1
|
Duan K, Qin S, Cui F, Zhao L, Huang Y, Xu JR, Wang G. MeJA inhibits fungal growth and DON toxin production by interfering with the cAMP-PKA signaling pathway in the wheat scab fungus Fusarium graminearum. mBio 2025; 16:e0315124. [PMID: 39902906 PMCID: PMC11898702 DOI: 10.1128/mbio.03151-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Deoxynivalenol (DON), a mycotoxin primarily produced by Fusarium species, is commonly found in cereal grains and poses risks to human and animal health, as well as global grain trade. This study demonstrates that methyl jasmonate (MeJA), a natural plant hormone, inhibits the growth and conidiation of Fusarium graminearum. Importantly, MeJA significantly reduces DON production by suppressing TRI gene expression and toxisome formation. To explore the molecular mechanism, we identified MeJA-tolerant mutants, including a transcription factor MRT1 and cAMP-PKA pathway-related genes (FgGPA1 and FgSNT1). MeJA treatment reduced PKA activity and intracellular cAMP levels in F. graminearum, suggesting it targets the cAMP-PKA pathway. Notably, the MeJA-resistant mutant FgGPA1R178H enhanced fungal growth, DON production, and cAMP levels in the presence of MeJA. Exogenous cAMP alleviated MeJA's inhibitory effects on DON production, further supporting this pathway's involvement. Interestingly, MeJA had no effect on all three MAP kinase pathways (Mgv1, Gpmk1, and FgHog1). Truncated and phospho-mimicking mutations in Mrt1 or FgSnt1 conferred MeJA resistance, suggesting they may act downstream of the cAMP-PKA pathway. In conclusion, MeJA presents a promising approach to control F. graminearum growth and DON production.IMPORTANCEDeoxynivalenol (DON) poses significant risks to both human and animal health and severely disrupts the global grain trade due to its prevalence as a common contaminant in wheat grains. With rising public concern over food safety, finding effective and sustainable methods to reduce DON contamination becomes increasingly urgent. In our study, we found that methyl jasmonate (MeJA), a natural plant hormone, can effectively inhibit the vegetative growth of F. graminearum and significantly reduce its DON toxin production. To explore the underlying molecular mechanism, we identified the mutations in MeJA-tolerant mutants and revealed that MeJA effectively exerts its antifungal activities by inhibiting the cAMP-PKA signaling pathway in F. graminearum. Our work provides a promising natural solution to reduce DON toxin contamination in cereal grains, enhancing food safety while decreasing the reliance on chemical fungicides and their associated environmental impact.
Collapse
Affiliation(s)
- Kaili Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaozhe Qin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangling Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Liangyuan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongqing Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Guanghui Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Duan K, Shen Q, Wang Y, Xiang P, Shi Y, Yang C, Jiang C, Wang G, Xu JR, Zhang X. Herbicide 2,4-dichlorophenoxyacetic acid interferes with MAP kinase signaling in Fusarium graminearum and is inhibitory to fungal growth and pathogenesis. STRESS BIOLOGY 2023; 3:31. [PMID: 37676555 PMCID: PMC10442047 DOI: 10.1007/s44154-023-00109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
Plant hormones are important for regulating growth, development, and plant-pathogen interactions. Some of them are inhibitory to growth of fungal pathogens but the underlying mechanism is not clear. In this study, we found that hyphal growth of Fusarium graminearum was significantly reduced by high concentrations of IAA and its metabolically stable analogue 2,4-dichlorophenoxyacetic acid (2,4-D). Besides inhibitory effects on growth rate, treatments with 2,4-D also caused significant reduction in conidiation, conidium germination, and germ tube growth. Treatments with 2,4-D had no obvious effect on sexual reproduction but significantly reduced TRI gene expression, toxisome formation, and DON production. More importantly, treatments with 2,4-D were inhibitory to infection structure formation and pathogenesis at concentrations higher than 100 µM. The presence of 1000 µM 2,4-D almost completely inhibited plant infection and invasive growth. In F. graminearum, 2,4-D induced ROS accumulation and FgHog1 activation but reduced the phosphorylation level of Gpmk1 MAP kinase. Metabolomics analysis showed that the accumulation of a number of metabolites such as glycerol and arabitol was increased by 2,4-D treatment in the wild type but not in the Fghog1 mutant. Transformants expressing the dominant active FgPBS2S451D T455D allele were less sensitive to 2,4-D and had elevated levels of intracellular glycerol and arabitol induced by 2,4-D in PH-1. Taken together, our results showed that treatments with 2,4-D interfere with two important MAP kinase pathways and are inhibitory to hyphal growth, DON biosynthesis, and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Kaili Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qifang Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ping Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yutong Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenfei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Jiang H, Zhang Y, Wang W, Cao X, Xu H, Liu H, Qi J, Jiang C, Wang C. FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus Fusarium graminearum. Int J Mol Sci 2022; 23:10445. [PMID: 36142356 PMCID: PMC9499528 DOI: 10.3390/ijms231810445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the functions of FgCsn12. Although the ortholog of FgCsn12 in budding yeast was reported to have a direct interaction with Csn5, which served as the core subunit of the COP9 signalosome, the interaction between FgCsn12 and FgCsn5 was not detected through the yeast two-hybrid assay. The deletion of FgCSN12 resulted in slight defects in the growth rate, conidial morphology, and pathogenicity. Instead of forming four-celled, uninucleate ascospores, the Fgcsn12 deletion mutant produced oval ascospores with only one or two cells and was significantly defective in ascospore discharge. The 3'UTR of FgCsn12 was dispensable for vegetative growth but essential for sexual reproductive functions. Compared with those of the wild type, 1204 genes and 2240 genes were up- and downregulated over twofold, respectively, in the Fgcsn12 mutant. Taken together, FgCsn12 demonstrated an important function in the regulation of ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Zhu J, Hu D, Liu Q, Hou R, Xu JR, Wang G. Stage-Specific Genetic Interaction between FgYCK1 and FgBNI4 during Vegetative Growth and Conidiation in Fusarium graminearum. Int J Mol Sci 2022; 23:9106. [PMID: 36012372 PMCID: PMC9408904 DOI: 10.3390/ijms23169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
CK1 casein kinases are well conserved in filamentous fungi. However, their functions are not well characterized in plant pathogens. In Fusarium graminearum, deletion of FgYCK1 caused severe growth defects and loss of conidiation, fertility, and pathogenicity. Interestingly, the Fgyck1 mutant was not stable and often produced fast-growing spontaneous suppressors. Suppressor mutations were frequently identified in the FgBNI4 gene by sequencing analyses. Deletion of the entire FgBNI4 or disruptions of its conserved C-terminal region could suppress the defects of Fgyck1 in hyphal growth and conidiation, indicating the genetic relationship between FgYCK1 and FgBNI4. Furthermore, the Fgyck1 mutant showed defects in polarized growth, cell wall integrity, internalization of FgRho1 and vacuole fusion, which were all partially suppressed by deletion of FgBNI4. Overall, our results indicate a stage-specific functional relationship between FgYCK1 and FgBNI4, possibly via FgRho1 signaling for regulating polarized hyphal growth and cell wall integrity.
Collapse
Affiliation(s)
- Jindong Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Denghui Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Qianqian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Zhou Z, Yan H, Kim MS, Shim WB. Distinct Function of Mediator Subunits in Fungal Development, Stress Response, and Secondary Metabolism in Maize Pathogen Fusarium verticillioides. PHYTOPATHOLOGY 2022; 112:1730-1738. [PMID: 35271780 DOI: 10.1094/phyto-12-21-0495-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mediator is a nucleus-localized, multisubunit protein complex highly conserved across eukaryotes. It interacts with RNA polymerase II transcription machinery as well as various transcription factors to regulate gene expression. However, systematic characterization of the Mediator complex has not been performed in filamentous fungi. In our study, the goal was to investigate key biological functions of Mediator subunits in a mycotoxigenic plant pathogen Fusarium verticillioides. Although there is some level of divergence in the constituent subunits, the overall structure was conserved between Saccharomyces cerevisiae and F. verticillioides. We generated 11 Mediator subunit deletion mutants and characterized vegetative growth, conidia formation, environmental stress response, carbon and fatty acid use, virulence, and fumonisin B1 (FB1) biosynthesis. Each Mediator subunit deletion mutant showed deficiencies in at least three of the phenotypes tested, suggesting that each subunit has different principal functions in F. verticillioides development, metabolism, and virulence. The deletion of FvMed1 led to increased FB1 production, and we confirmed that FvMed1 is transported from the nucleus to the cytoplasm under fumonisin-producing conditions. Taken together, our study characterized various important functional roles for Mediator subunits in F. verticillioides and suggests that select subunits can perform unique cytoplasmic functions independent of the core Mediator in fungal nucleus.
