1
|
Lin L, Li C, Chang CC, Du R, Ji J, Kuo LY, Chen KH. Phyllosphere mycobiome in two Lycopodiaceae plant species: unraveling potential HupA-producing fungi and fungal interactions. FRONTIERS IN PLANT SCIENCE 2025; 16:1426540. [PMID: 40161220 PMCID: PMC11949897 DOI: 10.3389/fpls.2025.1426540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Huperzine A (HupA), a lycopodium alkaloid with therapeutic potential for neurodegenerative diseases such as Alzheimer's disease, is found exclusively in some species of the Huperzioideae subfamily of Lycopodiaceae. Fungi associated with Huperzioideae species are potential contributors to HupA biosynthesis, offering promising prospects for HupA production. Despite its medical significance, limited knowledge of fungal diversity in lycophytes and the variability of HupA production in fungal strains have impeded the discovery and applications of HupA-producing fungi. Here, we investigated HupA concentrations and the mycobiome across various tissues of two Lycopodiaceae species, Huperzia asiatica (a HupA producer) and Diphasiastrum complanatum (a non-HupA producer). We aim to unveil the distribution of potential HupA-producing fungi in different plant tissues and elucidate fungal interactions within the mycobiome, aiming to uncover the role of HupA-producing fungi and pinpoint their potential fungal facilitators. Among the tissues, H. asiatica exhibited the highest HupA concentration in apical shoots (360.27 μg/g fresh weight) whereas D. complanatum showed no HupA presence in any tissue. We obtained 441 amplicon sequence variants (ASVs) from H. asiatica and 497 ASVs from D. complanatum. The fungal communities in bulbils and apical shoots of H. asiatica were low in diversity and dominated by Sordariomycetes, a fungal class harboring the majority of reported HupA-producing fungi. Integrating bioinformatics with published experimental reports, we identified 27 potential HupA-producing fungal ASVs, primarily in H. asiatica, with 12 ASVs identified as hubs in the fungal interaction network, underscoring their pivotal roles in mycobiome stability. Members of certain fungal genera, such as Penicillium, Trichoderma, Dioszegia, Exobasidium, Lycoperdon, and Cladosporium, exhibited strong connections with the potential HupA producers in H. asiatica's network rather than in D. complanatum's. This study advances our knowledge of fungal diversity in Lycopodiaceae and provides insights into the search for potential HupA-producing fungi and fungal facilitators. It highlights the importance of exploring young tissues and emphasizes the ecological interactions that may promote the fungi-mediated production of complex bioactive compounds, offering new directions for research in fungal ecology and secondary metabolite production.
Collapse
Affiliation(s)
- Liqun Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Ran Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Prabha S, Choudhury A, Islam A, Thakur SC, Hassan MI. Understanding of Alzheimer's disease pathophysiology for therapeutic implications of natural products as neuroprotective agents. Ageing Res Rev 2025; 105:102680. [PMID: 39922232 DOI: 10.1016/j.arr.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, affecting more than 24.3 million people worldwide in 2024. Sporadic AD (SAD) is more common and occurs in the geriatric population, while familial AD (FAD) is rare and appears before the age of 65 years. Due to progressive cholinergic neuronal loss and modulation in the PKC/MAPK pathway, β-secretase gets upregulated, leading to Aβ aggregation, which further activates tau kinases that form neurofibrillary tangles (NFT). Simultaneously, antioxidant enzymes are also upregulated, increasing oxidative stress (OS) and reactive species by impairing mitochondrial function, leading to DNA damage and cell death. This review discusses the classifications and components of several natural products (NPs) that target these signaling pathways for AD treatment. NPs, including alkaloids, polyphenols, flavonoids, polysaccharides, steroids, fatty acids, tannins, and polypeptides derived from plants, microbes, marine animals, venoms, insects, and mushrooms, are explored in detail. A synergistic combination of plant metabolites, together with prebiotics and probiotics has been shown to decrease Aβ aggregates by increasing the production of bioactive compounds. Toxins derived from venomous organisms have demonstrated effectiveness in modulating signaling pathways and reducing OS. Marine metabolites have also shown neuroprotective and anti-inflammatory properties. The cholera toxin B subunit and an Aβ15 fragment have been combined to create a possible oral AD vaccine, that showed enhancement of cognitive function in mice. Insect tea is also a reliable source of antioxidants. A functional edible mushroom snack bar showed an increment in cognitive markers. Future directions and therapeutic approaches for the treatment of AD can be improved by focusing more on NPs derived from these sources.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
3
|
