1
|
Selepe MA, Mthembu ST, Sonopo MS. Total synthesis of isoflavonoids. Nat Prod Rep 2025; 42:540-591. [PMID: 39932198 DOI: 10.1039/d4np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2012 to 2024Isoflavonoids are phenolic compounds with wide structural diversity and a plethora of biological activities. Owing to their structural variation and potential health-promoting and other benefits, they have been targeted for synthesis. Herein, we review the synthesis of natural isoflavonoids belonging to different classes that include isoflavones, isoflavanones, isoflavans, isoflavenes, pterocarpans, rotenoids, coumaronochromones, and coumestans. The synthetic methodologies employed and advancements in synthetic strategies are highlighted.
Collapse
Affiliation(s)
- Mamoalosi A Selepe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa.
| | - Siyanda T Mthembu
- Department of Physical and Earth Sciences, Faculty of Natural and Applied Sciences, Sol Plaatje University, P/Bag x 5008, Kimberley, 8300, South Africa
| | - Molahlehi S Sonopo
- Applied Radiation Department, South African Nuclear Energy Corporation Ltd, Pelindaba, Brits 0240, South Africa
| |
Collapse
|
2
|
Selepe MA. Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies. ChemMedChem 2024; 19:e202400420. [PMID: 39091268 PMCID: PMC11617652 DOI: 10.1002/cmdc.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Isoflavones are phenolic natural compounds with a C6C3C6 framework. They possess a plethora of biological activities that are associated with putative benefits to human health. In particular, the cancer chemopreventive and chemotherapeutic potential of isoflavones has attracted the interest of researchers. Several isoflavone derivatives have been synthesised and probed for their anticancer activities. The isoflavone analogues are mainly synthesised by molecular hybridisation and other strategies that enable diversification through early or late-stage functionalisation of A-, B- and C-rings of the isoflavones. This has resulted in the discovery of isoflavone analogues with improved antiproliferative activities against several cancer cells and different mechanisms of action. In this review, the synthesis of isoflavone derivatives and their anticancer activity studies are discussed.
Collapse
Affiliation(s)
- Mamoalosi A. Selepe
- Department of Chemistry, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPrivate bag X 20Hatfield0028South Africa
| |
Collapse
|
3
|
Rampogu S, Badvel P, Hoon Jo B, Kim Y, Kim SW, Lee KW. A review on Millepachine and its derivatives as potential multitarget anticancer agents. Biochem Biophys Res Commun 2023; 681:249-270. [PMID: 37793311 DOI: 10.1016/j.bbrc.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Chalcones have a long history of being used for many medical purposes. These are the most prestigious scaffolds in medicine. The potential of Millepachine and its derivatives to treat various malignancies has been demonstrated in this review. The anticancer effects of Millepachine and its derivatives on ovarian cancer, hepatocellular carcinoma, breast, liver, colon, cervical, prostate, stomach, and gliomas are highlighted in the current review. Several genes that are crucial in reducing the severity of the disease have been altered by these substances. They mainly work by preventing tubulin polymerizing. They also exhibit apoptosis and cell cycle arrest at the G2/M phase. Additionally, these compounds inhibit invasion and migration and have antiproliferative effects. Preclinical studies have shown that Millepachine and its derivatives offer exceptional potential for treating a number of cancers. These results need to be confirmed in clinical research in order to develop viable cancer therapies.
Collapse
Affiliation(s)
- Shailima Rampogu
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, South Korea.
| | | | - Byung Hoon Jo
- Division of Applied Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea; ABC-RLRC, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yongseong Kim
- Department of Pharmaceutical Engineering, Kyungnam University, Changwon, 51767, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Sciences, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
4
|
Le VTT, Hung HV, Ha NX, Le CH, Minh PTH, Lam DT. Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana. Molecules 2023; 28:7253. [PMID: 37959674 PMCID: PMC10650832 DOI: 10.3390/molecules28217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
The results of in silico screening of the 50 isolated compounds from Millettia dielsiana against the target proteins PDE4 (PDE4A, PDE4B, and PDE4D) showed binding affinity ranges from -5.81 to -11.56, -5.27 to -13.01, and -5.80 to -12.12 kcal mol-1, respectively, with median values of -8.83, -8.84, and -8.645 kcal mol-1, respectively. Among these compounds, Millesianin F was identified as the most promising PDE4A inhibitor due to its strongest binding affinity with the target protein PDE4A. (-11.56 kcal mol-1). This was followed by the compound 5,7,4'-trihydroxyisoflavone 7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (D50) with the binding affinity value of -11.35 kcal mol-1. For the target protein PDE4B, compound D50 exhibited the strongest binding affinity value of -13.01 kcal mol-1, while showing poorer inhibition ability for PDE4D. The 100 ns MD simulation examination (radius of gyration, Solvent Accessible Surface Area (SASA), Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and hydrogen bonding) was carried out to examine the overall stability and binding efficiency of the protein-ligand complex between compounds (Millesianin F, Millesianin G, Claclrastin-7-O-β-d-glucopyranoside, 7-hydroxy-4',6 dimethoxyisoflavone-7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside, 7-hydroxy-4',8-dimethoxyisoflavone 7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside, Odoratin-7-O-β-d-glucopyranoside, and 5,7,4'-trihydroxyisoflavone 7-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside) and PDE4 (A, B) subtype proteins. Compound D50 has shown strong anti-inflammatory activity, as evidenced by experimental results. It effectively inhibits PDE4B and PDE4D, with IC50 values of 6.56 ± 0.7 µM and 11.74 ± 1.3 µM, respectively. Additionally, it reduces NO production, with an IC50 value of 5.40 ± 0.9 µM. Based on these findings, it is promising and considered a potential novel anti-inflammatory drug for future development.