Collapse
Affiliation(s)
- Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
- Hunan Agricultural University, College of Plant Protection & Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests, Furong District, Changsha, Hunan 410128, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, U.S.A
| | - Man S Kim
- Clinical Research Institute, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
6
|
Wang J, Zeng W, Cheng J, Xie J, Fu Y, Jiang D, Lin Y. lncRsp1, a long noncoding RNA, influences Fgsp1 expression and sexual reproduction in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2022; 23:265-277. [PMID: 34841640 PMCID: PMC8743023 DOI: 10.1111/mpp.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulators of gene expression in many biological processes, but their biological functions remain largely unknown, especially in fungi. Fusarium graminearum is an important pathogen that causes the destructive disease Fusarium head blight (FHB) or head scab disease on wheat and barley. In our previous RNA sequencing (RNA-Seq) study, we discovered that lncRsp1 is an lncRNA that is located +99 bp upstream of a putative sugar transporter gene, Fgsp1, with the same transcription direction. Functional studies revealed that ΔlncRsp1 and ΔFgsp1 were normal in growth and conidiation but had defects in ascospore discharge and virulence on wheat coleoptiles. Moreover, lncRsp1 and Fgsp1 were shown to negatively regulate the expression of several deoxynivalenol (DON) biosynthesis genes, TRI4, TRI5, TRI6, and TRI13, as well as DON production. Further analysis showed that the overexpression of lncRsp1 enhanced the ability of ascospore release and increased the mRNA expression level of the Fgsp1 gene, while lncRsp1-silenced strains reduced ascospore discharge and inhibited Fgsp1 expression during the sexual reproduction stage. In addition, the lncRsp1 complementary strains lncRsp1-LC-1 and lncRsp1-LC-2 restored ascospore discharge to the level of the wild-type strain PH-1. Taken together, our results reveal the distinct and specific functions of lncRsp1 and Fgsp1 in F. graminearum and principally demonstrate that lncRsp1 can affect the release of ascospores by regulating the expression of Fgsp1.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Wenping Zeng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Environment Change and Resources Use in Beibu GulfMinistry of EducationNanning Normal UniversityNanningChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yanping Fu
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yang Lin
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Liang L, Fu Y, Deng S, Wu Y, Gao M. Genomic, Antimicrobial, and Aphicidal Traits of Bacillus velezensis ATR2, and Its Biocontrol Potential against Ginger Rhizome Rot Disease Caused by Bacillus pumilus. Microorganisms 2021; 10:63. [PMID: 35056513 PMCID: PMC8778260 DOI: 10.3390/microorganisms10010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ginger rhizome rot disease, caused by the pathogen Bacilluspumilus GR8, could result in severe rot of ginger rhizomes and heavily threaten ginger production. In this study, we identified and characterized a new Bacillus velezensis strain, designated ATR2. Genome analysis revealed B. velezensis ATR2 harbored a series of genes closely related to promoting plant growth and triggering plant immunity. Meanwhile, ten gene clusters involved in the biosynthesis of various secondary metabolites (surfactin, bacillomycin, fengycin, bacillibactin, bacilysin, difficidin, macrolactin, bacillaene, plantazolicin, and amylocyclicin) and two clusters encoding a putative lipopeptide and a putative phosphonate which might be explored as novel bioactive compounds were also present in the ATR2 genome. Moreover, B. velezensis ATR2 showed excellent antagonistic activities against multiple plant pathogenic bacteria, plant pathogenic fungi, human pathogenic bacteria, and human pathogenic fungus. B. velezensis ATR2 was also efficacious in control of aphids. The antagonistic compound from B. velezensis ATR2 against B.pumilus GR8 was purified and identified as bacillomycin D. In addition, B. velezensis ATR2 exhibited excellent biocontrol efficacy against ginger rhizome rot disease on ginger slices. These findings showed the potential of further applications of B. velezensis ATR2 as a biocontrol agent in agricultural diseases and pests management.
Collapse
Affiliation(s)
- Leiqin Liang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (L.L.); (Y.F.); (S.D.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (L.L.); (Y.F.); (S.D.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sangsang Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (L.L.); (Y.F.); (S.D.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (L.L.); (Y.F.); (S.D.); (Y.W.)
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (L.L.); (Y.F.); (S.D.); (Y.W.)
| |
Collapse
|
8
|
Phasha MM, Wingfield BD, Wingfield MJ, Coetzee MPA, Hammerbacher A, Steenkamp ET. Deciphering the effect of FUB1 disruption on fusaric acid production and pathogenicity in Fusarium circinatum. Fungal Biol 2021; 125:1036-1047. [PMID: 34776231 DOI: 10.1016/j.funbio.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Fusarium circinatum is an important pathogen of pine trees. However, little is known regarding the molecular processes underlying its pathogenesis. We explored the potential role of the phytotoxin fusaric acid (FA) in the pathogenicity of the fungus. FA is produced by products of the FUB biosynthesis gene cluster, containing FUB1-12. Of these, FUB1 encodes the core polyketide synthase, which we disrupted. We used the resulting mutant strain to investigate whether FUB1 and FA production play a role in the virulence of F. circinatum on pine. Our results showed that FA production was abolished both in vitro and in planta. However, bikaverin production was increased in the knockout mutant. FUB1 disruption also corresponded with downregulation of a F. circinatum homologue of LaeA, a master transcriptional regulator of secondary metabolism. Lesion lengths produced by the FUB1 knockout mutant on inoculated Pinus patula seedlings were significantly smaller than those produced by the wild type strain. Collectively, these results show that FUB1 plays a role in FA production in F. circinatum, and that this gene contributes to the aggressiveness of F. circinatum on P. patula. This study will contribute to the limited knowledge we have about the molecular basis of pathogenicity in this fungus.
Collapse
Affiliation(s)
- M M Phasha
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - M P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - A Hammerbacher
- Department of Zoology and Entomology, FABI, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - E T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
9
|
Liang J, Fu X, Hao C, Bian Z, Liu H, Xu JR, Wang G. FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction. Environ Microbiol 2021; 23:5052-5068. [PMID: 33645871 DOI: 10.1111/1462-2920.15446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In wheat head blight fungus Fusarium graminearum, A-to-I RNA editing occurs specifically during sexual reproduction. Among the genes with premature stop codons (PSCs) that require RNA editing to encode full-length proteins, FgBUD14 also had alternative splicing events in perithecia. In this study, we characterized the functions of FgBUD14 and its post-transcriptional modifications during sexual reproduction. The Fgbud14 deletion mutant was slightly reduced in growth, conidiation and virulence. Although deletion of FgBUD14 had no effect on perithecium morphology, the Fgbud14 mutant was defective in crozier formation and ascus development. The FgBud14-GFP localized to the apex of ascogenous hyphae and croziers, which may be related to its functions during early sexual development. During vegetative growth and asexual reproduction, FgBud14-GFP localized to hyphal tips and both ends of conidia. Furthermore, mutations blocking the splicing of intron 2 that has the PSC site had no effect on the function of FgBUD14 during sexual reproduction but caused a similar defect in growth with Fgbud14 mutant. Expression of the non-editable FgBUD14Intron2-TAA mutant allele also failed to complement the Fgbud14 mutant. Taken together, FgBUD14 plays important roles in ascus development, and both alternative splicing and RNA editing occur specifically to its transcripts during sexual reproduction in F. graminearum.
