent of pear black spot. Targeted gene deletion revealed that AaSho1 is essential for infection structure differentiation, response to external stresses and synthesis of secondary metabolites. Compared to the wild-type (WT), the ∆AaSho1 mutant strain showed no significant difference in colony growth, morphology, conidial production and biomass accumulation. However, the mutant strain exhibited significantly reduced levels of melanin production, cellulase (CL) and ploygalacturonase (PG) activities, virulence, resistance to various exogenous stresses. Moreover, the appressorium and infection hyphae formation rates of the ∆AaSho1 mutant strain were significantly inhibited. RNA-Seq results showed that there were four branches including pheromone, cell wall stress, high osmolarity and starvation in the Mitogen-activated Protein Kinase (MAPK) cascade pathway. Furthermore, yeast two-hybrid experiments showed that AaSho1 activates the MAPK pathway via AaSte11-AaPbs2-AaHog1. These results suggest that AaSho1 of A. alternata is essential for fungal development, pathogenesis and osmotic stress response by activating the MAPK cascade pathway via Sho1-Ste11-Pbs2-Hog1.
Collapse
Affiliation(s)
- Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Jing Yuan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov B. Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Institute of Postharvest and Food Sciences, Agricultural Research Organization Volcani Center Information Center, Rishon LeZion, Israel
| |
Collapse
|
4
|
Yu L, Wang T, Wang B, Pan L. The mechanism of short hypha formation and high protein production system mediated by cell wall integrity signaling pathway in Aspergillus niger. Int J Biol Macromol 2024; 283:137413. [PMID: 39542304 DOI: 10.1016/j.ijbiomac.2024.137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Aspergillus niger is a cell factory widely used in industries to produce proteases, organic acids, drugs, and other substances. The hyphal morphology of A. niger is a complex differentiated elongated tubular structure, which limits its basic research and application. In this study, the mpkA, bck1, steC, and Tpk2 genes were successfully deleted using a quick way to knock out genes based on the RNP (Ribonucleoprotein) complex. The study showed that the knockout of mpkA and bck1 kinase gene strains resulted in smaller, denser colonies, short rod-shaped hypha, and a significant increase in glucoamylase secretion. The mechanism of short hypha formation and high protein production for A. niger is the cell wall integrity signaling (CWIS) pathway. The CWIS pathway passed through the bck1-mkkA-mpkA tertiary kinase to deliver phosphorylation signals to the rlmA transcription factor, which regulated the expression of the cell wall synthesis gene agsA, thus regulating hyphal morphology. The mpkA kinase regulated the expression of the transcription factor amyR, which affected the expression of the genes glaA and amyA, thus enhancing the expression of proteins in A. niger. This study provides a strategy for the regulation of hyphal morphology and promotes the application of A. niger in industrial production.
Collapse
Affiliation(s)
- Leyi Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Tiantian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Diao Y, Wang Y, Xiong X, Jin J, Yu C, Wu Y, Zhao C, Liu H. VmSom1 is essential for growth, development, maintenance of cell wall integrity and virulence in Valsa mali. Microb Pathog 2024; 195:106878. [PMID: 39173851 DOI: 10.1016/j.micpath.2024.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/28/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Apple Valsa canker disease, caused by Valsa mali Miyabe et Yamada, severely endangers the healthy growth of apple trees. The Som1, located downstream of the cyclic AMP-dependent protein kinase A (cAMP-PKA) pathway, plays crucial roles in the growth, development, morphological differentiation, and virulence of filamentous fungi. In this study, we identify and functionally characterize VmSom1, a homolog of Som1, in Valsa mali. The VmSom1 gene is located on chromosome 12, encoding an 824 amino acid protein. Phylogenetic analysis reveals VmSom1 as a fungal Som1 homolog. The VmSom1 deletion mutants exhibit slower growth rates and fail to produce pycnidia. Additionally, their hyphal growth is significantly inhibited on media containing Calcofluor White, Congo Red, NaCl, and sorbitol. The growth rate of VmSom1 deletion mutants is reduced on maltose, lactose, sucrose and fructose media but increases on glucose medium. Moreover, the mycelial growth rate of the VmSom1 deletion mutant is significantly lower than that of the wild-type strain in peptone, NH4SO4, NaNO3, and no nitrogen. Notably, the distances between the septa increase, and chitin concentration shifts to the hyphal tip in the VmSom1 deletion mutant. Furthermore, compared with the wild-type strain, the VmSom1 deletion mutant exhibits fewer diseased spots on apple fruit and branches. Overall, our findings demonstrate that VmSom1 is involved in regulating the growth and development, colony surface hydrophobicity, osmotic stress, cell wall integrity maintenance, carbon and nitrogen source utilization, septa formation, and virulence of V. mali.
Collapse
Affiliation(s)
- Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yilin Wang
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yueming Wu
- Development of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chunqing Zhao
- Development of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
Gong X, Zhou Y, Qin Q, Wang B, Wang L, Jin C, Fang W. Nitrate assimilation compensates for cell wall biosynthesis in the absence of Aspergillus fumigatus phosphoglucose isomerase. Appl Environ Microbiol 2024; 90:e0113824. [PMID: 39158312 PMCID: PMC11412302 DOI: 10.1128/aem.01138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.
Collapse
Affiliation(s)
- Xiufang Gong
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Yao Zhou
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Qijian Qin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Bin Wang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Linqi Wang
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Cheng Jin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Wenxia Fang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| |
Collapse
|
7
|
Schaefer S, Vij R, Sprague JL, Austermeier S, Dinh H, Judzewitsch PR, Müller-Loennies S, Lopes Silva T, Seemann E, Qualmann B, Hertweck C, Scherlach K, Gutsmann T, Cain AK, Corrigan N, Gresnigt MS, Boyer C, Lenardon MD, Brunke S. A synthetic peptide mimic kills Candida albicans and synergistically prevents infection. Nat Commun 2024; 15:6818. [PMID: 39122699 PMCID: PMC11315985 DOI: 10.1038/s41467-024-50491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
More than two million people worldwide are affected by life-threatening, invasive fungal infections annually. Candida species are the most common cause of nosocomial, invasive fungal infections and are associated with mortality rates above 40%. Despite the increasing incidence of drug-resistance, the development of novel antifungal formulations has been limited. Here we investigate the antifungal mode of action and therapeutic potential of positively charged, synthetic peptide mimics to combat Candida albicans infections. Our data indicates that these synthetic polymers cause endoplasmic reticulum stress and affect protein glycosylation, a mode of action distinct from currently approved antifungal drugs. The most promising polymer composition damaged the mannan layer of the cell wall, with additional membrane-disrupting activity. The synergistic combination of the polymer with caspofungin prevented infection of human epithelial cells in vitro, improved fungal clearance by human macrophages, and significantly increased host survival in a Galleria mellonella model of systemic candidiasis. Additionally, prolonged exposure of C. albicans to the synergistic combination of polymer and caspofungin did not lead to the evolution of tolerant strains in vitro. Together, this work highlights the enormous potential of these synthetic peptide mimics to be used as novel antifungal formulations as well as adjunctive antifungal therapy.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Peter R Judzewitsch
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia
| | - Sven Müller-Loennies
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Taynara Lopes Silva
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia.
- Australian Centre for NanoMedicine, UNSW, Sydney, NSW, Australia.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.
| |
Collapse
|
8
|
Lu J, Liu Y, Song M, Xi Y, Yang H, Liu W, Li X, Norvienyeku J, Zhang Y, Miao W, Lin C. The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense. Microbiol Res 2024; 284:127732. [PMID: 38677265 DOI: 10.1016/j.micres.2024.127732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.