Collapse
Affiliation(s)
- Vu Thi Thu Le
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang, Thai Nguyen 24119, Vietnam; (V.T.T.L.)
| | - Hoang Van Hung
- Thai Nguyen University-Lao Cai Campus, Thai Nguyen University, Lao Cai City 31000, Vietnam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Cao Hong Le
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang, Thai Nguyen 24119, Vietnam; (V.T.T.L.)
| | - Pham Thi Hong Minh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Do Tien Lam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| |
Collapse
|
5
|
Liang B, Zou Q, Yu L, Wang Y, Yan J, Huang B. Novel Indole-Containing Hybrids Derived from Millepachine: Synthesis, Biological Evaluation and Antitumor Mechanism Study. Molecules 2023; 28:molecules28031481. [PMID: 36771147 PMCID: PMC9921564 DOI: 10.3390/molecules28031481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Millepachine, a bioactive natural product isolated from the seeds of Millettia pachycarpa, is reported to display potential antitumor activity. In this study, novel indole-containing hybrids derived from millepachine were designed, synthesized and evaluated for their antitumor activities. Among all the compounds, compound 14b exhibited the most potent cytotoxic activity against five kinds of human cancer cell lines, with IC50 values ranging from 0.022 to 0.074 μM, making it almost 100 times more active than millepachine. Valuable structure-activity relationships (SARs) were obtained. Furthermore, the mechanism studies showed that compound 14b induced cell-cycle arrest at the G2/M phase by inhibiting tubulin polymerization and further induced cell apoptosis through reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse. In addition, the low cytotoxicity toward normal human cells and equivalent sensitivity towards drug-resistant cells of compound 14b highlighted its potential for the development of antitumor drugs.
Collapse
Affiliation(s)
- Baoxia Liang
- The School of Food Science and Biology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
- Correspondence:
| | - Qing Zou
- The School of Food Science and Biology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| | - Lintao Yu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yali Wang
- BGI Infection Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Yan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Baiqi Huang
- The School of Food Science and Biology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| |
Collapse
|
6
|
Anifowose SO, Alqahtani WSN, Al-Dahmash BA, Sasse F, Jalouli M, Aboul-Soud MAM, Badjah-Hadj-Ahmed AY, Elnakady YA. Efforts in Bioprospecting Research: A Survey of Novel Anticancer Phytochemicals Reported in the Last Decade. Molecules 2022; 27:molecules27238307. [PMID: 36500400 PMCID: PMC9738008 DOI: 10.3390/molecules27238307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are important for a species to survive in the hostile environment of its respective ecosystem. The kingdom of Plantae has been an important source of traditional medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies, especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available. Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies. Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the clinical relevance of these compounds are required to achieve safer chemotherapy.
Collapse
Affiliation(s)
- Saheed O. Anifowose
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Wejdan S. N. Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Badr A. Al-Dahmash
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Florenz Sasse
- Institute for Pharmaceutical Biology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | | | - Yasser A. Elnakady
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Desta KT, Abd El-Aty AM. Millettia isoflavonoids: a comprehensive review of structural diversity, extraction, isolation, and pharmacological properties. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:275-308. [PMID: 36345415 PMCID: PMC9630821 DOI: 10.1007/s11101-022-09845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED There are approximately 260 known species in the genus Millettia, many of which are used in traditional medicine to treat human and other animal ailments in various parts of the world. Being in the Leguminosae (Fabaceae) family, Millettia species are rich sources of isoflavonoids. In the past three decades alone, several isoflavonoids originating from Millettia have been isolated, and their pharmacological activities have been evaluated against major diseases, such as cancer, inflammation, and diabetes. Despite such extensive research, no recent and comprehensive review of the phytochemistry and pharmacology of Millettia isoflavonoids is available. Furthermore, the structural diversity of isoflavonoids in Millettia species has rarely been reported. In this review, we comprehensively summarized the structural diversity of Millettia isoflavonoids, the methods used for their extraction and isolation protocols, and their pharmacological properties. According to the literature, 154 structurally diverse isoflavonoids were isolated and reported from the various tissues of nine well-known Millettia species. Prenylated isoflavonoids and rotenoids were the most dominant subclasses of isoflavonoids reported. Other subclasses of reported isoflavonoids include isoflavans, aglycone isoflavones, glycosylated isoflavones, geranylated isoflavonoids, phenylcoumarins, pterocarpans and coumaronochromenes. Although some isolated molecules showed promising pharmacological properties, such as anticancer, anti-inflammatory, estrogenic, and antibacterial activities, others remained untested. In general, this review highlights the potential of Millettia isoflavonoids and could improve their utilization in drug discovery and medicinal use processes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09845-w.