Collapse
Affiliation(s)
- Jie Liang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianhui Fu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Huiquan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Ras2 is important for growth and pathogenicity in Fusarium circinatum. Fungal Genet Biol 2021; 150:103541. [PMID: 33639303 DOI: 10.1016/j.fgb.2021.103541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
In this study, we investigated to possible role of Ras2 in Fusarium circinatum- a fungus that causes pine pitch canker disease on many different pine species and has a wide geographic distribution. This protein is encoded by the RAS2 gene and has been shown to control growth and pathogenicity in a number of fungi in a mitogen-activated protein kinase- and/or cyclic adenosyl monophosphate pathway-dependent manner. The aim was therefore to characterize the phenotypes of RAS2 gene knockout and complementation mutants of F. circinatum. These mutants were generated by transforming protoplasts of the fungus with suitable split-marker constructs. The mutant strains, together with the wild type strain, were used in growth studies as well as pathogenicity assays on Pinus patula seedlings. Results showed that the knockout mutant strain produced significantly smaller lesions compared to the complementation mutant and wild type strains. Growth studies also showed significantly smaller colonies and delayed conidial germination in the knockout mutant strain compared to the complement mutant and wild type strains. Interestingly, the knockout mutant strain produced more macroconidia than the wild type strain. Collectively, these results showed that Ras2 plays an important role in both growth and pathogenicity of F. circinatum. Future studies will seek to determine the pathway(s) through which Ras2 controls these traits in F. circinatum.
Collapse
|
11
|
Wang J, Zeng W, Xie J, Fu Y, Jiang D, Lin Y, Chen W, Cheng J. A novel antisense long non-coding RNA participates in asexual and sexual reproduction by regulating the expression of GzmetE in Fusarium graminearum. Environ Microbiol 2021; 23:4939-4955. [PMID: 33438341 DOI: 10.1111/1462-2920.15399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/09/2021] [Indexed: 11/27/2022]
Abstract
Fusarium graminearum is an important worldwide pathogen that causes Fusarium head blight in wheat, barley, maize and other grains. LncRNAs play important roles in many biological processes, but little is known about their functions and mechanisms in filamentous fungi. Here, we report that a natural antisense RNA, GzmetE-AS, is transcribed from the opposite strand of GzmetE. GzmetE encodes a homoserine O-acetyltransferase, which is important for sexual development and plant infection. The expression of GzmetE-AS was increased significantly during the conidiation stage, while GzmetE was upregulated in the late stage of sexual reproduction. Overexpression of GzmetE-AS inhibited the transcription of GzmetE. In contrast, the expression of GzmetE was significantly increased in GzmetE-AS transcription termination strain GzmetE-AS-T. Furthermore, GzmetE-AS-T produced more perithecia and facilitated the ascospore discharge, resembling the phenotype of GzmetE overexpressing strains. However, overexpression of GzmetE-AS in ∆dcl1/2 strain cannot inhibit the expression of GzmetE, and the GzmetE nat-siRNA is also significantly reduced in ∆dcl1/2 mutant. Taken together, we have identified a novel antisense lncRNA GzmetE-AS, which is involved in asexual and sexual reproduction by regulating its antisense gene GzmetE through RNAi pathway. Our findings reveal that the lncRNA plays critical roles in the development of F. graminearum.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenping Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Yin J, Hao C, Niu G, Wang W, Wang G, Xiang P, Xu JR, Zhang X. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environ Microbiol 2020; 22:5373-5386. [PMID: 33000483 DOI: 10.1111/1462-2920.15266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Ascospores are the primary inoculum in Fusarium graminearum, a causal agent of wheat head blight. In a previous study, FgPAL1 was found to be upregulated in the Fgama1 mutant and important for ascosporogenesis. However, the biological function of this well-conserved gene in filamentous ascomycetes is not clear. In this study, we characterized its functions in growth, differentiation and pathogenesis. The Fgpal1 mutant had severe growth defects and often displayed abnormal hyphal tips. It was defective in infectious growth in rachis tissues and spreading in wheat heads. The Fgpal1 mutant produced conidia with fewer septa and more nuclei per compartment than the wild type. In actively growing hyphal tips, FgPal1-GFP mainly localized to the subapical collar and septa. The FgPal1 and LifeAct partially co-localized at the subapical region in an interdependent manner. The Fgpal1 mutant was normal in meiosis with eight nuclei in developing asci but most asci were aborted. Taken together, our results showed that FgPal1 plays a role in maintaining polarized tip growth and coordination between nuclear division and cytokinesis, and it is also important for infectious growth and developments of ascospores by the free cell formation process.
Collapse
Affiliation(s)
- Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
The SR-protein FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1 in Fusarium graminearum. Curr Genet 2020; 66:607-619. [PMID: 32040734 DOI: 10.1007/s00294-020-01054-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Serine/arginine (SR) proteins play significant roles in pre-mRNA splicing in eukaryotes. To investigate how gene expression influences fungal development and pathogenicity in Fusarium graminearum, a causal agent of Fusarium head blight (FHB) of wheat and barley, our previous study identified a SR protein FgSrp1 in F. graminearum, and showed that it is important for conidiation, plant infection and pre-mRNA processing. In this study, we identified another SR protein FgSrp2 in F. graminearum, which is orthologous to Schizosaccharomyces pombe Srp2. Our data showed that, whereas yeast Srp2 is essential for growth, deletion of FgSRP2 resulted in only slight defects in vegetative growth and perithecia melanization. FgSrp2 localized to the nucleus and both its N- and C-terminal regions were important for the localization to the nucleus. FgSrp2 interacted with FgSrp1 to form a complex in vivo. Double deletion of FgSRP1 and FgSRP2 revealed that they had overlapping functions in vegetative growth and sexual reproduction. RNA-seq analysis revealed that, although deletion of FgSRP2 alone had minimal effects, deletion of both FgSRP1 and FgSRP2 caused significant changes in gene transcription and RNA splicing. Overall, our results indicated that FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1.
Collapse
|
14
|
Ding J, Lin H, Feng M, Ying S. Mbp1, a component of the MluI cell cycle box‐binding complex, contributes to morphological transition and virulence in the filamentous entomopathogenic fungus
Beauveria bassiana. Environ Microbiol 2019; 22:584-597. [DOI: 10.1111/1462-2920.14868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jin‐Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Hai‐Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Ming‐Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Sheng‐Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
15
|
Qin J, Wu M, Zhou S. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Curr Genet 2019; 66:517-529. [PMID: 31728616 DOI: 10.1007/s00294-019-01043-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/24/2022]
Abstract
Fusarium graminearum is a destructive fungal pathogen and a major cause of Fusarium head blight (FHB) which results in severe grain yield losses and quality reduction. Additionally, the pathogen produces mycotoxins during plant infection, which are harmful to the health of humans and livestock. As it is well known that lysine acetyltransferase complexes play important roles in pathogenesis, the roles of the Eaf6 homolog-containing complex have not been reported in fungal pathogen. In this study, a Eaf6 homolog FgEaf6 was identified in F. graminearum. To investigate the functions of FgEaf6, the gene was deleted using the split-marker method. ΔFgEaf6 mutant exhibited manifold defects in hyphal growth, conidial septation, asexual and sexual reproduction. Moreover, the virulence of the ΔFgEaf6 mutant was drastically reduced in both wheat heads and wheat coleoptiles. However, the FgEaf6 gene deletion did not impact DON production. An FgEaf6-gfp fusion localized to the nucleus and a conserved coiled-coil (C-C) domain was predicted in the sequence. Mutants with deletions in the C-C domain displayed similar defects during development and virulence as observed in the ΔFgEaf6 mutant. Moreover, the truncated gene was cytoplasm localized. In conclusion, the FgEaf6 encodes a nuclear protein, which plays key regulatory roles in hyphal growth, conidial septation, asexual/sexual reproduction, and the virulence of F. graminearum. The C-C is an indispensable domain in the gene. This is the first report on Eaf6 homolog functioning in virulence of fungal pathogen.