Collapse
Affiliation(s)
- Jingwen Lu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Miao Song
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yitao Xi
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hong Yang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Wenbo Liu
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao Li
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Justice Norvienyeku
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Weiguo Miao
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chunhua Lin
- Sanya Institute of Breeding and Multiplication / Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) / School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Xu SY, Mohamed RA, Yu L, Ying SH, Feng MG. Cla4A, a Novel Regulator of Gene Expression Networks Required for Asexual and Insect-Pathogenic Lifecycles of Beauveria bassiana. Int J Mol Sci 2024; 25:6410. [PMID: 38928117 PMCID: PMC11203800 DOI: 10.3390/ijms25126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is functionally redundant. The deletion of cla4A resulted in severe growth defects, reduced stress tolerance, delayed conidiation, altered conidiation mode, impaired conidial quality, and abolished pathogenicity through cuticular penetration, contrasting with no phenotype affected by cla4B deletion. In ∆cla4A, 5288 dysregulated genes were associated with phenotypic defects, which were restored by targeted gene complementation. Among those, 3699 genes were downregulated, including more than 1300 abolished at the transcriptomic level. Hundreds of those downregulated genes were involved in the regulation of transcription, translation, and post-translational modifications and the organization and function of the nuclear chromosome, chromatin, and protein-DNA complex. DNA-binding elements in promoter regions of 130 dysregulated genes were predicted to be targeted by Cla4A domains. Samples of purified Cla4A extract were proven to bind promoter DNAs of 12 predicted genes involved in multiple stress-responsive pathways. Therefore, Cla4A acts as a novel regulator of genomic expression and stability and mediates gene expression networks required for insect-pathogenic fungal adaptations to the host and environment.
Collapse
Affiliation(s)
| | | | | | | | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae072. [PMID: 38560781 PMCID: PMC11152069 DOI: 10.1093/g3journal/jkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
11
|
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJA, Eseola A, Sklenar J, Tang B, Yan X, Ma W, Findlay KC, Were V, MacLean D, Talbot NJ, Menke FLH. The phosphorylation landscape of infection-related development by the rice blast fungus. Cell 2024; 187:2557-2573.e18. [PMID: 38729111 DOI: 10.1016/j.cell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.
Collapse
Affiliation(s)
- Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Miriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Jave A Bautista
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
12
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
13
|
Speckbacher V, Flatschacher D, Martini-Lösch N, Ulbrich L, Baldin C, Bauer I, Ruzsanyi V, Zeilinger S. The histone deacetylase Hda1 affects oxidative and osmotic stress response as well as mycoparasitic activity and secondary metabolite biosynthesis in Trichoderma atroviride. Microbiol Spectr 2024; 12:e0309723. [PMID: 38334386 PMCID: PMC10913545 DOI: 10.1128/spectrum.03097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The mycoparasitic fungus Trichoderma atroviride is applied in agriculture as a biostimulant and biologic control agent against fungal pathogens that infest crop plants. Secondary metabolites are among the main agents determining the strength and progress of the mycoparasitic attack. However, expression of most secondary metabolism-associated genes requires specific cues, as they are silent under routine laboratory conditions due to their maintenance in an inactive heterochromatin state. Therefore, histone modifications are crucial for the regulation of secondary metabolism. Here, we functionally investigated the role of the class II histone deacetylase encoding gene hda1 of T. atroviride by targeted gene deletion, phenotypic characterization, and multi-omics approaches. Deletion of hda1 did not result in obvious phenotypic alterations but led to an enhanced inhibitory activity of secreted metabolites and reduced mycoparasitic abilities of T. atroviride against the plant-pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The ∆hda1 mutants emitted altered amounts of four volatile organic compounds along their development, produced different metabolite profiles upon growth in liquid culture, and showed a higher susceptibility to oxidative and osmotic stress. Moreover, hda1 deletion affected the expression of several notable gene categories such as polyketide synthases, transcription factors, and genes involved in the HOG MAPK pathway.IMPORTANCEHistone deacetylases play crucial roles in regulating chromatin structure and gene transcription. To date, classical-Zn2+ dependent-fungal histone deacetylases are divided into two classes, of which each comprises orthologues of the two sub-groups Rpd3 and Hos2 and Hda1 and Hos3 of yeast, respectively. However, the role of these chromatin remodelers in mycoparasitic fungi is poorly understood. In this study, we provide evidence that Hda1, the class II histone deacetylases of the mycoparasitic fungus Trichoderma atroviride, regulates its mycoparasitic activity, secondary metabolite biosynthesis, and osmotic and oxidative stress tolerance. The function of Hda1 in regulating bioactive metabolite production and mycoparasitism reveals the importance of chromatin-dependent regulation in the ability of T. atroviride to successfully control fungal plant pathogens.
Collapse
Affiliation(s)
| | | | | | - Laura Ulbrich
- Umweltmonitoring und Forensische Chemie, Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Clara Baldin
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Gujjar RS, Kumar R, Goswami SK, Srivastava S, Kumar S. MAPK signaling pathway orchestrates and fine-tunes the pathogenicity of Colletotrichum falcatum. J Proteomics 2024; 292:105056. [PMID: 38043863 DOI: 10.1016/j.jprot.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Colletotrichum falcatum is the causal organism of red rot, the most devastating disease of sugarcane. Mitogen-activated protein kinase (MAPK) signaling pathway plays pivotal role in coordinating the process of pathogenesis. We identified eighteen proteins implicated in MAPK signaling pathway in C. falcatum, through nanoLCMS/MS based proteomics approach. Twelve of these proteins were the part of core MAPK signaling pathway, whereas remaining proteins were indirectly implicated in MAPK signaling. Majority of these proteins had enhanced abundance in C. falcatum samples cultured with host sugarcane stalks. To validate the findings, core MAPK pathway genes (MAPKKK-NSY1, MAPK 17-MAPK17, MAPKKK 5-MAPKKK5, MAPK-HOG1B, MAPKKK-MCK1/STE11, MAPK-MST50/STE50, MAPKK-SEK1, MAPKK-MEK1/MST7/STE7, MAPKK-MKK2/STE7, MAPKKK-MST11/STE11, MAPK 5-MPK5, and MAPK-MPK-C) were analyzed by qPCR to confirm the real-time expression in C. falcatum samples cultured with host sugarcane stalks. The results of qPCR-based expression of genes were largely in agreement with the findings of proteomics. String association networks of MAPKK- MEK1/MST7/STE7, and MAPK- MPK-C revealed strong association with plenty of assorted proteins implicated in the process of pathogenesis/virulence. This is the novel and first large scale study of MAPK proteins in C. falcatum, responsible for red rot epidemics of sugarcane various countries. KEY MESSAGE: Our findings demonstrate the pivotal role of MAPK proteins in orchestrating the pathogenicity of Colletotrichum falcatum, responsible devastating red rot disease of sugarcane. SIGNIFICANCE: Our findings are novel and the first large scale study demonstrating the pivotal role of MAPK proteins in C. falcatum, responsible devastating red rot disease of sugarcane. The study will be useful for future researchers in terms of manipulating the fungal pathogenicity through genome editing.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India.
| | - Rajeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | | | - Sangeeta Srivastava
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | - Sanjeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| |
Collapse
|
15
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573138. [PMID: 38187743 PMCID: PMC10769413 DOI: 10.1101/2023.12.22.573138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N. Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| |
Collapse
|
16
|
Fan L, Li X, Li H, Li B, Wang J, He L, Wang Z, Lin Y. Comparative transcriptome analysis to unveil genes affecting the host cuticle destruction in Metarhizium rileyi. Curr Genet 2023; 69:253-265. [PMID: 37726495 DOI: 10.1007/s00294-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Insect pathogenic fungi, also known as entomopathogenic fungi, are one of the largest insect pathogenic microorganism communities, represented by Beauveria spp. and Metarhizium spp. Entomopathogenic fungi have been proved to be a great substitute for chemical pesticide in agriculture. In fact, a lot of functional genes were also already characterized in entomopathogenic fungi, but more depth of exploration is still needed to reveal their complicated pathogenic mechanism to insects. Metarhizium rileyi (Nomuraea rileyi) is a great potential biocontrol fungus that can parasitize more than 40 distinct species (mainly Lepidoptera: Noctuidae) to cause large-scale infectious diseases within insect population. In this study, a comparative analysis of transcriptome profile was performed with topical inoculation and hemolymph injection to character the infectious pattern of M. rileyi. Appressorium and multiple hydrolases are indispensable constituents to break the insect host primary cuticle defense in entomopathogenic fungi. Within our transcriptome data, numerous transcripts related to destruction of insect cuticle rather growth regulations were obtained. Most importantly, some unreported ribosomal protein genes and novel unannotated protein (hypothetical protein) genes were proved to participate in the course of pathogenic regulation. Our current data provide a higher efficiency gene library for virulence factors screen in M. rileyi, and this library may be also useful for furnishing valuable information on entomopathogenic fungal pathogenic mechanisms to host.