Collapse
Affiliation(s)
- Kebede Taye Desta
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
8
|
Suthiphasilp V, Rujanapun N, Kumboonma P, Chaiyosang B, Tontapha S, Maneerat T, Patrick BO, Andersen RJ, Duangyod T, Charoensup R, Laphookhieo S. Antidiabetic and Cytotoxic Activities of Rotenoids and Isoflavonoids Isolated from Millettia pachycarpa Benth. ACS OMEGA 2022; 7:24511-24521. [PMID: 35874225 PMCID: PMC9301698 DOI: 10.1021/acsomega.2c02163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A phytochemical investigation of the root and leaf extracts of Millettia pachycarpa Benth resulted in the isolation and identification of 16 compounds, including six rotenoids (1-6) and 10 prenylated isoflavonoids (7-16). Compound 4 was isolated as a scalemic mixture, which was resolved by chiral HPLC to afford (-)-(6aS,12aS)-12a-hydroxy-α-toxicarol (4) and (+)-(6aR,12aR)-12a-hydroxy-α-toxicarol (4). (+)-(6aR,12aR)-Millettiapachycarpin (3) and (-)-(6aS,12aS)-12a-hydroxy-α-toxicarol (4) were isolated as new compounds. The absolute configuration of (-)-(6R)-pachycarotenoid (2), (+)-(6aR,12aR)-millettiapachycarpin (3), (-)-(6aS,12aS)-4 and (+)-(6aR,12aR)-12a-hydroxy-α-toxicarol (4), (+)-(6aS,12aS)-(5), and (-)-(6aS,12aS,2″R)-sumatrol (6) were identified by electronic circular dichroism (ECD) data. (-)-(6aS,12aS,2″R)-Sumatrol (6) was also confirmed by X-ray diffraction analysis using Cu-Kα radiation. Antidiabetic activities, including α-glucosidase and α-amylase inhibitory activities, and cytotoxicities against lung cancer A549, colorectal cancer SW480, and leukemic K562 cells of some isolated compounds were evaluated. Of these, isolupalbigenin (11) exhibited the highest α-glucosidase inhibitory activity, with an IC50 value of 11.3 ± 0.2 μM, whereas the scalemic mixture of 12a-hydroxy-α-toxicarol (4) displayed the best α-amylase inhibitory activity, with an IC50 value of 106.9 ± 0.2 μM. Euchrenone b10 (15) exhibited the highest cytotoxicity against lung cancer A549, colorectal cancer SW480, and leukemic K562 cells, with IC50 values of 40.3, 39.1, and 15.1 μM, respectively. In addition, molecular docking simulations of α-glucosidase inhibition of the active compounds were studied.
Collapse
Affiliation(s)
- Virayu Suthiphasilp
- Center
of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Narawadee Rujanapun
- Medicinal
Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pakit Kumboonma
- Department
of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Boonyanoot Chaiyosang
- Natural
Products Research Unit, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarawut Tontapha
- Institute
of Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tharakorn Maneerat
- Center
of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Medicinal
Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Brian O Patrick
- Departments
of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments
of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver BC V6T 1Z1, Canada
| | - Thidarat Duangyod
- Medicinal
Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
- School
of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Rawiwan Charoensup
- Medicinal
Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
- School
of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Surat Laphookhieo
- Center
of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Medicinal
Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
9
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
10
|
Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov Today 2022; 27:759-776. [PMID: 34890803 PMCID: PMC8901563 DOI: 10.1016/j.drudis.2021.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Tubulin is an important cancer drug target. Compounds that bind at the colchicine site in tubulin have attracted significant interest as they are generally less affected by multidrug resistance than other potential drugs. Modeling is useful in understanding the interactions between tubulin and colchicine binding site inhibitors (CBSIs), but because the colchicine binding site contains two flexible loops whose conformations are highly ligand-dependent, modeling has its limitations. X-ray crystallography provides experimental pictures of tubulin-ligand interactions at this challenging colchicine site. Since 2004, when the first X-ray structure of tubulin in complex with N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) was published, many X-ray crystal structures have been reported for tubulin complexes involving the colchicine binding site. In this review, we summarize the crystal structures of tubulin in complexes with various CBSIs, aiming to facilitate the discovery of new generations of tubulin inhibitors.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
11
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Yan J, Zhuang Q, Li Z, Xiong Y, He M, Kang C, Zhang Q, Han L, Liang E, Liu H, Ke P, Huang X. MIL-1, a novel antitumor agent derived from natural product millepachine, acts as tubulin polymerization inhibitor for the treatment of hepatocellular carcinoma. Eur J Pharmacol 2021; 898:173975. [PMID: 33647258 DOI: 10.1016/j.ejphar.2021.173975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/18/2023]
Abstract
Natural products are a large source of clinically effective antitumor drugs. Millepachine, a natural product derived from leguminous plants, was reported to display antitumor activity. In this study, the novel compound, (1H-indol-5-yl) (5-methoxy-2,2-dimethyl-2H-chromen-8-yl)methanone (MIL-1), was designed and synthesized by fusing millepachine and indole rings. MIL-1 exerted much better antitumor activity than millepachine, manifesting as a 24- to 201-fold increase in vitro cytotoxicity and a 2.4-fold increase in in vivo antitumor activity in hepatocellular cell lines-derived models. The immunofluorescence and HPLC detection revealed that MIL-1 was a potent microtubule targeting agent by interfering with the equilibrium of tubulin-microtubule dynamics and irreversibly binding to tubulin. MIL-1 displayed remarkable antitumor activity with an IC50 of 31-207 nM towards various human cancer cell lines derived from various organs and tissues, and it exerted no evidence of toxicity against normal cells. Mechanistic studies showed that MIL-1 arrested the cell cycle at G2/M phase and induced apoptosis by activating caspase-3 activity and reactive oxygen species (ROS) accumulation. Moreover, the superior antitumor effect of MIL-1 is worthy of further detailed study for the treatment of hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Jun Yan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Qizhen Zhuang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Zhenzhen Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yujuan Xiong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Min He
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Cunmin Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Qiaoxuan Zhang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Hongcan Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Peifeng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
13
|
Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med Chem 2021; 13:839-858. [PMID: 33821673 DOI: 10.4155/fmc-2020-0376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.