Xie Q, Jia Y, Tao J, Bu T, Wang Q, Shen N, Zhang X, Xiao Y, Ye L, Chen Z, Huang H, Li Q, Tang Z. Chemical constituents and biological activities of endophytic fungi from Fagopyrum dibotrys. PeerJ 2024; 12:e18529. [PMID: 39575167 PMCID: PMC11580677 DOI: 10.7717/peerj.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Background Fagopyrum dibotrys is an important wild food and feed germplasm resource. It has high nutritional and medicinal value and is rich in natural products, including flavonoids, phenolic acids, coumarins, and alkaloids. Endophytic fungi in F. dibotrys have emerged as valuable sources of natural products. However, studies on the biological activity and chemical composition of these endophytic fungi remain limited. Methods In this paper, a new method to obtain natural active ingredients by fermentation of endophytic fungi from medicinal plants was proposed. Then the antioxidant and pathogenic activities of the endophytic fungi extracts were determined in vitro. In addition, secondary metabolites produced by endophytic fungi with medicinal activity were analyzed by high performance liquid chromatography-tandem mass spectrometry (LC-MS). Results Among the 95 endophytic fungal strains in F. dibotrys, four strains with high phenol yields were selected by reaction: Alternaria alstroemeriae (J2), Fusarium oxysporum (J15), Colletotrichum karsti (J74), and Colletotrichum boninense (J61). Compared with those of various extracts, the ethyl acetate fractions of A. alstroemeriae (J2), F. oxysporum (J15), and C. boninense (J61) exhibited superior antioxidant and antibacterial properties. The results indicated that the fungal extract was an excellent natural antioxidant and might be a potential antibacterial agent. The DPPH free radical clearance of A. alstroemeriae was 94.96 ± 0.004%. These findings indicated that A. alstroemeriae had strong antioxidant activity. In addition, the extract of A. alstroemeriae had good antibacterial activity against Escherichia coli and Staphylococcus aureus, with MICs of 0.5 and 0.05 mg/mL, respectively. The chemical constituents of the ethyl acetate extract from A. alstroemeriae were further analyzed by liquid chromatography-mass spectrometry (LC-MS). We noted that A. alstroemeriae can create a variety of medicinal substances that have high value in medicine, such as caffeic acid (884.75 ng/mL), 3-phenyllactic acid (240.72 ng/mL) and norlichexanthone (74.36 ng/mL). Discussion In summary, many valuable active substances and medicinal substances can be obtained through the study of endophytic fungi of F. dibotrys.
Collapse
Affiliation(s)
- Qiqi Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujie Jia
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiwen Tao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qing Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Nayu Shen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xinyu Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Cheng’du, Sichuan, China
| | - Zhao Chen
- Ya’an People’s Hospital, Ya’an People’s Hospital, Ya’an, Sichuan, China
| | - Huahai Huang
- Da’zhu Institute of Scientific and Technical Information, Unaffiliated, Da’zhu, Sichuan, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
4
|
Chen X, Zhang Y, Cao Z, Wang Y, Liao M, Guan Y, Zhu C, Wang W, Huang W, Li W, Xiao Y, Li Y, Yin J, Ding Y, Peng Q, Hu L. Huperzine A targets Apolipoprotein E: A potential therapeutic drug for diabetic nephropathy based on omics analysis. Pharmacol Res 2024; 208:107392. [PMID: 39233057 DOI: 10.1016/j.phrs.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
AIMS Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Xiangjun Chen
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310052, China; School of TCM, Hunan University of Chinese Medicine, China
| | - Ying Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yue Wang
- Hubei Normal University, Huangshi 435002, China
| | - Mengqiu Liao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yuelin Guan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Caifeng Zhu
- Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China
| | - Wenmin Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wunan Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wei Li
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Yayu Li
- Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital, Hangzhou, China
| | - Yuhan Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinghua Peng
- School of TCM, Hunan University of Chinese Medicine, China
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Liu G, Liu Y, Li Z, Ren Y, Liu B, Gao N, Cheng Y. Transcriptome analysis revealing the effect of Bupleurum scorzonerifolium Willd association with endophytic fungi CHS3 on the production of saikosaponin D. Heliyon 2024; 10:e33453. [PMID: 39015808 PMCID: PMC11250876 DOI: 10.1016/j.heliyon.2024.e33453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Saikosaponin D (SSd) is a naturally active product with strong pharmacological activity found in Bupleurum scorzonerifolium Willd. Studies have shown that endophytic fungi have great potential as sources of natural medicines. Fusarium acuminatum (CHS3), an SSd-producing endophytic fungus, was isolated from B. scorzonerifolium. To elucidate the effect of host plants on the production of SSd in CHS3, CHS3 was co-cultured with suspension cells of B. scorzonerifolium and SSd was detected using high-performance liquid chromatography (HPLC). Transcriptome sequencing (RNA-Seq) of CHS3 before and after co-culture was performed using an Illumina HiSeq 2500 platform. The results indicated that the content of SSd synthesised by CHS3 increased after co-culture with suspension cells of B. scorzonerifolium. Transcriptome analysis of CHS3 with differentially expressed genes (DEGs) showed that 1202 and 1049 genes were upregulated and downregulated, respectively, after co-culture. Thirty genes associated with SSd synthesis and 11 genes related to terpene backbone biosynthesis were annotated to the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Combined with transcriptome data, it was speculated that the mevalonate (MVA) pathway is a possible pathway for SSd synthesis in CHS3, and the expression of key enzyme genes (HMGR, HMGCS, GGPS1, MVK, FDFT1, FNTB) was validated by qRT-PCR. In conclusion, the endophytic fungus CHS3 can form an interactive relationship with its host, thereby promoting SSd biosynthesis and accumulation by upregulating the expression of key enzyme genes in the biosynthesis pathway.