Collapse
Affiliation(s)
- Jiaxing Qin
- College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109, Shandong, China
| | - Mengchun Wu
- State Key Laboratory of Crop Stress Biology for Arid Aeras, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shanyue Zhou
- College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109, Shandong, China.
| |
Collapse
|
16
|
Comparative acetylome analysis reveals the potential roles of lysine acetylation for DON biosynthesis in Fusarium graminearum. BMC Genomics 2019; 20:841. [PMID: 31718553 PMCID: PMC6852988 DOI: 10.1186/s12864-019-6227-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Fusarium graminearum is a destructive fungal pathogen of wheat, barley and other small grain cereals. During plant infection, the pathogen produces trichothecene mycotoxin deoxynivalenol (DON), which is harmful to human and livestock. FgGCN5 encodes a GCN5 acetyltransferase. The gene deletion mutant Fggcn5 failed to produce DON. We assumed that lysine acetylation might play a key regulatory role in DON biosynthesis in the fungus. Results In this study, the acetylome comparison between Fggcn5 mutant and wild-type strain PH-1 was performed by using affinity enrichment and high resolution LC-MS/MS analysis. Totally, 1875 acetylated proteins were identified in Fggcn5 mutant and PH-1. Among them, 224 and 267 acetylated proteins were identified exclusively in Fggcn5 mutant and PH-1, respectively. Moreover, 95 differentially acetylated proteins were detected at a significantly different level in the gene deletion mutant:43 were up-regulated and 52 were down-regulated. GO enrichment and KEGG-pathways enrichment analyses revealed that acetylation plays a key role in metabolism process in F. graminearum. Conclusions Seeing that the gens playing critical roles in DON biosynthesis either in Fggcn5 mutant or PH-1. Therefore, we can draw the conclusion that the regulatory roles of lysine acetylation in DON biosynthesis in F. graminearum results from the positive and negative regulation of the related genes. The study would be a foundation to insight into the regulatory mechanism of lysine acetylation on DON biosynthesis.
Collapse
|
17
|
Wang H, Chen D, Li C, Tian N, Zhang J, Xu JR, Wang C. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genet Biol 2019; 132:103251. [PMID: 31319136 DOI: 10.1016/j.fgb.2019.103251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/06/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
The filamentous ascomycete Fusarium graminearum contains two β-tubulin genes TUB1 and TUB2 that differ in functions during vegetative growth and sexual reproduction. To further characterize their functional relationship, in this study we determined the co-localization of Tub1 and Tub2 and assayed their expression levels in different mutants and roles in DON production. Tub1 co-localized with Tub2 to the same regions of microtubules in conidia, hyphae, and ascospores. Whereas deletion of TUB1 had no obvious effect on the transcription of TUB2 and two α-tubulin genes (TUB4 and TUB5), the tub2 mutant was up-regulated in TUB1 transcription. To assay their protein expression levels, polyclonal antibodies that could specifically detect four α- and β-tubulin proteins were generated. Western blot analyses showed that the abundance of Tub1 proteins was increased in tub2 but reduced in tub4 and tub5 mutants. Interestingly, protein expression of Tub4 and Tub5 was decreased in the tub1 mutant in comparison with the wild type, despite a lack of obvious changes in their transcription. In contrast, deletion of TUB2 had no effect on translation of TUB4 and TUB5. Ectopic expression of Tub2-mCherry partially recovered the growth defect of the tub1 mutant but did not rescue its defect in sexual reproduction. Expression of Tub1-GFP in the tub2 mutant also partially rescued its defects in vegetative growth, suggesting that disturbance in the balance of α- and β-tubulins contributes to mutant defects. The tub2 but not tub1 mutant was almost blocked in DON biosynthesis. Expression of TRI genes, toxisome formation, and DON-related cellular differentiation were significantly reduced in the tub2 mutant. Overall, our results showed that Tub1 and Tub2 share similar subcellular localization and have overlapping functions during vegetative growth but they differ in functions in DON production and ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengliang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Neng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Hao C, Yin J, Sun M, Wang Q, Liang J, Bian Z, Liu H, Xu J. The meiosis‐specific APC activator
FgAMA1
is dispensable for meiosis but important for ascosporogenesis in
Fusarium graminearum. Mol Microbiol 2019; 111:1245-1262. [DOI: 10.1111/mmi.14219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| |
Collapse
|
19
|
Chen D, Wu C, Hao C, Huang P, Liu H, Bian Z, Xu JR. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environ Microbiol 2018; 20:4009-4021. [PMID: 30307105 DOI: 10.1111/1462-2920.14441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
The wheat head blight fungus Fusarium graminearum has two highly similar beta-tubulin genes with overlapping functions during vegetative growth but only TUB1 is important for sexual reproduction. To better understand their functional divergence during ascosporogenesis, in this study we characterized the sequence elements important for stage-specific functions of TUB1. Deletion of TUB1 blocked the late but not initial stages of perithecium formation. Perithecia formed by tub1 mutant had limited ascogenous hyphae and failed to develop asci. Silencing of TUB1 by MSUD also resulted in defects in ascospore formation. Interestingly, the 3'-UTR of TUB1 was dispensable for growth but essential for its function during sexual reproduction. RIP mutations that specifically affected Tub1 functions during sexual reproduction also were identified in two ascospore progeny. Furthermore, site-directed mutagenesis showed that whereas the non-editable mutations at three A-to-I RNA editing sites had no effects, the N347D (not T362D or I368V) edited mutation affected ascospore development. In addition, the F167Y, but not E198K or F200Y, mutation in TUB1 conferred tolerance to carbendazim and caused a minor defect in sexual reproduction. Taken together, our data indicate TUB1 plays an essential role in ascosporogenesis and sexual-specific functions of TUB1 require stage-specific RNA processing and Tub1 expression.