Collapse
|
14
|
Luo N, Liu J, Wang S, Wang C. DBU-promoted ring-opening reactions of multi-substituted donor–acceptor cyclopropanes: access to functionalized chalcones with a quaternary carbon group. Org Biomol Chem 2020; 18:9210-9215. [DOI: 10.1039/d0ob01895c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strategy to synthesize highly stereoselective chalcones with alkylcyanoacetate subunits via DBU-promoted ring-opening reactions of multi-substituted D–A cyclopropanes has been developed without the requirement of a transition metal catalyst and extra solvent.
Collapse
Affiliation(s)
- Naili Luo
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Jiamin Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Shan Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
15
|
Peleyeju GB, Emmanuel T, Tata CM, Djuidje Fotsing MC, Niemann N, Rhyman L, Arderne C, Ndinteh DT, Ramasami P. Crystal structure and antibacterial activity of scandenone (warangalone) from Erythrina plants. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Wu C, Tu YB, Li Z, Li YF. Highly selective carbamate-based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg Chem 2019; 88:102949. [DOI: 10.1016/j.bioorg.2019.102949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023]
|
17
|
Pailee P, Mahidol C, Ruchirawat S, Prachyawarakorn V. Diverse flavonoids from the roots of Millettia brandisiana. PHYTOCHEMISTRY 2019; 162:157-164. [PMID: 30925376 DOI: 10.1016/j.phytochem.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 05/22/2023]
Abstract
The phytochemical investigation for the constituents of the roots of Millettia brandisiana, using bioassay guided fractionation, resulted in the isolation of five previously undescribed (namely brandisianones A-E) and twenty-six known flavonoids. Their chemical structures were determined using a combination of NMR, MS, IR, optical rotation and CD analysis, as well as comparison with the literature data. The crude extract as well as the isolated compounds were evaluated in various biological assays for their cytotoxicity against a panel of human cancer cell lines, potential inhibitory activity against aromatase, and antioxidant property using the oxygen radical absorbance capacity (ORAC) with an aim to search for leads and develop them to drug candidates in our drug discovery effort, we identified three bioactive flavonoids from M. brandisiana which could be further developed into a potential chemopreventive (antiaromatase) agent against breast cancer.
Collapse
Affiliation(s)
- Phanruethai Pailee
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Chulabhorn Mahidol
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; Chemical Biology Program, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; Chemical Biology Program, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10400, Thailand
| | - Vilailak Prachyawarakorn
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.
| |
Collapse
|
18
|
The effect and mechanism of millepachine-disrupted spindle assembly in tumor cells. Anticancer Drugs 2019; 29:449-456. [PMID: 29649038 DOI: 10.1097/cad.0000000000000618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Millepachine (MIL) is a bioactive natural product that shows great potential for cancer treatment. Previous studies showed that MIL was a novel cancer drug candidate with a special structure. To provide reference for the research and development of MIL, we further investigated the mechanism of MIL inducing G2/M arrest and found MIL disrupted spindle assembly in tumor cells. In this study, we investigated the disrupting spindle assembly effects of MIL with a focus on its potential mechanism of action. First, we indicated that MIL did not inhibit microtubule polymerization from the results of in-vivo microtubule nucleation assay and microtubule polymerization in-vitro assay but delayed this process by inhibiting the production of ATP in tumor cells. Thereafter, we investigated the effect of MIL on the mitotic spindle. We found that MIL induced multipolar spindles by inhibiting the activity of Eg5 and inhibited mitotic spindle formation and chromatin condensation by the activation of the spindle assembly checkpoint (SAC) in tumor cells. These results established a novel function of MIL in regulating the assembly of mitotic spindle. As Eg5 and SAC are antitumor targets, effect of MIL on the Eg5 protein and SAC activation hinted that MIL has novel application in the development of antitumor drugs.