Collapse
Affiliation(s)
- Liqin Fan
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Xinxin Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Hongli Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Bingjie Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Jiahui Wang
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Le He
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing, People's Republic of China
| | - Yunlong Lin
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, People's Republic of China.
| |
Collapse
|
17
|
Atanasova L, Marchetti-Deschmann M, Nemes A, Bruckner B, Rehulka P, Stralis-Pavese N, Łabaj PP, Kreil DP, Zeilinger S. Mycoparasitism related targets of Tmk1 indicate stimulating regulatory functions of this MAP kinase in Trichoderma atroviride. Sci Rep 2023; 13:19976. [PMID: 37968441 PMCID: PMC10651915 DOI: 10.1038/s41598-023-47027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.
Collapse
Affiliation(s)
- Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Albert Nemes
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Bianca Bruckner
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Pavel Rehulka
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
- Department of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Nancy Stralis-Pavese
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Paweł P Łabaj
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - David P Kreil
- IMBT Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.
| | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
18
|
Liu H, Zhang X, Chen W, Wang C. The regulatory functions of oxylipins in fungi: A review. J Basic Microbiol 2023; 63:1073-1084. [PMID: 37357952 DOI: 10.1002/jobm.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/27/2023]
Abstract
Quorum sensing (QS) is a communication mechanism between microorganisms originally found in bacteria. In recent years, an important QS mechanism has been discovered in the field of fungi, namely, the lipoxygenase compound oxylipin of arachidonic acid acts as a QS molecule in life cycle control, particularly in the sexual and asexual development of fungi. However, the role of oxylipins in mediating eukaryotic communication has not been previously described. In this paper, we review the regulatory role of oxylipins and the underlying mechanisms and discuss the potential for application in major fungi. The role of oxylipin as a fungal quorum-sensing molecule is the main focus of the review. Besides, the quorum regulation of fungal morphological transformation, biofilm formation, virulence factors, secondary metabolism, infection, symbiosis, and other physiological behaviors are discussed. Moreover, future prospectives and applications are elaborated as well.
Collapse
Affiliation(s)
- Huiqian Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xizi Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
19
|
Lv B, Guo Y, Zhao X, Li S, Sun M. Glucose-6-phosphate 1-Epimerase CrGlu6 Contributes to Development and Biocontrol Efficiency in Clonostachys chloroleuca. J Fungi (Basel) 2023; 9:764. [PMID: 37504752 PMCID: PMC10381721 DOI: 10.3390/jof9070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Clonostachys chloroleuca (formerly classified as C. rosea) is an important mycoparasite active against various plant fungal pathogens. Mitogen-activated protein kinase (MAPK) signaling pathways are vital in mycoparasitic interactions; they participate in responses to diverse stresses and mediate fungal development. In previous studies, the MAPK-encoding gene Crmapk has been proven to be involved in mycoparasitism and the biocontrol processes of C. chloroleuca, but its regulatory mechanisms remain unclear. Aldose 1-epimerases are key enzymes in filamentous fungi that generate energy for fungal growth and development. By protein-protein interaction assays, the glucose-6-phosphate 1-epimerase CrGlu6 was found to interact with Crmapk, and expression of the CrGlu6 gene was significantly upregulated when C. chloroleuca colonized Sclerotinia sclerotiorum sclerotia. Gene deletion and complementation analyses showed that CrGlu6 deficiency caused abnormal morphology of hyphae and cells, and greatly reduced conidiation. Moreover, deletion mutants presented much lower antifungal activities and mycoparasitic ability, and control efficiency against sclerotinia stem rot was markedly decreased. When the CrGlu6 gene was reinserted, all biological characteristics and biocontrol activities were recovered. These findings provide new insight into the mechanisms of glucose-6-phosphate 1-epimerase in mycoparasitism and help to further reveal the regulation of MAPK and its interacting proteins in the biocontrol of C. chloroleuca.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Fu R, Wang J, Chen C, Liu Y, Zhao L, Lu D. Transcriptomic and Metabolomic Analyses Provide Insights into the Pathogenic Mechanism of the Rice False Smut Pathogen Ustilaginoidea virens. Int J Mol Sci 2023; 24:10805. [PMID: 37445981 DOI: 10.3390/ijms241310805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Rice false smut, caused by the fungal pathogen Ustilaginoidea virens, is a worldwide rice fungal disease. However, the molecular mechanism of the pathogenicity of the fungus U. virens remains unclear. To understand the molecular mechanism of pathogenesis of the fungus U. virens, we performed an integrated analysis of the transcriptome and metabolome of strongly (S) and weakly (W) virulent strains both before and after the infection of panicles. A total of 7932 differential expressed genes (DEGs) were identified using transcriptome analysis. Gene ontology (GO) and metabolic pathway enrichment analysis indicated that amino acid metabolism, autophagy-yeast, MAPK signaling pathway-yeast, and starch and sucrose metabolism were closely related to the pathogenicity of U. virens. Genes related to pathogenicity were significantly upregulated in the strongly virulent strain, and were ATG, MAPK, STE, TPS, and NTH genes. However, genes involved in the negative regulation of pathogenesis were significantly downregulated and contained TOR kinase, TORC1, and autophagy-related protein genes. Metabolome analysis identified 698 differentially accumulated metabolites (DAMs), including 13 categories of organic acids and derivatives, lipids and lipid-like molecules, organoheterocyclic compounds. The significantly enriched pathways of DAMs mainly included amino acids and carbohydrates, and they accumulated after infection by the S strain. To understand the relevance of DEGs and DAMs in the pathogenicity of U. virens, transcriptomic and metabolomic data were integrated and analyzed. These results further confirmed that the pathogenesis of U. virens was regulated by DEGs and DAMs related to these four pathways, involving arginine and proline metabolism, lysine biosynthesis, alanine, aspartate and glutamate metabolism, and starch and sugar metabolism. Therefore, we speculate that the pathogenicity of U. virens is closely related to the accumulation of amino acids and carbohydrates, and to the changes in the expression of related genes.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Road, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
21
|
Diao Y, Jin J, Xiong X, Yu C, Tian Y, Li D, Liu H. Transcription Factor VM1G_06867: A Requirement for Growth, Pathogenicity, Development, and Maintenance of Cell Wall Integrity in Valsa mali. J Fungi (Basel) 2023; 9:692. [PMID: 37367628 DOI: 10.3390/jof9060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Apple canker disease, caused by Valsa mali, is one of the most serious apple tree diseases in China. VmSom1 is an important transcription factor that acts on the cyclic adenosine signaling pathway (cAMP/PKA), regulating the growth, development, morphological differentiation, and pathogenic forces of the pathogen. We perform transcriptome analysis of the VmSom1 deletion mutant and the wild-type strain 11-175 and identify a significantly differentially expressed gene, VM1G_06867, a zinc finger motif transcription factor in V. mali. In this study, we obtain the VM1G_06867 gene using the single deletion mutant via homologous recombination. To determine the relationship between VmSom1 and VM1G_06867, we also obtain a double deletion mutant ΔVmSom1/06867. Compared to the wild-type strain 11-175, the single deletion mutant VM1G_06867 shows a drastic reduction in growth rate and forms more pycnidia on the PDA medium. Additionally, the growth of the mutant is inhibited by SDS, Congo red, and fluorescent brighteners. In comparison to the single deletion mutant VmSom1, the double deletion mutant ΔVmSom1/06867 shows no significant change in growth or conidiation and is unable to produce conidia. The growth rate is significantly increased in Congo red, NaCl, and Sorbitol mediums. These results demonstrate that VM1G_06867 plays important roles in growth, pathogenicity, asexual development, and maintenance of cell wall integrity. VM1G_06867 can recover osmotic stress and cell wall integrity defects caused by the deletion of VmSom1, as well as restore the loss of pathogenicity caused by the deletion of the VmSom1 gene, but not completely.