Collapse
Affiliation(s)
- Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Wang G, Sun P, Gong Z, Gu L, Lou Y, Fang W, Zhang L, Su L, Yang T, Wang B, Zhou J, Xu JR, Wang Z, Zheng W. Srk1 kinase, a SR protein-specific kinase, is important for sexual reproduction, plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2018; 20:3261-3277. [DOI: 10.1111/1462-2920.14299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Guanghui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
- Institute of Oceanography; Minjiang University; Fuzhou China
| | - Peng Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Ziwen Gong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Center (BFPC), Haixia Institute of Science and Technology; Fujian Agriculture and Forestry University; Fuzhou China
| | - Yi Lou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Wenqin Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Lianhu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Li Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas; College of Plant Protection, Northwest A&F University; Yangling Shaanxi China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
- Institute of Oceanography; Minjiang University; Fuzhou China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
21
|
Li C, Zhang Y, Wang H, Chen L, Zhang J, Sun M, Xu J, Wang C. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:909-921. [PMID: 28665481 PMCID: PMC6638095 DOI: 10.1111/mpp.12576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab disease and a producer of deoxynivalenol (DON) mycotoxins. Treatment with exogenous cyclic adenosine monophosphate (cAMP) increases its DON production. In this study, to better understand the role of the cAMP-protein kinase A (PKA) pathway in F. graminearum, we functionally characterized the PKR gene encoding the regulatory subunit of PKA. Mutants deleted of PKR were viable, but showed severe defects in growth, conidiation and plant infection. The pkr mutant produced compact colonies with shorter aerial hyphae with an increased number of nuclei in hyphal compartments. Mutant conidia were morphologically abnormal and appeared to undergo rapid autophagy-related cell death. The pkr mutant showed blocked perithecium development, but increased DON production. It had a disease index of less than unity and failed to spread to neighbouring spikelets. The mutant was unstable and spontaneous suppressors with a faster growth rate were often produced on older cultures. A total of 67 suppressor strains that grew faster than the original mutant were isolated. Three showed a similar growth rate and colony morphology to the wild-type, but were still defective in conidiation. Sequencing analysis with 18 candidate PKA-related genes in three representative suppressor strains identified mutations only in the CPK1 catalytic subunit gene. Further characterization showed that 10 of the other 64 suppressor strains also had mutations in CPK1. Overall, these results showed that PKR is important for the regulation of hyphal growth, reproduction, pathogenesis and DON production, and mutations in CPK1 are partially suppressive to the deletion of PKR in F. graminearum.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Yonghui Zhang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Jin‐Rong Xu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| |
Collapse
|
22
|
Dong C, Wu Y, Gao J, Zhou Z, Mu C, Ma P, Chen J, Wu J. Field Inoculation and Classification of Maize Ear Rot Caused by Fusarium verticillioides. Bio Protoc 2018; 8:e3099. [DOI: 10.21769/bioprotoc.3099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 11/02/2022] Open
|
23
|
Zhang X, Liu W, Li Y, Li G, Xu JR. Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae. Environ Microbiol 2017; 19:4190-4204. [PMID: 28799700 DOI: 10.1111/1462-2920.13884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Abstract
The Pmk1 and Mps1 MAP kinases are essential for appressorium formation and plant infection in Magnaporthe oryzae. However, their exact roles during invasive growth are not clear because pmk1 and mps1 mutants are defective in penetration. To further characterize their functions after penetration, in this study we expressed the Pseudomonas syringae effector HopAI known to inactivate plant MAP kinases in M. oryzae. Constitutive expression of HopAI with the RP27 or TrpC promoter resulted in defects in hyphal growth, conidiation, appressorium penetration and pathogenicity, which is similar to the phenotype of the mps1 mutant. HopAI interacted strongly with Mps1 in vivo and expression of dominant active MKK2 partially suppressed the defects of PRP27 -HopAI transformants, which were significantly reduced in Mps1 phosphorylation. When the infection-specific MIR1 (Magnaporthe-infection-related gene-1) promoter was used to express HopAI, PMIR1 -HopAI transformants were defective in the spreading of invasive hyphae and elicited strong defense responses in penetrated plant cells. Expression of HopAI in Fusarium graminearum also mainly affected the activation of Mgv1, an Mps1 orthologue. Taken together, our results showed that Mps1 is the major intracellular target of HopAI when it is overexpressed, and MAP kinase signalling is important for cell-to-cell movement of invasive hyphae in M. oryzae.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,College of Plant Protection, Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wende Liu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Guotian Li
- College of Plant Protection, Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,College of Plant Protection, Purdue-NWAFU Joint Research Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum. Sci Rep 2017; 7:4617. [PMID: 28676631 PMCID: PMC5496914 DOI: 10.1038/s41598-017-04960-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ascospores are the primary inoculum in the wheat scab fungus Fusarium graminearum that was recently shown to have sexual stage-specific A-to-I RNA editing. One of the genes with premature-stop-codons requiring A-to-I editing to encode full-length functional proteins is AMD1 that encodes a protein with a major facilitator superfamily (MFS) domain. Here, we characterized the functions of AMD1 and its UAG to UGG editing event. The amd1 deletion mutant was normal in growth and conidiation but defective in ascospore discharge due to the premature breakdown of its ascus wall in older perithecia, which is consistent with the specific expression of AMD1 at later stages of sexual development. Expression of the wild-type or edited allele of AMD1 but not un-editable allele rescued the defects of amd1 in ascospore discharge. Furthermore, Amd1-GFP localized to the ascus membrane and Amd1 orthologs are only present in ascocarp-forming fungi that physically discharge ascospores. Interestingly, deletion of AMD1 results in the up-regulation of a number of genes related to transporter activity and membrane functions. Overall, these results indicated that Amd1 may play a critical role in maintaining ascus wall integrity during ascus maturation, and A-to-I editing of its transcripts is important for ascospore discharge in F. graminearum.
Collapse
|
26
|
A Gin4-Like Protein Kinase GIL1 Involvement in Hyphal Growth, Asexual Development, and Pathogenesis in Fusarium graminearum. Int J Mol Sci 2017; 18:ijms18020424. [PMID: 28212314 PMCID: PMC5343958 DOI: 10.3390/ijms18020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/23/2022] Open
Abstract
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) on wheat and barley. In a previous study, a GIN4-like protein kinase gene, GIL1, was found to be important for plant infection and sexual reproduction. In this study we further characterized the functions of GIL1 kinase in different developmental processes. The Δgil1 mutants were reduced in growth, conidiation, and virulence, and formed whitish and compact colonies. Although phialide formation was rarely observed in the mutants, deletion of GIL1 resulted in increased hyphal branching and increased tolerance to cell wall and cell membrane stresses. The Δgil1 mutants produced straight, elongated conidia lacking of distinct foot cells and being delayed in germination. Compared with the wild type, some compartments in the vegetative hyphae of Δgil1 mutants had longer septal distances and increased number of nuclei, suggesting GIL1 is related to cytokinesis and septation. Localization of the GIL1-GFP fusion proteins to the septum and hyphal branching and fusion sites further supported its roles in septation and branching. Overall, our results indicate that GIL1 plays a role in vegetative growth and plant infection in F. graminearum, and is involved in septation and hyphal branching.
Collapse
|
27
|
Dweba C, Figlan S, Shimelis H, Motaung T, Sydenham S, Mwadzingeni L, Tsilo T. Fusarium head blight of wheat: Pathogenesis and control strategies. CROP PROTECTION 2017. [PMID: 0 DOI: 10.1016/j.cropro.2016.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
28
|
Xie Q, Chen A, Zheng W, Xu H, Shang W, Zheng H, Zhang D, Zhou J, Lu G, Li G, Wang Z. Endosomal sorting complexes required for transport-0 is essential for fungal development and pathogenicity in Fusarium graminearum. Environ Microbiol 2016; 18:3742-3757. [PMID: 26971885 DOI: 10.1111/1462-2920.13296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/30/2016] [Accepted: 03/09/2016] [Indexed: 01/19/2023]
Abstract
Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The vacuolar protein sorting (Vps) protein Vps27 is a component of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway during endocytosis. In this study, we investigated the function of FgVps27 using a gene replacement strategy. The FgVPS27 deletion mutant (ΔFgvps27) exhibited a reduction in growth rate, aerial hyphae formation and hydrophobicity. It also showed increased sensitivity to cell wall-damaging agents and to osmotic stresses. In addition, FgHog1, the critical component of high osmolarity glycerol response pathway, was mis-localized in the ΔFgvps27 mutant upon NaCl treatment. Furthermore, the ΔFgvps27 mutant was defective in conidial production and was unable to generate perithecium in sexual reproduction. The depletion of FgVPS27 also caused a significant reduction in virulence. Further analysis by domain-specific deletion revealed that the FYVE domain was essential for the FgVps27 function and was necessary for the proper localization of FgVps27-GFP and endocytosis. Another component of ESCRT-0, the FgVps27-interacting partner FgHse1, also played an important role in F. graminearum development and pathogenesis. Overall, our results indicate that ESCRT-0 components play critical roles in a variety of cellular and biological processes.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaijian Xu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjie Shang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu JR. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ Microbiol 2016; 18:3689-3701. [PMID: 26940955 DOI: 10.1111/1462-2920.13279] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
Abstract
The biosynthesis of mycotoxin deoxynivalenol (DON) in Fusarium graminearum is regulated by two pathway-specific transcription factors Tri6 and Tri10 and affected by various host and environmental factors. In this study, we showed that cyclic adenosine monophosphate (cAMP) treatment induced DON production by stimulating TRI gene expression and DON-associated cellular differentiation in F. graminearum. Interestingly, exogenous cAMP had no effects on the tri6 mutant but partially recovered the defect of tri10 mutant in DON biosynthesis. Although the two cAMP phosphodiesterase genes PDE1 and PDE2 had overlapping functions in vegetative growth, conidiation, sexual reproduction and plant infection, deletion of PDE2 but not PDE1 activated intracellular PKA activities and increased DON production. Whereas the tri6 pde2 mutant failed to produce DON, the tri10 pde2 double mutant produced a significantly higher level of DON than the tri10 mutant. Cellular differentiation associated with DON production was stimulated by exogenous cAMP or deletion of PDE2 in both tri10 and tri6 mutants. These data indicate that TRI6 is essential for the regulation of DON biosynthesis by cAMP signalling but elevated PKA activities could partially bypass the requirement of TRI10 for TRI gene-expression and DON production, and Pde2 is the major cAMP phosphodiesterase to negatively regulate DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chengkang Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
30
|
Cao S, Zhang S, Hao C, Liu H, Xu JR, Jin Q. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Sci Rep 2016; 6:22333. [PMID: 26931632 PMCID: PMC4773989 DOI: 10.1038/srep22333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/08/2016] [Indexed: 01/05/2023] Open
Abstract
Fusarium graminearum is an important pathogen of wheat and barley. In addition to severe yield losses, infested grains are often contaminated with harmful mycotoxins. In this study, we characterized the functions of FgSSN3 kinase gene in different developmental and infection processes and gene regulation in F. graminearum. The FgSSN3 deletion mutant had a nutrient-dependent growth defects and abnormal conidium morphology. It was significantly reduced in DON production, TRI gene expression, and virulence. Deletion of FgSSN3 also resulted in up-regulation of HTF1 and PCS1 expression in juvenile cultures, and repression of TRI genes in DON-producing cultures. In addition, Fgssn3 was female sterile and defective in hypopodium formation and infectious growth. RNA-seq analysis showed that FgSsn3 is involved in the transcriptional regulation of a wide variety genes acting as either a repressor or activator. FgSsn3 physically interacted with C-type cyclin Cid1 and the cid1 mutant had similar phenotypes with Fgssn3, indicating that FgSsn3 and Cid1 form the CDK-cyclin pair as a component of the mediator complex in F. graminearum. Taken together, our results indicate that FgSSN3 is important for secondary metabolism, sexual reproduction, and plant infection, as a subunit of mediator complex contributing to transcriptional regulation of diverse genes.