Collapse
|
19
|
Tu Y, Wu C, Kang Y, Li Q, Zhu C, Li Y. Bioactivity-guided identification of flavonoids with cholinesterase and β-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorg Med Chem Lett 2019; 29:1194-1198. [DOI: 10.1016/j.bmcl.2019.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
20
|
Asymmetric total synthesis of rotenoids via organocatalyzed dynamic kinetic resolution. Commun Chem 2019. [DOI: 10.1038/s42004-019-0110-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Tu YB, Xiao T, Gong GY, Bian YQ, Li YF. A new isoflavone with anti-inflammatory effect from the seeds of Millettia pachycarpa. Nat Prod Res 2019; 34:981-987. [DOI: 10.1080/14786419.2018.1547294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yan-bei Tu
- Department of Pharmaceutics & Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tong Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Gui-yi Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Ya-qi Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yan-fang Li
- Department of Pharmaceutics & Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Wu W, Liu Y, Ye H, Li Z. Millepachine showed novel antitumor effects in cisplatin-resistant human ovarian cancer through inhibiting drug efflux function of ATP-binding cassette transporters. Phytother Res 2018; 32:2428-2435. [PMID: 30123958 DOI: 10.1002/ptr.6180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023]
Abstract
Millepachine (MIL), a bioactive natural chalcone from Chinese herbal medicine Millettia pachycarpa Benth, exhibits strong antitumor effects against many human cancer cells both in vitro and in vivo. In this study, we found that MIL significantly inhibited the proliferation of cisplatin-resistant A2780CP cells via inducing obvious G2/M arrest and apoptosis and down-regulating the activity of topoisomerase II protein. We further found that the mechanism by which MIL showed good antitumor effects in cisplatin-resistant human ovarian cancer was associated with inhibiting the expression of ATP-binding cassette transporters in cisplatin-resistant A2780CP cells. Importantly, MIL did not only significantly inhibit the tumor growth in cisplatin-sensitive A2780S xenograft model, with an inhibitory rate of 73.21%, but also inhibited the tumor growth in the cisplatin-resistant A2780CP xenograft model, with an inhibitory rate of 65.68% (p < 0.001 vs. control; p < 0.001 vs. DDP). In addition, MIL did not induce acquired drug resistance in A2780S tumor-bearing mice with an inhibitory rate of 60.03%. The promising in vitro and in vivo performance indicated that MIL exhibited potential significance for drug research and development.
Collapse
Affiliation(s)
- Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Lab of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Ye
- Lab of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Yang J, Yan W, Yu Y, Wang Y, Yang T, Xue L, Yuan X, Long C, Liu Z, Chen X, Hu M, Zheng L, Qiu Q, Pei H, Li D, Wang F, Bai P, Wen J, Ye H, Chen L. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in β-tubulin. J Biol Chem 2018; 293:9461-9472. [PMID: 29691282 DOI: 10.1074/jbc.ra117.001658] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/19/2018] [Indexed: 02/05/2023] Open
Abstract
Inhibitors that bind to the paclitaxel- or vinblastine-binding sites of tubulin have been part of the pharmacopoeia of anticancer therapy for decades. However, tubulin inhibitors that bind to the colchicine-binding site are not used in clinical cancer therapy, because of their low therapeutic index. To address multidrug resistance to many conventional tubulin-binding agents, numerous efforts have attempted to clinically develop inhibitors that bind the colchicine-binding site. Previously, we have found that millepachine (MIL), a natural chalcone-type small molecule extracted from the plant Millettia pachycarpa, and its two derivatives (MDs) SKLB028 and SKLB050 have potential antitumor activities both in vitro and in vivo However, their cellular targets and mechanisms are unclear. Here, biochemical and cellular experiments revealed that the MDs directly and irreversibly bind β-tubulin. X-ray crystallography of the tubulin-MD structures disclosed that the MDs bind at the tubulin intradimer interface and to the same site as colchicine and that their binding mode is similar to that of colchicine. Of note, MDs inhibited tubulin polymerization and caused G2/M cell-cycle arrest. Comprehensive analysis further revealed that free MIL exhibits an s-cis conformation, whereas MIL in the colchicine-binding site in tubulin adopts an s-trans conformation. Moreover, introducing an α-methyl to MDs to increase the proportion of s-trans conformations augmented MDs' tubulin inhibition activity. Our study uncovers a new class of chalcone-type tubulin inhibitors that bind the colchicine-binding site in β-tubulin and suggests that the s-trans conformation of these compounds may make them more active anticancer agents.