Collapse
Affiliation(s)
- Guangjie Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China
| | - Yuanzhen Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China
| | - Zhongmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China
| | - Yubin Ren
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China
| | - Bo Liu
- Heilongjiang Agricultural Reclamation Vocational College, China
| | - Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China
| | - Yupeng Cheng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China
| |
Collapse
|
6
|
Li X, Lin Y, Qin Y, Han G, Wang H, Yan Z. Beneficial endophytic fungi improve the yield and quality of Salvia miltiorrhiza by performing different ecological functions. PeerJ 2024; 12:e16959. [PMID: 38406278 PMCID: PMC10894594 DOI: 10.7717/peerj.16959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background Endophytic fungi can enhance the growth and synthesis of secondary metabolites in medicinal plants. Salvia miltiorrhiza Bunge is frequently employed for treating cardiovascular and cerebrovascular ailments, with the primary bioactive components being salvianolic acid and tanshinone. However, their levels in cultivated S. miltiorrhiza are inferior to that of the wild herbs, so the production of high-quality medicinal herbs is sharply declining. Consequently, the utilization of beneficial endophytic fungi to improve the yield and quality of S. miltiorrhiza holds great significance for the cultivation of medicinal plants. Methods In this study, nine non-pathogenic, endophytic fungal strains were introduced into sterile S. miltiorrhiza seedlings and cultivated both in vitro and in situ (the greenhouse). The effects of these strains on the growth indices, C and N metabolism, antioxidant activity, photosynthesis, and content of bioactive ingredients in S. miltiorrhiza were then evaluated. Results The results showed that the different genera, species, or strains of endophytic fungi regulated the growth and metabolism of S. miltiorrhiza in unique ways. These endophytic fungi primarily exerted their growth-promoting effects by increasing the net photosynthetic rate, intercellular CO2 concentration, and the activities of sucrose synthase, sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. They also enhanced the adaptability and resistance to environmental stresses by improving the synthesis of osmoregulatory compounds and the activity of antioxidant enzymes. However, their regulatory effects on the growth and development of S. miltiorrhiza were affected by environmental changes. Moreover, the strains that significantly promoted the synthesis and accumulation of phenolic acids inhibited the accumulation of tanshinones components, and vice versa. The endophytic fungal strains Penicillium meloforme DS8, Berkeleyomyces basicola DS10, and Acremonium sclerotigenum DS12 enhanced the bioaccumulation of tanshinones. Fusarium solani DS16 elevated the rosmarinic acid content and yields in S. miltiorrhiza. The strain Penicillium javanicum DS5 improved the contents of dihydrotanshinone, salvianolic acid B, and rosmarinic acid. The strains P. meloforme DS8 and B. basicola DS10 improved resistance. Conclusion Various endophytic fungi affected the quality and yield of S. miltiorrhiza by regulating different physiological and metabolic pathways. This study also provides a novel and effective method to maximize the effects of beneficial endophytic fungi by selecting specific strains to design microbial communities based on the different ecological functions of endophytic fungi under varying environments and for specific production goals.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yali Lin
- Patent Examination Cooperation Sichuan Center of the Patent Office, CNIPA, Chengdu, Sichaun, China
| | - Yong Qin
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guiqi Han
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hai Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Jiang Y, Wang J, Zhang H, Tian X, Liang Z, Xu X, Bao J, Chen B. Biological Activity and Sterilization Mechanism of Marine Fungi-derived Aromatic Butenolide Asperbutenolide A Against Staphylococcus aureus. Chem Biodivers 2024; 21:e202301826. [PMID: 38155523 DOI: 10.1002/cbdv.202301826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Marine fungi represent a huge untapped resource of natural products. The bio-activity of a new asperbutenolide A from marine fungus Aspergillus terreus was not well known. In the present study, the minimum inhibitory concentration (MIC) and RNA-Sequencing were used to analyze the bio-activity and sterilization mechanism of asperbutenolide A against clinical pathogenic microbes. The results showed that the MICs of asperbutenolide A against methicillin-resistant Staphylococcus aureus (MRSA) were 4.0-8.0 μg/mL. The asperbutenolide A present poor bio-activity against with candida. The sterilization mechanism of asperbutenolide A against MRSA showed that there were 1426 differentially-expressed genes (DEGs) between the groups of MRSA treated with asperbutenolide A and negative control. Gene Ontology (GO) classification analysis indicated that the DEGs were mainly involved in cellular process, metabolic process, cellular anatomical entity, binding, catalytic activity, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification analysis showed that these DEGs were mainly enriched in amino acid metabolism, carbohydrate metabolism, membrane transport, etc. Moreover, qRT-PCR showed similar trends in the expressions of argF, ureA, glmS and opuCA with the RNA-Sequencing. These results indicated that asperbutenolide A was with ideal bio-activity against with MRSA and could be as a new antibacterial agent.