Collapse
Affiliation(s)
- Shulin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
31
|
He J, Yuan T, Tang WH. Fusarium graminearum Maize Stalk Infection Assay and Associated Microscopic Observation Protocol. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
32
|
Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:108-19. [PMID: 25880818 PMCID: PMC6638462 DOI: 10.1111/mpp.12267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play critical and conserved roles in membrane fusion and vesicle transport of eukaryotic cells. Previous studies have shown that various homologues of SNARE proteins are also important in the infection of host plants by pathogenic fungi. Here, we report the characterization of a SNARE homologue, FgVam7, from Fusarium graminearum that causes head blight in wheat and barley worldwide. Phylogenetic analysis and domain comparison reveal that FgVam7 is homologous to Vam7 proteins of Saccharomyces cerevisiae (ScVam7), Magnaporthe oryzae (MoVam7) and several additional fungi by containing a PhoX homology (PX) domain and a SNARE domain. We show that FgVam7 plays a regulatory role in cellular differentiation and virulence in F. graminearum. Deletion of FgVAM7 significantly reduces vegetative growth, conidiation and conidial germination, sexual reproduction and virulence. The ΔFgvam7 mutant also exhibits a defect in vacuolar maintenance and delayed endocytosis. Moreover, the ΔFgvam7 mutant is insensitive to salt and osmotic stresses, and hypersensitive to cell wall stressors. Further characterization of FgVam7 domains indicate that the PX and SNARE domains are conserved in controlling Vam7 protein localization and function, respectively. Finally, FgVam7 has been shown to positively regulate the expression of several deoxynivalenol (DON) biosynthesis genes TRI5, TRI6 and TRI101, and DON production. Our studies provide evidence for SNARE proteins as an additional means of regulatory mechanisms that govern growth, differentiation and virulence of pathogenic fungi.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Qin Fang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
33
|
Hou R, Jiang C, Zheng Q, Wang C, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:987-99. [PMID: 25781642 PMCID: PMC6638501 DOI: 10.1111/mpp.12254] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.
Collapse
Affiliation(s)
- Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Qian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
34
|
Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC, Xu JR. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 2015; 98:770-86. [PMID: 26256689 DOI: 10.1111/mmi.13157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Members of Cdc14 phosphatases are common in animals and fungi, but absent in plants. Although its orthologs are conserved in plant pathogenic fungi, their functions during infection are not clear. In this study, we showed that the CDC14 ortholog is important for pathogenesis and morphogenesis in Fusarium graminearum. FgCDC14 is required for normal cell division and septum formation and FgCdc14 possesses phosphatase activity with specificity for a subset of Cdk-type phosphorylation sites. The Fgcdc14 mutant was reduced in growth, conidiation, and ascospore formation. It was defective in ascosporogenesis and pathogenesis. Septation in Fgcdc14 was reduced and hyphal compartments contained multiple nuclei, indicating defects in the coordination between nuclear division and cytokinesis. Interestingly, foot cells of mutant conidia often differentiated into conidiogenous cells, resulting in the production of inter-connected conidia. In the interphase, FgCdc14-GFP localized to the nucleus and spindle-pole-body. Taken together, our results indicate that Cdc14 phosphatase functions in cell division and septum formation in F. graminearum, likely by counteracting Cdk phosphorylation, and is required for plant infection.
Collapse
Affiliation(s)
- Chaohui Li
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michael Melesse
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shijie Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - ChaoFeng Hao
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenfang Wang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mark C Hall
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
35
|
Humbert A, Bovier E, Sellem CH, Sainsard-Chanet A. Deletion of the MED13 and CDK8 subunits of the Mediator improves the phenotype of a long-lived respiratory deficient mutant of Podospora anserina. Fungal Genet Biol 2015; 82:228-37. [PMID: 26231682 DOI: 10.1016/j.fgb.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/18/2023]
Abstract
In Podospora anserina, the loss of function of the cytochrome segment of the mitochondrial respiratory chain is viable. This is due to the presence in this organism, as in most filamentous fungi, of an alternative respiratory oxidase (AOX) that provides a bypass to the cytochrome pathway. However mutants lacking a functional cytochrome pathway present multiple phenotypes including poorly colored thin mycelium and slow growth. In a large genetic screen based on the improvement of these phenotypes, we isolated a large number of independent suppressor mutations. Most of them led to the constitutive overexpression of the aox gene. In this study, we characterize a new suppressor mutation that does not affect the production of AOX. It is a loss-of-function mutation in the gene encoding the MED13 subunit of the kinase module of the Mediator complex. Inactivation of the cdk8 gene encoding another subunit of the same module also results in partial suppression of a cytochrome-deficient mutant. Analysis of strains lacking the MED13 or CDK8 subunits points to the importance of these subunits as regulators involved in diverse physiological processes such as growth, longevity and sexual development. Interestingly, transcriptional analyses indicate that in P. anserina, loss of the respiratory cytochrome pathway results in the up-regulation of glycolysis-related genes revealing a new type of retrograde regulation. The loss of MED13 augments the up-regulation of some of these genes.
Collapse
Affiliation(s)
- Adeline Humbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Elodie Bovier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Carole H Sellem
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Annie Sainsard-Chanet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
36
|
Yang C, Liu H, Li G, Liu M, Yun Y, Wang C, Ma Z, Xu JR. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. Environ Microbiol 2015; 17:2762-76. [PMID: 25627073 DOI: 10.1111/1462-2920.12747] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Meigang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Yingzi Yun
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwestern A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
37
|
Zhou X, Zhao X, Xue C, Dai Y, Xu JR. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:996-1004. [PMID: 24835254 DOI: 10.1094/mpmi-02-14-0052-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens.