Collapse
Affiliation(s)
- Jianhong Yang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Wei Yan
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Yamei Yu
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Yuxi Wang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Tao Yang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Linlin Xue
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Xue Yuan
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Caofeng Long
- the Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, Guangdong 523325, China
| | - Zuowei Liu
- the Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, Guangdong 523325, China
| | - Xiaoxin Chen
- the Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, Guangdong 523325, China
| | - Mengshi Hu
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Li Zheng
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Qiang Qiu
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Heying Pei
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Dan Li
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Fang Wang
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Peng Bai
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Jiaolin Wen
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Haoyu Ye
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| | - Lijuan Chen
- From the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China and
| |
Collapse
|
24
|
Sobreira ACM, Pinto FDCL, Florêncio KGD, Wilke DV, Staats CC, Streit RDAS, Freire FDCDO, Pessoa ODL, Trindade-Silva AE, Canuto KM. Endophytic fungus Pseudofusicoccum stromaticum produces cyclopeptides and plant-related bioactive rotenoids. RSC Adv 2018; 8:35575-35586. [PMID: 35547902 PMCID: PMC9088075 DOI: 10.1039/c8ra06824k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023] Open
Abstract
In the present study, we integrated liquid chromatography high-resolution mass spectrometry (LC-HRMS) and high-throughput DNA sequencing for prospecting cytotoxic specialized metabolites from Pseudofusicoccum stromaticum, an endophytic fungus associated to the medicinal plant Myracrodruon urundeuva. LC-HRMS profiling allowed identifying putatively eleven compounds in the ethyl acetate extract from P. stromaticum broth. Additionally, a chemical fractionation guided by cytotoxicity combined with spectrometric analysis resulted in the isolation of three compounds: the cyclopeptide cyclo-l-Phe-d-Leu-l-Leu-l-Leu-l-lle along with the known rotenoids rotenolone and tephrosin. MTT assay showed that tephrosin (IC50 0.51 μg mL−1) has strong cytotoxic effect and may be pointed out as the compound responsible for the antiproliferative activity of P. stromaticum. Next Generation Sequencing (NGS) and genome mining of P. stromaticum draft genome revealed 56 contigs codifying specialized metabolites biosynthesis-related enzymes. Nearly half of such genes (44.6%) could be mapped to orphan Biosynthetic Gene Clusters (BGCs) of related plant pathogens belonging to family Botryosphaeriaceae. Also, screening for rotenoids biosynthetic enzymes led to characterization of a putative chalcone isomerase-like (CHI-like) protein. This is the first report of rotenoids biosynthesized by a fungus, unveiling a unique ability of P. stromaticum. Pseudofusicoccum stromaticum produces cyclopeptides and plant-related rotenoids, which are responsible for its antiproliferative effect.![]()
Collapse
Affiliation(s)
- Aline C. M. Sobreira
- Departamento de Química Orgânica e Inorgânica
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | | | - Diego V. Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Charley C. Staats
- Centro de Biotecnologia
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | | | | | - Otília D. L. Pessoa
- Departamento de Química Orgânica e Inorgânica
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Amaro E. Trindade-Silva
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | |
Collapse
|
25
|
Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg Chem 2017; 76:249-257. [PMID: 29197743 DOI: 10.1016/j.bioorg.2017.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
A series of chalcones containing naphthalene moiety 4a-4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure-activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.
Collapse
|
26
|
Kang Y, Tu Y, Meng X, Li Q, Zhu C, Li Y. A New Flavonol Glycoside from Millettia pachycarpa. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eight compounds (1-8), including a new flavonol glycoside (1), were isolated from Millettia pachycarpa. Their structures were elucidated based on combination of spectroscopic methods and comparing with data in literatures. Three of them (2, 6 and 8) were obtained from this genus for the first time. Meanwhile, this is also the first time compound 5 has been found from nature. Biological evaluation of all isolates against two cholinesterases (ChEs) is also described.
Collapse
Affiliation(s)
- Yunyao Kang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanbei Tu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xuefei Meng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qin Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Zhu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Deyou T, Marco M, Heydenreich M, Pan F, Gruhonjic A, Fitzpatrick PA, Koch A, Derese S, Pelletier J, Rissanen K, Yenesew A, Erdélyi M. Isoflavones and Rotenoids from the Leaves of Millettia oblata ssp. teitensis. JOURNAL OF NATURAL PRODUCTS 2017; 80:2060-2066. [PMID: 28665590 DOI: 10.1021/acs.jnatprod.7b00255] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A new isoflavone, 8-prenylmilldrone (1), and four new rotenoids, oblarotenoids A-D (2-5), along with nine known compounds (6-14), were isolated from the CH2Cl2/CH3OH (1:1) extract of the leaves of Millettia oblata ssp. teitensis by chromatographic separation. The purified compounds were identified by NMR spectroscopic and mass spectrometric analyses, whereas the absolute configurations of the rotenoids were established on the basis of chiroptical data and in some cases by single-crystal X-ray crystallography. Maximaisoflavone J (11) and oblarotenoid C (4) showed weak activity against the human breast cancer cell line MDA-MB-231 with IC50 values of 33.3 and 93.8 μM, respectively.