Collapse
Affiliation(s)
- Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yehan Tian
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Duochuan Li
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
22
|
Moon H, Han KH, Yu JH. Upstream Regulation of Development and Secondary Metabolism in Aspergillus Species. Cells 2022; 12:cells12010002. [PMID: 36611796 PMCID: PMC9818462 DOI: 10.3390/cells12010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In filamentous fungal Aspergillus species, growth, development, and secondary metabolism are genetically programmed biological processes, which require precise coordination of diverse signaling elements, transcription factors (TFs), upstream and downstream regulators, and biosynthetic genes. For the last few decades, regulatory roles of these controllers in asexual/sexual development and primary/secondary metabolism of Aspergillus species have been extensively studied. Among a wide spectrum of regulators, a handful of global regulators govern upstream regulation of development and metabolism by directly and/or indirectly affecting the expression of various genes including TFs. In this review, with the model fungus Aspergillus nidulans as the central figure, we summarize the most well-studied main upstream regulators and their regulatory roles. Specifically, we present key functions of heterotrimeric G proteins and G protein-coupled receptors in signal transduction), the velvet family proteins governing development and metabolism, LaeA as a global regulator of secondary metabolism, and NsdD, a key GATA-type TF, affecting development and secondary metabolism and provide a snapshot of overall upstream regulatory processes underlying growth, development, and metabolism in Aspergillus fungi.
Collapse
Affiliation(s)
- Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, KonKuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
23
|
Ancuceanu R, Hovaneț MV, Cojocaru-Toma M, Anghel AI, Dinu M. Potential Antifungal Targets for Aspergillus sp. from the Calcineurin and Heat Shock Protein Pathways. Int J Mol Sci 2022; 23:ijms232012543. [PMID: 36293395 PMCID: PMC9603945 DOI: 10.3390/ijms232012543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus species, especially A. fumigatus, and to a lesser extent others (A. flavus, A. niger, A. terreus), although rarely pathogenic to healthy humans, can be very aggressive to immunocompromised patients (they are opportunistic pathogens). Although survival rates for such infections have improved in recent decades following the introduction of azole derivatives, they remain a clinical challenge. The fact that current antifungals act as fungistatic rather than fungicide, that they have limited safety, and that resistance is becoming increasingly common make the need for new, more effective, and safer therapies to become more acute. Over the last decades, knowledge about the molecular biology of A. fumigatus and other Aspergillus species, and particularly of calcineurin, Hsp90, and their signaling pathway proteins, has progressed remarkably. Although calcineurin has attracted much interest, its adverse effects, particularly its immunosuppressive effects, make it less attractive than it might at first appear. The situation is not very different for Hsp90. Other proteins from their signaling pathways, such as protein kinases phosphorylating the four SPRR serine residues, CrzA, rcnA, pmcA-pmcC (particularly pmcC), rfeF, BAR adapter protein(s), the phkB histidine kinase, sskB MAP kinase kinase, zfpA, htfA, ctfA, SwoH (nucleoside diphosphate kinase), CchA, MidA, FKBP12, the K27 lysine position from Hsp90, PkcA, MpkA, RlmA, brlA, abaA, wetA, other heat shock proteins (Hsp70, Hsp40, Hsp12) currently appear promising and deserve further investigation as potential targets for antifungal drug development.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (R.A.); (M.V.H.)
| | - Marilena Viorica Hovaneț
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (R.A.); (M.V.H.)
| | - Maria Cojocaru-Toma
- Faculty of Pharmacy, Nicolae Testemițanu State University of Medicine and Pharmacy, 2025 Chisinau, Moldova
| | - Adriana-Iuliana Anghel
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela Dinu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
24
|
Huang Y, Li YC, Li DM, Bi Y, Liu YX, Mao RY, Zhang M, Jiang QQ, Wang XJ, Prusky D. Molecular Characterization of Phospholipase C in Infection Structure Differentiation Induced by Pear Fruit Surface Signals, Stress Responses, Secondary Metabolism, and Virulence of Alternaria alternata. PHYTOPATHOLOGY 2022; 112:2207-2217. [PMID: 35612304 DOI: 10.1094/phyto-11-21-0475-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fungal pathogens use plant surface physiochemical signals to trigger specific developmental processes. To assess the role of phospholipase C (PLC) in mediating plant stimuli sensing of Alternaria alternata, the function of three PLC genes was characterized by constructing ΔAaPLC mutants. Here we showed that fruit wax-coated surfaces significantly induced appressorium formation in A. alternata and mutants. Germination of ΔAaPLC mutants did not differ from the wild type. Deletion of AaPLC1 led to the decrease of appressorium formation and infected hyphae, but the degree of reduction varies between the different types of waxes, with the strongest response to pear wax. Appressorium formation and infected hyphae of the ΔAaPLC1 mutant on dewaxed onion epidermis mounted with pear wax (θ4) were reduced by 14.5 and 65.7% after 8 h incubation, while ΔAaPLC2 and ΔAaPLC3 formed the same infection hyphae as wild type. In addition, AaPLC1 mutation caused pleiotropic effects on fungal biological function, including growth deficiency, changes in stress tolerance, weakening of pathogenicity to the host, as well as destruction of mycotoxin synthesis. Both AaPLC2 and AaPLC3 genes were found to have some effects on stress response and mycotoxin production. Taken together, AaPLC genes differentially regulate the growth, stress response, pathogenicity, and secondary metabolism of A. alternata.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dong-Mei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Xiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ren-Yan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian-Qian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao-Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
25
|
Mohamed RA, Guo CT, Xu SY, Ying SH, Feng MG. Characterization of BbKlf1 as a novel transcription factor vital for asexual and infection cycles of Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:719-731. [PMID: 35851566 DOI: 10.1111/1758-2229.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The large family of C2H2-type zinc finger transcription factors (TFs) comprise the Kruppel-like factors (KLFs) that evolved relatively late in eukaryotes but remain unexplored in filamentous fungi. Here, we report that an orthologue (BbKlf1) of yeast Klf1 mediating cell wall integrity (CWI) is a wide-spectrum TF evidently localized in nucleus and cytoplasm in Beauveria bassiana. BbKlf1 features conserved domains and multiple DNA-binding motifs predicted to bind multiple promoter DNA fragments of target genes across asexual developmental and stress-responsive pathways. Despite limited impact on normal colony growth, deletion of Bbklf1 resulted in impaired CWI and hypersensitivity to Congo red-induced cell wall stress. Also, the deletion mutant was severely compromised in tolerance to oxidative and osmotic stresses, hyphal septation and differentiation, conidiation capacity (reduced by 95%), conidial quality (viability and hydrocarbon epitope pattern) and virulence. Importantly, these phenotypes correlated well with sharply repressed or nearly abolished expressions of those genes required for or involved in chitin biosynthesis, antioxidant activity, cell division and differentiation, aerial conidiation and conidial maturation. These findings indicate an essentiality of BbKlf1 for the asexual and insect-pathogenic lifecycles of B. bassiana and a novel scenario much beyond the yeast orthologue-mediated CWI, suggesting important roles of its orthologues in filamentous fungi.
Collapse
Affiliation(s)
- Rehab Abdelmonem Mohamed
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong-Tao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Transcription Factor Mavib-1 Negatively Regulates Conidiation by Affecting Utilization of Carbon and Nitrogen Source in Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8060594. [PMID: 35736077 PMCID: PMC9224900 DOI: 10.3390/jof8060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
Conidium is the main infection unit and reproductive unit of pathogenic fungi. Exploring the mechanism of conidiation and its regulation contributes to understanding the pathogenicity of pathogenic fungi. Vib-1, a transcription factor, was reported to participate in the conidiation process. However, the regulation mechanism of Vib-1 in conidiation is still unclear. In this study, we analyzed the function of Vib-1 and its regulation mechanism in conidiation through knocking out and overexpression of Vib-1 in entomopathogenic fungus Metarhizium acridum. Results showed that the colonial growth of Mavib-1 disruption mutant (ΔMavib-1) was significantly decreased, and conidiation was earlier compared to wild type (WT), while overexpression of Mavib-1 led to a delayed conidiation especially when carbon or nitrogen sources were insufficient. Overexpression of Mavib-1 resulted in a conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. These results indicated that Mavib-1 acted as a positive regulator in vegetative growth and a negative regulator in conidiation by affecting utilization of carbon and nitrogen sources in M. acridum. Transcription profile analysis demonstrated that many genes related to carbon and nitrogen source metabolisms were differentially expressed in ΔMavib-1 and OE strains compared to WT. Moreover, Mavib-1 affects the conidial germination, tolerance to UV-B and heat stresses, cell wall integrity, conidial surface morphology and conidial hydrophobicity in M. acridum. These findings unravel the regulatory mechanism of Mavib-1 in fungal growth and conidiation, and enrich the knowledge to conidiation pattern shift of filamentous fungi.