Collapse
|
38
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|
39
|
Siersleben S, Penselin D, Wenzel C, Albert S, Knogge W. PFP1, a gene encoding an Epc-N domain-containing protein, is essential for pathogenicity of the barley pathogen Rhynchosporium commune. EUKARYOTIC CELL 2014; 13:1026-35. [PMID: 24906413 PMCID: PMC4135795 DOI: 10.1128/ec.00043-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/30/2014] [Indexed: 11/20/2022]
Abstract
Scald caused by Rhynchosporium commune is an important foliar disease of barley. Insertion mutagenesis of R. commune generated a nonpathogenic fungal mutant which carries the inserted plasmid in the upstream region of a gene named PFP1. The characteristic feature of the gene product is an Epc-N domain. This motif is also found in homologous proteins shown to be components of histone acetyltransferase (HAT) complexes of fungi and animals. Therefore, PFP1 is suggested to be the subunit of a HAT complex in R. commune with an essential role in the epigenetic control of fungal pathogenicity. Targeted PFP1 disruption also yielded nonpathogenic mutants which showed wild-type-like growth ex planta, except for the occurrence of hyphal swellings. Complementation of the deletion mutants with the wild-type gene reestablished pathogenicity and suppressed the hyphal swellings. However, despite wild-type-level PFP1 expression, the complementation mutants did not reach wild-type-level virulence. This indicates that the function of the protein complex and, thus, fungal virulence are influenced by a position-affected long-range control of PFP1 expression.
Collapse
Affiliation(s)
- Sylvia Siersleben
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Daniel Penselin
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Claudia Wenzel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Sylvie Albert
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - Wolfgang Knogge
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| |
Collapse
|
40
|
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:557-66. [PMID: 24450772 DOI: 10.1094/mpmi-10-13-0306-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.
Collapse
|
41
|
Audenaert K, Vanheule A, Höfte M, Haesaert G. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel) 2013; 6:1-19. [PMID: 24451843 PMCID: PMC3920246 DOI: 10.3390/toxins6010001] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations.
Collapse
Affiliation(s)
- Kris Audenaert
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, 1, Ghent 9000, Belgium.
| | - Adriaan Vanheule
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, 1, Ghent 9000, Belgium.
| | - Monica Höfte
- Department of Crop Protection, Laboratory of Phytopathology, Faculty Bioscience Engineering, Ghent University, Coupure links 653, Ghent 9000, Belgium.
| | - Geert Haesaert
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, 1, Ghent 9000, Belgium.
| |
Collapse
|
42
|
Zheng Z, Gao T, Hou Y, Zhou M. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. FEMS Microbiol Lett 2013; 349:88-98. [PMID: 24117691 DOI: 10.1111/1574-6968.12297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/11/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Abstract
The protein ApsB has been shown to play critical roles in the migration and positioning of nuclei and in the development of conidiophores in Aspergillus nidulans. The functions of ApsB in Fusarium graminearum, a causal agent of Fusarium head blight in China, are largely unknown. In this study, we used the blastp program at the Broad Institute to identify FgApsB, an F. graminearum homolog of A. nidulansApsB. The functions of FgApsB were evaluated by constructing a deletion mutant of FgApsB, designated ΔFgApsB-28. Conidiation and mycelial growth rate are reduced in ΔFgApsB-28. The hyphae of ΔFgApsB-28 are thinner than those of the wild type and have a different branching angle. ΔFgApsB-28 exhibited reduced aerial hyphae formation, but increased production of rubrofusarin. Whereas nuclei are evenly distributed in germ tubes and hyphae of the wild type, they are clustered and irregularly distributed in ΔFgApsB-28. The mutant exhibited increased resistance to cell wall-damaging agents, but reduced virulence on flowering wheat heads, which is consistent with its reduced production of the toxin deoxynivalenol. All of the defects in ΔFgApsB-28 were restored by genetic complementation with the parental FgApsB gene. Taken together, the results indicate that FgApsB is important for vegetative differentiation, asexual development, nuclear migration, and virulence in F. graminearum.
Collapse
Affiliation(s)
- Zhitian Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
43
|
Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S. Conserved versatile master regulators in signalling pathways in response to stress in plants. AOB PLANTS 2013; 5:plt033. [PMID: 24147216 PMCID: PMC3800984 DOI: 10.1093/aobpla/plt033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/06/2013] [Indexed: 05/06/2023]
Abstract
From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response.
Collapse
Affiliation(s)
- Victor E. Balderas-Hernández
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| | - Miguel Alvarado-Rodríguez
- Laboratorio de Cultivo de Tejidos Vegetales, Unidad de Agronomía, Universidad Autónoma de Zacatecas, Carr. Zacatecas-Jerez km 17, CP 98000, Zacatecas, México
| | - Saúl Fraire-Velázquez
- Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, CP 98066, Zacatecas, México
| |
Collapse
|
44
|
Son H, Kim MG, Min K, Seo YS, Lim JY, Choi GJ, Kim JC, Chae SK, Lee YW. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. PLoS One 2013; 8:e72915. [PMID: 24039821 PMCID: PMC3769392 DOI: 10.1371/journal.pone.0072915] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/15/2013] [Indexed: 12/03/2022] Open
Abstract
Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi.
Collapse
Affiliation(s)
- Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Myung-Gu Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Suhn-Kee Chae
- Department of Biochemistry, Paichai University, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. PLoS One 2013; 8:e66980. [PMID: 23826182 PMCID: PMC3691137 DOI: 10.1371/journal.pone.0066980] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022] Open
Abstract
Sexual reproduction plays a critical role in the infection cycle of Fusarium graminearum because ascospores are the primary inoculum. As a homothallic ascomycete, F. graminearum contains both the MAT1-1 and MAT1-2-1 loci in the genome. To better understand their functions and regulations in sexual reproduction and pathogenesis, in this study we assayed the expression, interactions, and mutant phenotypes of individual MAT locus genes. Whereas the expression of MAT1-1-1 and MAT12-1 rapidly increased after perithecial induction and began to decline after 1 day post-perithecial induction (dpi), the expression of MAT1-1-2 and MAT1-1-3 peaked at 4 dpi. MAT1-1-2 and MAT1-1-3 had a similar expression profile and likely are controlled by a bidirectional promoter. Although none of the MAT locus genes were essential for perithecium formation, all of them were required for ascosporogenesis in self-crosses. In outcrosses, the mat11-1-2 and mat11-1-3 mutants were fertile but the mat1-1-1 and mat1-2-1 mutants displayed male- and female-specific defects, respectively. The mat1-2-1 mutant was reduced in FgSO expression and hyphal fusion. Mat1-1-2 interacted with all other MAT locus transcription factors, suggesting that they may form a protein complex during sexual reproduction. Mat1-1-1 also interacted with FgMcm1, which may play a role in controlling cell identity and sexual development. Interestingly, the mat1-1-1 and mat1-2-1 mutants were reduced in virulence in corn stalk rot assays although none of the MAT locus genes was important for wheat infection. The MAT1-1-1 and MAT1-2-1 genes may play a host-specific role in colonization of corn stalks.
Collapse
|
46
|
Woloshuk CP, Shim WB. Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 2012; 37:94-109. [PMID: 23078349 DOI: 10.1111/1574-6976.12009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 01/03/2023] Open
Abstract
Plant pathogenic fungi Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum infect seeds of the most important food and feed crops, including maize, wheat, and barley. More importantly, these fungi produce aflatoxins, fumonisins, and trichothecenes, respectively, which threaten health and food security worldwide. In this review, we examine the molecular mechanisms and environmental factors that regulate mycotoxin biosynthesis in each fungus, and discuss the similarities and differences in the collective body of knowledge. Whole-genome sequences are available for these fungi, providing reference databases for genomic, transcriptomic, and proteomic analyses. It is well recognized that genes responsible for mycotoxin biosynthesis are organized in clusters. However, recent research has documented the intricate transcriptional and epigenetic regulation that affects these gene clusters. Significantly, molecular networks that respond to environmental factors, namely nitrogen, carbon, and pH, are connected to components regulating mycotoxin production. Furthermore, the developmental status of seeds and specific tissue types exert conditional influences during fungal colonization. A comparison of the three distinct mycotoxin groups provides insight into new areas for research collaborations that will lead to innovative strategies to control mycotoxin contamination of grain.