Collapse
Affiliation(s)
- Tsegaye Deyou
- Department of Chemistry, University of Nairobi , P.O. Box 30197-00100, Nairobi, Kenya
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Makungu Marco
- Department of Chemistry, University of Nairobi , P.O. Box 30197-00100, Nairobi, Kenya
| | - Matthias Heydenreich
- Institut für Chemie, Universität Potsdam , Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Fangfang Pan
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla , P.O. Box 35, FI-40014, Jyvaskyla, Finland
- College of Chemistry, Central China Normal University , Wuhan, 430079, People's Republic of China
| | - Amra Gruhonjic
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-412 96 Gothenburg, Sweden
- Sahlgrenska Cancer Centre, University of Gothenburg , SE-405 30 Gothenburg, Sweden
| | - Paul A Fitzpatrick
- Sahlgrenska Cancer Centre, University of Gothenburg , SE-405 30 Gothenburg, Sweden
| | - Andreas Koch
- Institut für Chemie, Universität Potsdam , Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Solomon Derese
- Department of Chemistry, University of Nairobi , P.O. Box 30197-00100, Nairobi, Kenya
| | - Jerry Pelletier
- Department of Biochemistry, McGill University , Montreal, QC H3G 1Y6, Canada
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla , P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Abiy Yenesew
- Department of Chemistry, University of Nairobi , P.O. Box 30197-00100, Nairobi, Kenya
| | - Máté Erdélyi
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-412 96 Gothenburg, Sweden
- Swedish NMR Center, University of Gothenburg , P.O. Box 465, SE-405 30, Gothenburg, Sweden
| |
Collapse
|
28
|
Tang H, Pei HY, Wang TJ, Chen K, Wu B, Yang QN, Zhang Q, Yang JH, Wang XY, Tang MH, Peng AH, Ye HY, Chen LJ. Flavonoids and biphenylneolignans with anti-inflammatory activity from the stems of Millettia griffithii. Bioorg Med Chem Lett 2016; 26:4417-4422. [DOI: 10.1016/j.bmcl.2016.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
|
29
|
Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. PHYTOCHEMISTRY REVIEWS 2016. [PMID: 0 DOI: 10.1007/s11101-014-9387-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
30
|
Wu Y, Cao D, Wang F, Ma L, Gao G, Chen L. Synthesis and Evaluation of Millepachine Amino Acid Prodrugs With Enhanced Solubility as Antitumor Agents. Chem Biol Drug Des 2015; 86:559-67. [PMID: 25643726 DOI: 10.1111/cbdd.12507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/15/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Yuzhe Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 China
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Dong Cao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Fang Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Liang Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 China
| | - Lijuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 China
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu Sichuan 610041 China
| |
Collapse
|
31
|
Tang H, Wu B, Chen K, Pei H, Wu W, Ma L, Peng A, Ye H, Chen L. Separation of flavonoids from Millettia griffithii with high-performance counter-current chromatography guided by anti-inflammatory activity. J Sep Sci 2014; 38:523-9. [PMID: 25413585 DOI: 10.1002/jssc.201401068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 02/05/2023]
Abstract
Millettia griffithii is a unique Chinese plant located in the southern part of Yunnan Province. Up to now, there is no report about its phytochemical or related bioactivity research. In our previous study, the n-hexane crude extract of Millettia griffithii revealed significant anti-inflammatory activity at 100 μg/mL, inspiring us to explore the anti-inflammatory constituents. Four fractions (I, II, III, and A) were fractionated from n-hexane crude extract by high-performance counter-current chromatography with solvent system composed of n-hexane/ethyl acetate/methanol/water (8:9:8:9, v/v) and then were investigated for the potent anti-inflammatory activity. Fraction A, with the most potent inhibitory activity was further separated to give another four fractions (IV, V, VI, and B) with solvent system composed of n-hexane/ethyl acetate/methanol/water (8:4:8:4, v/v). Compound V and fraction B exhibited remarkable anti-inflammatory activity with nitric oxide inhibitory rate of 80 and 65%, which was worth further fractionation. Then, three fractions (VII, VIII, and IX) were separated from fraction B with a solvent system composed of n-hexane/ethyl acetate/methanol/water (8:1:8:1, v/v), with compound VIII demonstrating the most potent inhibitory activity (80%). Finally, the IC50 values of compound V and VIII were tested as 38.2 and 14.9 μM. The structures were identified by electrospray ionization mass spectrometry and(1)H and (13)C NMR spectroscopy.
Collapse
Affiliation(s)
- Huan Tang
- State key laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Recent developments in tubulin polymerization inhibitors: An overview. Eur J Med Chem 2014; 87:89-124. [DOI: 10.1016/j.ejmech.2014.09.051] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
|
33
|
Wei Z, Yang Y, Xie C, Li C, Wang G, Ma L, Xiang M, Sun J, Wei Y, Chen L. Synthesis and biological evaluation of pyranoisoflavone derivatives as anti-inflammatory agents. Fitoterapia 2014; 97:172-83. [DOI: 10.1016/j.fitote.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
|
34
|
Linghu L, Fan H, Hu Y, Zou Y, Yang P, Lan X, Liao Z, Chen M. Mirabijalone E: a novel rotenoid from Mirabilis himalaica inhibited A549 cell growth in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:326-333. [PMID: 24882730 DOI: 10.1016/j.jep.2014.