Collapse
|
27
|
Tang D, Tang X, Fang W. New Downstream Signaling Branches of the Mitogen-Activated Protein Kinase Cascades Identified in the Insect Pathogenic and Plant Symbiotic Fungus Metarhizium robertsii. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:911366. [PMID: 37746179 PMCID: PMC10512405 DOI: 10.3389/ffunb.2022.911366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 09/26/2023]
Abstract
Fungi rely on major signaling pathways such as the MAPK (Mitogen-Activated Protein Kinase) signaling pathways to regulate their responses to fluctuating environmental conditions, which is vital for fungi to persist in the environment. The cosmopolitan Metarhizium fungi have multiple lifestyles and remarkable stress tolerance. Some species, especially M. robertsii, are emerging models for investigating the mechanisms underlying ecological adaptation in fungi. Here we review recently identified new downstream branches of the MAPK cascades in M. robertsii, which controls asexual production (conidiation), insect infection and selection of carbon and nitrogen nutrients. The Myb transcription factor RNS1 appears to be a central regulator that channels information from the Fus3- and Slt2-MAPK cascade to activate insect infection and conidiation, respectively. Another hub regulator is the transcription factor AFTF1 that transduces signals from the Fus3-MAPK and the membrane protein Mr-OPY2 for optimal formation of the infection structures on the host cuticle. Homologs of these newly identified regulators are found in other Metarhizium species and many non-Metarhizium fungi, indicating that these new downstream signaling branches of the MAPK cascades could be widespread.
Collapse
Affiliation(s)
| | | | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Zhao J, Yuan J, Chen Y, Wang Y, Chen J, Bi J, Lyu L, Yu C, Yuan S, Liu Z. MAPK CcSakA of the HOG Pathway Is Involved in Stipe Elongation during Fruiting Body Development in Coprinopsis cinerea. J Fungi (Basel) 2022; 8:jof8050534. [PMID: 35628789 PMCID: PMC9147448 DOI: 10.3390/jof8050534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways, such as the high-osmolarity glycerol mitogen-activated protein kinase (HOG) pathway, are evolutionarily conserved signaling modules responsible for transmitting environmental stress signals in eukaryotic organisms. Here, we identified the MAPK homologue in the HOG pathway of Coprinopsis cinerea, which was named CcSakA. Furthermore, during the development of the fruiting body, CcSakA was phosphorylated in the fast elongating apical part of the stipe, which meant that CcSakA was activated in the apical elongating stipe region of the fruiting body. The knockdown of CcSakA resulted in a shorter stipe of the fruiting body compared to the control strain, and the expression of phosphomimicking mutant CcSakA led to a longer stipe of the fruiting body compared to the control strain. The chitinase CcChiE1, which plays a key role during stipe elongation, was downregulated in the CcSakA knockdown strains and upregulated in the CcSakA phosphomimicking mutant strains. The results indicated that CcSakA participated in the elongation of stipes in the fruiting body development of C. cinerea by regulating the expression of CcChiE1. Analysis of the H2O2 concentration in different parts of the stipe showed that the oxidative stress in the elongating part of the stipe was higher than those in the non-elongating part. The results indicated that CcSakA of the HOG pathway may be activated by oxidative stress. Our results demonstrated that the HOG pathway transmits stress signals and regulates the expression of CcChiE1 during fruiting body development in C. cinerea.
Collapse
Affiliation(s)
- Jing Zhao
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Jing Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Yating Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Yu Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Jing Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Jingjing Bi
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Linna Lyu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Cigang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Correspondence: (C.Y.); (Z.L.)
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; (J.Z.); (J.Y.); (Y.C.); (Y.W.); (J.C.); (J.B.); (L.L.); (S.Y.)
- Correspondence: (C.Y.); (Z.L.)
| |
Collapse
|
29
|
Yoshimi A, Miyazawa K, Kawauchi M, Abe K. Cell Wall Integrity and Its Industrial Applications in Filamentous Fungi. J Fungi (Basel) 2022; 8:435. [PMID: 35628691 PMCID: PMC9148135 DOI: 10.3390/jof8050435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Signal transduction pathways regulating cell wall integrity (CWI) in filamentous fungi have been studied taking into account findings in budding yeast, and much knowledge has been accumulated in recent years. Given that the cell wall is essential for viability in fungi, its architecture has been analyzed in relation to virulence, especially in filamentous fungal pathogens of plants and humans. Although research on CWI signaling in individual fungal species has progressed, an integrated understanding of CWI signaling in diverse fungi has not yet been achieved. For example, the variety of sensor proteins and their functional differences among different fungal species have been described, but the understanding of their general and species-specific biological functions is limited. Our long-term research interest is CWI signaling in filamentous fungi. Here, we outline CWI signaling in these fungi, from sensor proteins required for the recognition of environmental changes to the regulation of cell wall polysaccharide synthesis genes. We discuss the similarities and differences between the functions of CWI signaling factors in filamentous fungi and in budding yeast. We also describe the latest findings on industrial applications, including those derived from studies on CWI signaling: the development of antifungal agents and the development of highly productive strains of filamentous fungi with modified cell surface characteristics by controlling cell wall biogenesis.
Collapse
Affiliation(s)
- Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; (A.Y.); (M.K.)
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Ken Miyazawa
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Laboratory of Filamentous Mycoses, Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Moriyuki Kawauchi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; (A.Y.); (M.K.)
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
30
|
MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in Metarhizium acridum. Microbiol Spectr 2022; 10:e0205121. [PMID: 35343772 PMCID: PMC9045129 DOI: 10.1128/spectrum.02051-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a conserved sensor kinase in the HOG-MAPK pathway, Sln1 plays distinct functions in different fungi. In this study, the roles of MaSln1 in Metarhizium acridum were analyzed using gene knockout and rescue strategies. Deletion of MaSln1 did not affect conidial germination, conidial yield, or resistance to chemical agents. However, fungal tolerance to heat shock and UV-B were significantly reduced after deletion of MaSln1. Insect bioassays showed that fungal pathogenicity was significantly impaired when MaSln1 was deleted. Further studies showed that MaSln1 did not affect either germination or appressorium formation of M. acridum on locust wings, but it significantly increased appressorium turgor pressure. In addition, disruption of MaSln1 resulted in a conidiation pattern shift in M. acridum. Microscopic observation revealed, however, that some genes located in the MAPK signaling pathway, including MaSho1, MaHog1, MaMk1, and MaSlt2, were not involved in the conidiation pattern shift on SYA medium (microcycle medium). Meanwhile, of the 143 differently expressed genes (DEGs) identified by RNA-seq, no genes related to the MAPK pathway were found, suggesting that MaSln1 regulation of the conidiation pattern shift was probably independent of the conserved MAPK signaling pathway. It was found that 22 of the 98 known DEGs regulated by MaSln1 were involved in mycelial growth, cell division, and cytoskeleton formation, indicating that MaSln1 likely regulates the expression of genes related to cell division and morphogenesis, thus regulating the conidiation pattern shift in M. acridum. IMPORTANCE The productivity and quality of conidia are both crucial for mycopesticides. In this study, we systematically analyzed the roles of MaSln1 in fungal pathogens. Most importantly, our results revealed that deletion of MaSln1 resulted in a conidiation pattern shift in M. acridum. However, some other genes, located in the MAPK signaling pathway, were not involved in the conidiation pattern shift. RNA-seq revealed no genes related to the MAPK pathway, suggesting that the regulation of the conidiation pattern shift by MaSln1 was probably independent of the conserved MAPK signaling pathway. This study provided a new insight into the functions of Sln1 and laid a foundation for exploring the mechanisms of conidiation pattern shifts in M. acridum.