Collapse
Affiliation(s)
- Charles P Woloshuk
- Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
47
|
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu JR. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 2012; 7:e49495. [PMID: 23166686 PMCID: PMC3498113 DOI: 10.1371/journal.pone.0049495] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley worldwide. In a previous study of systematic characterization of protein kinase genes in F. graminearum, mutants of three putative components of the osmoregulation MAP kinase pathway were found to have distinct colony morphology and hyphal growth defects on PDA plates. Because the osmoregulation pathway is not known to regulate aerial hyphal growth and branching, in this study we further characterized the functions of the FgHog1 pathway in growth, pathogenesis, and development. The Fghog1, Fgpbs2, and Fgssk2 mutants were all reduced in growth rate, aerial hyphal growth, and hyphal branching angle. These mutants were not only hypersensitive to osmotic stress but also had increased sensitivity to oxidative, cytoplasm membrane, and cell wall stresses. The activation of FgHog1 was blocked in the Fgpbs2 and Fgssk2 mutants, indicating the sequential activation of FgSsk2-FgPbs2-FgHog1 cascade. Interestingly, the FgHog1 MAPK pathway mutants appeared to be sensitive to certain compounds present in PDA. They were female sterile but retained male fertility. We also used the metabolomics profiling approach to identify compatible solutes that were accumulated in the wild type but not in the Fghog1 deletion mutant. Overall, our results indicate that the FgSsk2-FgPbs2-FgHog1 MAPK cascade is important for regulating hyphal growth, branching, plant infection, and hyperosmotic and general stress responses in F. graminearum.
Collapse
Affiliation(s)
- Dawei Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shijie Zhang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| | - Chenfang Wang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Xiang
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zheng
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- NWAFU-PU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (XZ); (JX)
| |
Collapse
|
48
|
Zheng W, Zhao X, Xie Q, Huang Q, Zhang C, Zhai H, Xu L, Lu G, Shim WB, Wang Z. A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. PLoS One 2012; 7:e45432. [PMID: 23029006 PMCID: PMC3448628 DOI: 10.1371/journal.pone.0045432] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/16/2012] [Indexed: 01/21/2023] Open
Abstract
Conidia are primary means of asexual reproduction and dispersal in a variety of pathogenic fungi, and it is widely recognized that they play a critical role in animal and plant disease epidemics. However, genetic mechanisms associated with conidiogenesis are complex and remain largely undefined in numerous pathogenic fungi. We previously showed that Htf1, a homeobox transcription factor, is required for conidiogenesis in the rice pathogen Magnaporthe oryzae. In this study, our aim was to characterize how Htf1 homolog regulates common and also distinctive conidiogenesis in three key Fusarium pathogens: F. graminearm, F. verticillioides, and F. oxysporum. When compared to wild-type progenitors, the gene-deletion mutants in Fusarium species failed to form conventional phialides. Rather, they formed clusters of aberrant phialides that resembled elongated hyphae segments, and it is conceivable that this led to the obstruction of conidiation in phialides. We also observed that mutants, as well as wild-type Fusaria, can initiate alternative macroconidia production directly from hyphae through budding-like mechanism albeit at low frequencies. Microscopic observations led us to conclude that proper basal cell division and subsequent foot cell development of macroconidia were negatively impacted in the mutants. In F. verticillioides and F. oxysporum, mutants exhibited a 2- to 5- microconidia complex at the apex of monophialides resulting in a floral petal-like shape. Also, prototypical microconidia chains were absent in F. verticillioides mutants. F. graminearum and F. verticillioides mutants were complemented by introducing its native HTF1 gene or homologs from other Fusarium species. These results suggest that Fusarium Htf1 is functionally conserved homeobox transcription factor that regulates phialide development and conidiogenesis via distinct signaling pathways yet to be characterized in fungi.
Collapse
Affiliation(s)
- Wenhui Zheng
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- The Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xu Zhao
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qiurong Xie
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingping Huang
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengkang Zhang
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huanchen Zhai
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Henan University of Technology, Zhengzhou, Henan, Fujian, China
| | - Liping Xu
- The Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guodong Lu
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Won-Bo Shim
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (WBS); (ZW)
| | - Zonghua Wang
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- The Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (WBS); (ZW)
| |
Collapse
|
49
|
Horevaj P, Bluhm BH. BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize. MOLECULAR PLANT PATHOLOGY 2012; 13:431-444. [PMID: 22044756 PMCID: PMC6638705 DOI: 10.1111/j.1364-3703.2011.00758.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fusarium graminearum is a common pathogen of wheat and maize throughout the world. Despite recent advances in the elucidation of the genetic basis of virulence, significant gaps in the regulatory network underlying pathogenesis remain to be filled. In particular, little is known at the molecular level about the overlap among mechanisms of pathogenicity on maize and wheat. G-protein signalling has been implicated in pathogenesis in F. graminearum, although the underlying mechanisms are not fully understood. In this study, we investigated the involvement of a putative phosducin-like gene (BDM1) in growth, development and pathogenesis in F. graminearum. Targeted deletion of BDM1 revealed roles in sexual and asexual sporulation, germ tube development, hyphal branching and mycelial morphology. During pathogenesis, BDM1 is required for wild-type levels of colonization of maize silk tissue and stalks, but is dispensable for the colonization of kernels. The deletion of BDM1 also reduced the virulence of F. graminearum during the infection of wheat seedlings and heads, resulting in a significant reduction in fungal biomass and a delayed spread of visual symptom expression (i.e. bleaching in heads). Furthermore, BDM1 is required for wild-type levels of deoxynivalenol biosynthesis during the infection of wheat heads and maize silks. In summation, BDM1 is one of the few genes characterized to date in F. graminearum involved in virulence during infection of both maize and wheat. Thus, the functional characterization of BDM1 has established a new regulatory link between pathogenesis in maize and wheat, and provides a genetic resource through which the regulatory networks underlying virulence in F. graminearum can be further elucidated.
Collapse
Affiliation(s)
- Peter Horevaj
- Department of Plant Pathology, University of Arkansas Division of Agriculture, Fayetteville, AR 72701, USA
| | | |
Collapse
|
50
|
Wang G, Wang C, Hou R, Zhou X, Li G, Zhang S, Xu JR. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum. PLoS One 2012; 7:e38324. [PMID: 22693618 PMCID: PMC3365026 DOI: 10.1371/journal.pone.0038324] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/03/2012] [Indexed: 01/11/2023] Open
Abstract
Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT) has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. Whereas deletion of the other three PRMT genes had no obvious phenotypes, the Δamt1 mutant had pleiotropic defects. AMT1 is a predicted type I PRMT gene that is orthologous to HMT1 in Saccharomyces cerevisiae. The Δamt1 mutant was slightly reduced in vegetative growth but normal in asexual and sexual reproduction. It had increased sensitivities to oxidative and membrane stresses. DON mycotoxin production and virulence on flowering wheat heads also were reduced in the Δamt1 mutant. The introduction of the wild-type AMT1 allele fully complemented the defects of the Δamt1 mutant and Amt1-GFP fusion proteins mainly localized to the nucleus. Hrp1 and Nab2 are two hnRNPs in yeast that are methylated by Hmt1 for nuclear export. In F. graminearum, AMT1 is required for the nuclear export of FgHrp1 but not FgNab2, indicating that yeast and F. graminearum differ in the methylation and nucleo-cytoplasmic transport of hnRNP components. Because AMT2 also is a predicted type I PRMT with limited homology to yeast HMT1, we generated the Δamt1 Δamt2 double mutants. The Δamt1 single and Δamt1 Δamt2 double mutants had similar defects in all the phenotypes assayed, including reduced vegetative growth and virulence. Overall, data from this systematic analysis of PRMT genes suggest that AMT1, like its ortholog in yeast, is the predominant PRMT gene in F. graminearum and plays a role in hyphal growth, stress responses, and plant infection.
Collapse
Affiliation(s)
- Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Hou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|