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Mirabilis himalaica have been used in Tibetan folk medicine for treatment of uterine cancer, nephritis edematous, renal calculus and arthrodynia. In our previous work, the ethanol extract of roots had shown potent cytotoxicity against human cancer cells. However, no information is available on the antitumor effect of Mirabilis himalaica. The aim of the present study was to investigate the active constituents guided by bioassay and evaluate the related antitumor efficacy in vitro and in vivo. MATERIALS AND METHODS The active subextract (ethyl acetate) was subjected to successive chemical separation using a combination of silica gel, LH-20 chromatography and semi-preparative HPLC. The structures were determined by spectroscopic analysis techniques such as nuclear magnetic resonance (NMR) and mass spectrometry. Three human cancer cell lines, A549, HepG2 and HeLa were used for in vitro cytotoxicity evaluation of all isolated compounds by MTT-assay. Then, the potent and novel compound mirabijalone E was employed to the mechanism study againstA549 cells. BrdU immunofluorescence, soft agar assay and cell cycle analysis were employed to detect the cell proliferation effects. Annexin V-FITC/PI staining assay was used for examining apoptotic effects. Expression levels of apoptosis-related proteins were determined by western blot assay. in vivo tumorigenic assay was used to evaluate the xenograft tumor growth treated with mirabijalone E. RESULTS One new rotenoid compound, mirabijalone E, together with eight known rotenoids was isolated from Mirabilis himalaica. Mirabijalone E, 9-O-methyl-inone B, boeravinone C and boeravinone H exhibited cytotoxicity against A 549 and HeLa cells. Further study on mirabijalone E was carried out in vitro and in vivo. Mirabijalone E inhibited A549 cells growth in a time and dose-dependent manner, which arrested cell cycle in S phase. Mechanistically, mirabijalone E treatment resulted in the increase of Bax expression level, the decrease of Bcl-2 level and the activation of caspase-3, which suggested the activation of apoptosis cascades. Consequently, the xenograft treated with mirabijalone E showed markedly suppressed tumor growth. CONCLUSIONS The result suggested that mirabijalone E, together with active compounds, 9-O-methyl-4-hydroxyboeravinone B, boeravinone C and boeravinone H could be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Lang Linghu
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Haixia Fan
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yijie Hu
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanling Zou
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Panpan Yang
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaozhong Lan
- Agriculture and Animal Husbandry College, Tibet University, Nyingchi, Tibet 860000, PR China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
35
|
Yin Y, Qiao F, Jiang LY, Wang SF, Sha S, Wu X, Lv PC, Zhu HL. Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors. Bioorg Med Chem 2014; 22:4285-92. [DOI: 10.1016/j.bmc.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
|
36
|
Li YP, Yang YC, Li YK, Jiang ZY, Huang XZ, Wang WG, Gao XM, Hu QF. Five new prenylated chalcones from Desmodium renifolium. Fitoterapia 2014; 95:214-9. [DOI: 10.1016/j.fitote.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
|
37
|
Wang G, Li C, He L, Lei K, Wang F, Pu Y, Yang Z, Cao D, Ma L, Chen J, Sang Y, Liang X, Xiang M, Peng A, Wei Y, Chen L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg Med Chem 2014; 22:2060-79. [PMID: 24629450 DOI: 10.1016/j.bmc.2014.02.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 02/05/2023]
Abstract
A new series of pyrano chalcone derivatives containing indole moiety (3-42, 49a-49r) were synthesized and evaluated for their antiproliferative activities. Among all the compounds, compound 49b with a propionyloxy group at the 4-position of the left phenyl ring and N-methyl-5-indoly on the right ring displayed the most potent cytotoxic activity against all tested cancer cell lines including multidrug resistant phenotype, which inhibits cancer cell growth with IC50 values ranging from 0.22 to 1.80μM. Furthermore, 49b significantly induced cell cycle arrest in G2/M phase and inhibited the polymerization of tubulin. Molecular docking analysis demonstrated the interaction of 49b at the colchicine binding site of tubulin. In experiments in vivo, 49b exerted potent anticancer activity in HepG2 human liver carcinoma in BALB/c nude mice. These results indicated these compounds are promising inhibitors of tubulin polymerization for the potential treatment of cancer.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Chunyan Li
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Lin He
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Kai Lei
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Fang Wang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Yuzi Pu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China; College of Chemistry of Sichuan University, Chengdu 610064, Sichuan, China
| | - Dong Cao
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Liang Ma
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Jinying Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Yun Sang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China; College of Chemistry of Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaolin Liang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Aihua Peng
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China.
| |
Collapse
|
38
|
Wang G, Peng F, Cao D, Yang Z, Han X, Liu J, Wu W, He L, Ma L, Chen J, Sang Y, Xiang M, Peng A, Wei Y, Chen L. Design, synthesis and biological evaluation of millepachine derivatives as a new class of tubulin polymerization inhibitors. Bioorg Med Chem 2013; 21:6844-54. [DOI: 10.1016/j.bmc.2013.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 11/16/2022]
|
39
|
An update on antitumor activity of naturally occurring chalcones. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:815621. [PMID: 23690855 PMCID: PMC3652162 DOI: 10.1155/2013/815621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Chalcones, which have characteristic 1,3-diaryl-2-propen-1-one skeleton, are mainly produced in roots, rhizomes, heartwood, leaves, and seeds of genera Angelica, Sophora, Glycyrrhiza, Humulus, Scutellaria, Parartocarpus, Ficus, Dorstenia, Morus, Artocarpus, and so forth. They have become of interest in the research and development of natural antitumor agents over the past decades due to their broad range of mechanisms including anti-initiation, induction of apoptosis, antiproliferation, antimetastasis, antiangiogenesis, and so forth. This review summarizes the studies on the antitumor activity of naturally occurring chalcones and their underlying mechanisms in detail during the past decades.
Collapse
|
40
|
Synthesis and biological evaluation of novel pyranochalcone derivatives as a new class of microtubule stabilizing agents. Eur J Med Chem 2013; 62:579-89. [DOI: 10.1016/j.ejmech.2013.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
|