Collapse
|
31
|
Kurian SM, Lichius A, Read ND. Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. J Fungi (Basel) 2022; 8:jof8010090. [PMID: 35050029 PMCID: PMC8780837 DOI: 10.3390/jof8010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is an important plant pathogen and an emerging opportunistic human pathogen. Germination of conidial spores and their fusion via conidial anastomosis tubes (CATs) are significant events during colony establishment in culture and on host plants and, hence, very likely on human epithelia. CAT fusion exhibited by conidial germlings of Fusarium species has been postulated to facilitate mitotic recombination, leading to heterokaryon formation and strains with varied genotypes and potentially increased virulence. Ca2+ signalling is key to many of the important physiological processes in filamentous fungi. Here, we tested pharmacological agents with defined modes of action in modulation of the mammalian Ca2+ signalling machinery for their effect on germination and CAT-mediated cell fusion in F. oxysporum. We found various drug-specific and dose-dependent effects. Inhibition of calcineurin by FK506 or cyclosporin A, as well as chelation of extracellular Ca2+ by BAPTA, exclusively inhibit CAT induction but not germ-tube formation. On the other hand, inhibition of Ca2+ channels by verapamil, calmodulin inhibition by calmidazolium, and inhibition of mitochondrial calcium uniporters by RU360 inhibited both CAT induction and germ-tube formation. Thapsigargin, an inhibitor of mammalian sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), partially inhibited CAT induction but had no effect on germ-tube formation. These results provide initial evidence for morphologically defining roles of Ca2+-signalling components in the early developmental stages of F. oxysporum colony establishment—most notably, the indication that calcium ions act as self-signalling molecules in this process. Our findings contribute an important first step towards the identification of Ca2+ inhibitors with fungas-specific effects that could be exploited for the treatment of infected plants and humans.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Correspondence:
| | - Alexander Lichius
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Nick D. Read
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
| |
Collapse
|
32
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
33
|
Omar HS, Abd El-Rahman SN, AlGhannam SM, Reyad NEHA, Sedeek MS. Antifungal Evaluation and Molecular Docking Studies of Olea europaea Leaf Extract, Thymus vulgaris and Boswellia carteri Essential Oil as Prospective Fungal Inhibitor Candidates. Molecules 2021; 26:6118. [PMID: 34684700 PMCID: PMC8539494 DOI: 10.3390/molecules26206118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/05/2022] Open
Abstract
Background: The present study investigated the antifungal activity and mode of action of four Olea europaea leaf extracts, Thymus vulgaris essential oil (EO), and Boswellia carteri EO against Fusarium oxysporum. Methods:Fusarium oxysporum Lactucae was detected with the internal transcribed spacer (ITS) region. The chemical compositions of chloroform and dichloromethane extracts of O. europaea leaves and T. vulgaris EO were analyzed using GC-MS analysis. In addition, a molecular docking analysis was used to identify the expected ligands of these extracts against eleven F. oxysporum proteins. Results: The nucleotide sequence of the F. oxysporum Lactucae isolate was deposited in GenBank with Accession No. MT249304.1. The T. vulgaris EO, chloroform, dichloromethane and ethanol efficiently inhibited the growth at concentrations of 75.5 and 37.75 mg/mL, whereas ethyl acetate, and B. carteri EO did not exhibit antifungal activity. The GC-MS analysis revealed that the major and most vital compounds of the T. vulgaris EO, chloroform, and dichloromethane were thymol, carvacrol, tetratriacontane, and palmitic acid. Moreover, molecular modeling revealed the activity of these compounds against F. oxysporum. Conclusions: Chloroform, dichloromethane and ethanol, olive leaf extract, and T. vulgaris EO showed a strong effect against F. oxysporum. Consequently, this represents an appropriate natural source of biological compounds for use in healthcare. In addition, homology modeling and docking analysis are the best analyses for clarifying the mechanisms of antifungal activity.
Collapse
Affiliation(s)
- Hanaa S. Omar
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- GMO Laboratory, Faculty of Agriculture, Cairo University, Research Park, CURP, Giza 12613, Egypt
| | - Soheir N. Abd El-Rahman
- Crops Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Sheikha M. AlGhannam
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Nour El-Houda A. Reyad
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Mohamed S. Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|
34
|
Gupta L, Vermani M, Kaur Ahluwalia S, Vijayaraghavan P. Molecular virulence determinants of Magnaporthe oryzae: disease pathogenesis and recent interventions for disease management in rice plant. Mycology 2021; 12:174-187. [PMID: 34552809 PMCID: PMC8451642 DOI: 10.1080/21501203.2020.1868594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Magnaporthe oryzae, causative agent of the rice blast disease, is a major concern for the loss in yield of rice crop across the globe. It is known for its characteristic melanised dome-shaped appressorium containing a dense melanin layer. The melanised layer is of considerable importance as it is required to generate turgor pressure for initiating peg formation, consequently rupturing the plant cuticle. Various virulence factors play an important role in the disease progression as well as pathogenesis of the fungus. Some of the proteins encoded by virulence genes are associated with signalling, secondary metabolism, protein deprivation, defence responses and conidiation. The purpose of this review is to describe various fungal virulence determinants and provide insights into the molecular mechanisms that are involved in progression of the disease. Besides, the recent molecular approaches being employed to combat the rice blast have also been elaborated.
Collapse
Affiliation(s)
- Lovely Gupta
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Maansi Vermani
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Simran Kaur Ahluwalia
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pooja Vijayaraghavan
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
35
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
36
|
Su X, Yan X, Chen X, Guo M, Xia Y, Cao Y. Calcofluor white hypersensitive proteins contribute to stress tolerance and pathogenicity in entomopathogenic fungus, Metarhizium acridum. PEST MANAGEMENT SCIENCE 2021; 77:1915-1924. [PMID: 33300230 DOI: 10.1002/ps.6218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fungal cell wall integrity is vital for fungal pathogenesis and stress tolerance. Calcofluor white (CFW), a cell wall perturbing agent, inhibits fungal growth by binding chitin in the cell wall. The roles of CFW sensitive proteins remain insufficiently understood in pathogenic fungi. RESULTS We investigated two calcofluor white hypersensitive proteins, MaCwh1 and MaCwh43, in the entomopathogenic fungus Metarhizium acridum. Both Green fluorescent protein (GFP)-tagged MaCwh1 and MaCwh43 localized at the endoplasmic reticulum. Our results showed that the ΔMacwh1 and ΔMacwh43 mutants were more sensitive to CFW and ultraviolet irradiation stress compared to wild-type and complement strains. ΔMacwh1 had a stronger sensitivity to these stresses than ΔMacwh43. Both ΔMacwh1 and ΔMacwh43 mutants showed smoother cell wall surface, and drastically reduced chitin and mannose glycoprotein level in the cell wall and glycerol level in conidia compared to wild type. Insect bioassay showed significantly attenuated virulence for both ΔMacwh1 and ΔMacwh43 mutants with impaired ability in penetrating the host cuticle. RNA-Seq analysis revealed that a large number of genes presumably involved in cell wall construction and modification, pathogenicity and stress response were down-regulated in both ΔMacwh1 and ΔMacwh43 mutants. CONCLUSIONS These findings demonstrate that both Macwh1 and Macwh43 affect the fungal cell wall ultrastructure and contribute to the stress tolerance and pest control potential in M. acrdium. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueling Su
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Xi Yan
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Xing Chen
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Mei Guo
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
37
|
Stępień Ł, Lalak-Kańczugowska J. Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Essential Roles of Two FRQ Proteins (Frq1 and Frq2) in Beauveria bassiana's Virulence, Infection Cycle, and Calcofluor-Specific Signaling. Appl Environ Microbiol 2021; 87:AEM.02545-20. [PMID: 33397694 DOI: 10.1128/aem.02545-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Two FRQ proteins (Frq1 and Frq2) distinct in molecular mass and structure coexist in Beauveria bassiana, an asexual insect-pathogenic fungus. Frq1 and Frq2 have been proven to have opposite nuclear rhythms that can persistently activate developmental activator genes and hence orchestrate nonrhythmic conidiation in vitro under light or in darkness. Here, we report the essentiality of either FRQ, but Frq2 being more important than Frq1, for the fungal virulence and infection cycle. The fungal virulence was attenuated significantly more in the absence of frq2 than in the absence of frq1 through either normal cuticle infection or cuticle-bypassing infection by intrahemocoel injection, accompanied by differentially reduced secretion of Pr1 proteases required for the cuticle infection and delayed development of hyphal bodies in vivo, which usually propagate by yeast-like budding in the host hemocoel to accelerate insect death from mycosis. Despite insignificant changes in radial growth under normal, oxidative, and hyperosmotic culture conditions, conidial yields of the Δfrq1 and Δfrq2 mutants on insect cadavers were sharply reduced, and the reduction increased with shortening daylight length on day 9 or 12 after death, indicating that both Frq1 and Frq2 are required for the fungal infection cycle in host habitats. Intriguingly, the Δfrq1 and Δfrq2 mutants showed hypersensitivity and high resistance to cell wall-perturbing calcofluor white, coinciding respectively with the calcofluor-triggered cells' hypo- and hyperphosphorylated signals of Slt2, a mitogen-activated protein kinase (MAPK) required for mediation of cell wall integrity. This finding offers a novel insight into opposite roles of Frq1 and Frq2 in calcofluor-specific signal transduction via the fungal Slt2 cascade.IMPORTANCE Opposite nuclear rhythms of two distinct FRQ proteins (Frq1 and Frq2) coexisting in an asexual fungal insect pathogen have been shown to orchestrate the fungal nonrhythmic conidiation in vitro in a circadian day independent of photoperiod change. This paper reports essential roles of both Frq1 and Frq2, but a greater role for Frq2, in sustaining the fungal virulence and infection cycle since either frq1 or frq2 deletion led to marked delay of lethal action against a model insect and drastic reduction of conidial yield on insect cadavers. Moreover, the frq1 and frq2 mutants display hypersensitivity and high resistance to cell wall perturbation and have hypo- and hyperphosphorylated MAPK/Slt2 in calcofluor white-triggered cells, respectively. These findings uncover a requirement of Frq1 and Frq2 for the fungal infection cycle in host habitats and provide a novel insight into their opposite roles in calcofluor-specific signal transduction through the MAPK/Slt2 cascade.
Collapse
|
39
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Silva LP, Horta MAC, Goldman GH. Genetic Interactions Between Aspergillus fumigatus Basic Leucine Zipper (bZIP) Transcription Factors AtfA, AtfB, AtfC, and AtfD. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:632048. [PMID: 37744135 PMCID: PMC10512269 DOI: 10.3389/ffunb.2021.632048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is an opportunistic fungus, capable of causing Invasive Aspergillosis in immunocompromised patients, recently transplanted or undergoing chemotherapy. In the present work, we continued the investigation on A. fumigatus AtfA-D transcription factors (TFs) characterizing possible genetic and physical interactions between them after normal growth and stressing conditions. We constructed double null mutants for all the possible combinations of ΔatfA-, -B, -C, and -D, and look into their susceptibility to different stressing conditions. Our results indicate complex genetic interactions among these TFs that could impact the response to different kinds of stressful conditions. AtfA-D interactions also affect the A. fumigatus virulence in Galleria mellonella. AtfA:GFP is ~97% located in the nucleus while about 20-30% of AtfB, -C, and -D:GFP locate into the nucleus in the absence of any stress. Under stressing conditions, AtfB, -C, and -D:GFP translocate to the nucleus about 60-80% upon the addition of sorbitol or H2O2. These four TFs are also interacting physically forming all the possible combinations of heterodimers. We also identified that AtfA-D physically interact with the MAPK SakA in the absence of any stress and upon osmotic and cell wall stresses. They are involved in the accumulation of trehalose, glycogen and metabolic assimilation of different carbon sources.
Collapse
Affiliation(s)
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Fernandes TR, Sánchez Salvador E, Tapia ÁG, Di Pietro A. Dual-specificity protein phosphatase Msg5 controls cell wall integrity and virulence in Fusarium oxysporum. Fungal Genet Biol 2020; 146:103486. [PMID: 33232812 DOI: 10.1016/j.fgb.2020.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are key signaling modules controlling development and virulence in fungal pathogens. Down-regulation of MAPK activity by protein phosphatases provides a critical layer of control during desensitization or adaptation to stimuli. In Saccharomyces cerevisiae, the dual-specificity phosphatase Msg5 dephosphorylates target threonine and tyrosine residues in the two MAPKs Mpk1 and Fus3, which regulate the cell wall integrity (CWI) and pheromone responses, respectively. Here we studied the role of the Msg5 ortholog in Fusarium oxysporum, a soilborne phytopathogen that infects host plants through the roots to cause vascular wilt and plant death. F. oxysporum mutants lacking Msg5 showed constitutively high levels of Mpk1 phosphorylation and increased sensitivity to the cell wall targeting compound Calcofluor White. Moreover, these mutants displayed reduced colony growth and conidiation. Importantly, msg5Δ mutants were impaired in hyphal chemotropism towards host plant roots and in virulence on tomato plants. These results reveal a key role of Msg5 in regulation of the CWI MAPK cascade of F. oxysporum as well as in infection-related signaling of this important fungal pathogen.
Collapse
Affiliation(s)
- Tânia R Fernandes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Encarnación Sánchez Salvador
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Ángela G Tapia
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
42
|
Katayama T, Bayram Ö, Mo T, Karahoda B, Valerius O, Takemoto D, Braus GH, Kitamoto K, Maruyama JI. Novel Fus3- and Ste12-interacting protein FsiA activates cell fusion-related genes in both Ste12-dependent and -independent manners in Ascomycete filamentous fungi. Mol Microbiol 2020; 115:723-738. [PMID: 33155715 DOI: 10.1111/mmi.14639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Abstract
Filamentous fungal cells, unlike yeasts, fuse during vegetative growth. The orthologs of mitogen-activated protein (MAP) kinase Fus3 and transcription factor Ste12 are commonly involved in the regulation of cell fusion. However, the specific regulatory mechanisms underlying cell fusion in filamentous fungi have not been revealed. In the present study, we identified the novel protein FsiA as an AoFus3- and AoSte12-interacting protein in the filamentous fungus Aspergillus oryzae. The expression of AonosA and cell fusion-related genes decreased upon fsiA deletion and increased with fsiA overexpression, indicating that FsiA is a positive regulator of cell fusion. In addition, the induction of cell fusion-related genes by fsiA overexpression was also observed in the Aoste12 deletion mutant, indicating that FsiA can induce the cell fusion-related genes in an AoSte12-independent manner. Surprisingly, the fsiA and Aoste12 double deletion mutant exhibited higher cell fusion efficiency and increased mRNA levels of the cell fusion-related genes as compared to the fsiA single deletion mutant, which revealed that AoSte12 represses the cell fusion-related genes in the fsiA deletion mutant. Taken together, our data demonstrate that FsiA activates the cell fusion-related genes by suppressing the negative function of AoSte12 as well as by an AoSte12-independent mechanism.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Taoning Mo
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Katsuhiko Kitamoto
- Pharmaceutical Medical Business Sciences, Nihon Pharmaceutical University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Carrillo AJ, Cabrera IE, Spasojevic MJ, Schacht P, Stajich JE, Borkovich KA. Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa. BMC Genomics 2020; 21:755. [PMID: 33138786 PMCID: PMC7607824 DOI: 10.1186/s12864-020-07131-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Background With 9730 protein-coding genes and a nearly complete gene knockout strain collection, Neurospora crassa is a major model organism for filamentous fungi. Despite this abundance of information, the phenotypes of these gene knockout mutants have not been categorized to determine whether there are broad correlations between phenotype and any genetic features. Results Here, we analyze data for 10 different growth or developmental phenotypes that have been obtained for 1168 N. crassa knockout mutants. Of these mutants, 265 (23%) are in the normal range, while 903 (77%) possess at least one mutant phenotype. With the exception of unclassified functions, the distribution of functional categories for genes in the mutant dataset mirrors that of the N. crassa genome. In contrast, most genes do not possess a yeast ortholog, suggesting that our analysis will reveal functions that are not conserved in Saccharomyces cerevisiae. To leverage the phenotypic data to identify pathways, we used weighted Partitioning Around Medoids (PAM) approach with 40 clusters. We found that genes encoding metabolic, transmembrane and protein phosphorylation-related genes are concentrated in subsets of clusters. Results from K-Means clustering of transcriptomic datasets showed that most phenotypic clusters contain multiple expression profiles, suggesting that co-expression is not generally observed for genes with shared phenotypes. Analysis of yeast orthologs of genes that co-clustered in MAPK signaling cascades revealed potential networks of interacting proteins in N. crassa. Conclusions Our results demonstrate that clustering analysis of phenotypes is a promising tool for generating new hypotheses regarding involvement of genes in cellular pathways in N. crassa. Furthermore, information about gene clusters identified in N. crassa should be applicable to other filamentous fungi, including saprobes and pathogens.
Collapse
Affiliation(s)
- Alexander J Carrillo
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ilva E Cabrera
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521, USA
| | - Patrick Schacht
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Katherine A Borkovich
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
44
|
Frawley D, Bayram Ö. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genet Biol 2020; 144:103469. [PMID: 32950720 DOI: 10.1016/j.fgb.2020.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are highly conserved from yeast to human and are required for the regulation of a multitude of biological processes in eukaryotes. A pentameric MAPK pathway known as the Fus3 pheromone module was initially characterised in Saccharomyces cerevisiae and was shown to regulate cell fusion and sexual development. Individual orthologous pheromone module genes have since been found to be highly conserved in fungal genomes and have been shown to regulate a diverse array of cellular responses, such as cell growth, asexual and sexual development, secondary metabolite production and pathogenicity. However, information regarding the assembly and structure of orthologous pheromone modules, as well as the mechanisms of signalling and their biological significance is limited, specifically in filamentous fungal species. Recent studies have provided insight on the utilization of the pheromone module as a central signalling hub for the co-ordinated regulation of fungal development and secondary metabolite production. Various proteins of this pathway are also known to regulate reproduction and virulence in a range of plant pathogenic fungi. In this review, we discuss recent findings that help elucidate the structure of the pheromone module pathway in a myriad of fungal species and its implications in the control of fungal growth, development, secondary metabolism and pathogenicity.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
45
|
Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources. mSphere 2020; 5:5/5/e00818-20. [PMID: 32938702 PMCID: PMC7494837 DOI: 10.1128/msphere.00818-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen.IMPORTANCE Aspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.
Collapse
|
46
|
Sun W, Liu L, Yu Y, Yu B, Liang C, Ying H, Liu D, Chen Y. Biofilm-Related, Time-Series Transcriptome and Genome Sequencing in Xylanase-Producing Aspergillus niger SJ1. ACS OMEGA 2020; 5:19737-19746. [PMID: 32803069 PMCID: PMC7424707 DOI: 10.1021/acsomega.0c02501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 05/15/2023]
Abstract
In this study, we found that biofilm formation is a critical factor affecting the activity of Aspergillus niger SJ1 xylanase. Xylanase activity increased 8.8% from 1046.88 to 1147.74 U/mL during A. niger SJ1 immobilized fermentation with biofilm formation. Therefore, we carried out the work of genomic analysis and biofilm-related time-series transcriptome analysis of A. niger SJ1 for better understanding of the ability of A. niger SJ to produce xylanase and biofilm formation. Genome annotation results revealed a complete biofilm polysaccharide component synthesis pathway in A. niger SJ1 and five proteins regarding xylanase synthesis. In addition, results of transcriptome analysis revealed that the genes involved in the synthesis of cell wall polysaccharides and amino acid anabolism were highly expressed in the biofilm. Furthermore, the expression levels of major genes in the gluconeogenesis pathway and mitogen-activated protein kinase pathway were examined.
Collapse
Affiliation(s)
- Wenjun Sun
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Li Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Ying Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Bin Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Caice Liang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
| | - Hanjie Ying
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Dong Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Yong Chen
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 210000, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210000, China
- . Phone: +86 25 86990001. Fax: +86 25 58139389
| |
Collapse
|
47
|
Mouhoumed AZ, Mou YN, Tong SM, Ying SH, Feng MG. Three proline rotamases involved in calcium homeostasis play differential roles in stress tolerance, virulence and calcineurin regulation of Beauveria bassiana. Cell Microbiol 2020; 22:e13239. [PMID: 32602171 DOI: 10.1111/cmi.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
FK506-sensitive proline rotamases (FPRs), also known as FK506-binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15-kD Fpr1, membrane-associated 14.78-kD Fpr2 and nuclear 50.43-kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect-pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+ , K+ , Mn2+ , Ca2+ , Cu2+ , metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+ , Mg2+ , Fe2+ , H2 O2 and cell wall-perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+ /K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.
Collapse
Affiliation(s)
- Amina-Zahra Mouhoumed
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Appl Microbiol Biotechnol 2020; 104:5711-5724. [PMID: 32405755 DOI: 10.1007/s00253-020-10659-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.
Collapse
|
49
|
Frawley D, Stroe MC, Oakley BR, Heinekamp T, Straßburger M, Fleming AB, Brakhage AA, Bayram Ö. The Pheromone Module SteC-MkkB-MpkB-SteD-HamE Regulates Development, Stress Responses and Secondary Metabolism in Aspergillus fumigatus. Front Microbiol 2020; 11:811. [PMID: 32457716 PMCID: PMC7223695 DOI: 10.3389/fmicb.2020.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
In order for eukaryotes to efficiently detect and respond to environmental stimuli, a myriad of protein signaling pathways are utilized. An example of highly conserved signaling pathways in eukaryotes are the mitogen-activated protein kinase (MAPK) pathways. In fungi, MAPK pathways have been shown to regulate a diverse array of biological processes, such as asexual and sexual development, stress responses and the production of secondary metabolites (SMs). In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module is utilized to regulate both development and SM production. This signaling cascade consists of the three kinases SteC, MkkB, and MpkB, as well as the SteD adaptor protein and the HamE scaffold. In this study, homologs of each of these proteins have been identified in the opportunistic human pathogen A. fumigatus. By performing epitope tagging and mass spectrometry experiments, we have shown that these proteins form a pentameric complex, similar to what is observed in A. nidulans. This complex has been shown to assemble in the cytoplasm and MpkB enters the nucleus, where it would presumably interact with various transcription factors. Pheromone module mutant strains exhibit drastic reductions in asexual sporulation, vegetative growth rate and production of SMs, such as gliotoxin. Mutants also display increased sensitivity to cell wall and oxidative stress agents. Overall, these data provide evidence of the existence of a conserved MAP kinase signaling pathway in Aspergillus species and suggest that this pathway is critical for the regulation of fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Maria Straßburger
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Özgür Bayram
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| |
Collapse
|
50
|
Frawley D, Greco C, Oakley B, Alhussain MM, Fleming AB, Keller NP, Bayram Ö. The tetrameric pheromone module SteC-MkkB-MpkB-SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in Aspergillus flavus. Cell Microbiol 2020; 22:e13192. [PMID: 32068947 PMCID: PMC7202998 DOI: 10.1111/cmi.13192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
Abstract
For eukaryotes like fungi to regulate biological responses to environmental stimuli, various signalling cascades are utilized, like the highly conserved mitogen‐activated protein kinase (MAPK) pathways. In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module regulates development and the production of secondary metabolites (SMs). This pathway consists five proteins, the three kinases SteC, MkkB and MpkB, the adaptor SteD and the scaffold HamE. In this study, homologs of these five pheromone module proteins have been identified in the plant and human pathogenic fungus Aspergillus flavus. We have shown that a tetrameric complex consisting of the three kinases and the SteD adaptor is assembled in this species. It was observed that this complex assembles in the cytoplasm and that MpkB translocates into the nucleus. Deletion of steC, mkkB, mpkB or steD results in abolishment of both asexual sporulation and sclerotia production. This complex is required for the positive regulation of aflatoxin production and negative regulation of various SMs, including leporin B and cyclopiazonic acid (CPA), likely via MpkB interactions in the nucleus. These data highlight the conservation of the pheromone module in Aspergillus species, signifying the importance of this pathway in regulating fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Berl Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mohamed M Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|