Collapse
Affiliation(s)
- Yufeng Jiang
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, China
- Medical Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining high-throughput gene sequencing, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining Prenatal Monitoring and Genetic Disease Research, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jiule Wang
- Central Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Jining Key Laboratory for the Intelligent Diagnosis of Emerging Infectious Diseases, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xuelu Tian
- Department of Laboratory, Jining Dermatosis Prevention and Treatment Hospital, Jining, Shandong, China
| | - Zhiqiang Liang
- Medical Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining high-throughput gene sequencing, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining Prenatal Monitoring and Genetic Disease Research, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Xinli Xu
- Medical Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining high-throughput gene sequencing, Jining No.1 People's Hospital, Jining, Shandong, China
- Key Laboratory of Jining Prenatal Monitoring and Genetic Disease Research, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Biao Chen
- Central Laboratory, Jining No.1 People's Hospital, Jining, Shandong, China
- Jining Key Laboratory for the Intelligent Diagnosis of Emerging Infectious Diseases, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
8
|
Li W, Zhu HH, Shen X, Tan JL, Tang Q, Ling ZP, Zhao HY, Lin Q, Sun H, Zhang HP, Li YL, Wang GC, Zhang YB. Lycopodium Alkaloids from Huperzia serrata and Their Anti-acetylcholinesterase Activities. Chem Biodivers 2023; 20:e202301024. [PMID: 37507844 DOI: 10.1002/cbdv.202301024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
One new fawcettimine-type alkaloid (1), one new miscellaneous-type alkaloid (2), four new lycodine-type alkaloids (3-6), and eight known ones (7-14) were isolated from the whole plants of Huperzia serrata. Their structures and absolute configurations were elucidated based on spectroscopic data, X-ray diffraction, ECD calculation and Mosher's method. Compound 1 was a rare C18 N2 -type Lycopodium alkaloid, possessing serratinine skeleton with an amide side chain in C-5. The absolute configuration of the 18-OH of compounds 4-6 were first determined by Mosher's method. Moreover, compounds 1-14 were assayed anti-acetylcholinesterase effect in vitro, and compound 7 showed significant anti-acetylcholinesterase activity with an IC50 value of 16.18±1.64 μM.
Collapse
Affiliation(s)
- Wen Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hui-Hui Zhu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xi Shen
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Jin-Lin Tan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhi-Peng Ling
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hai-Yue Zhao
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Qiang Lin
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hui Sun
- Hunan Institute for Drug Control, Changsha, Hunan, 410001, China
| | - Hai-Peng Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
9
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
10
|
Li L, Liu C, Wen W, Li Q, Pan T, Li Z, Qian G, He Y, Xu D. Dendrobine biosynthesis in Dendrobium nobile in four different habitats is affected by the variations in the endophytic fungal community. Front Microbiol 2022; 13:981070. [PMID: 36177465 PMCID: PMC9513314 DOI: 10.3389/fmicb.2022.981070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Dendrobium nobile, an epiphytic plant, is a traditional medicinal herb with abundant endophytes. It is unclear whether the variation in the diversity and abundance of endophytes could stimulate the biosynthesis of medicinal compounds in the plant. In this study, we collected fresh stems of D. nobile from four habitats for investigating the fungal community structure, dendrobine content, and environment factors and their correlations. The results indicated no significant difference in endophytic fungal diversity among the habitats; however, different dominant or special endophytic genera were observed in the hosts from different habitats. The altitude was observed to be positively related to the dendrobine content, as the stems collected from the altitude of 692 m exhibited the highest level of dendrobine. Furthermore, the relative abundance of Toxicocladosporium was found to be positively correlated with the altitude and dendrobine content. The epiphytic matrix exhibited a significant negative correlation with the relative abundance of the endophytic fungus Gibberella but did not exhibit any significant correlation with the dendrobine content. The results indicated that the abundance of endophytes in D. nobile was affected by the altitude and epiphytic matrix and that high Toxicocladosporium abundance and high altitude were conducive to dendrobine production.
Collapse
Affiliation(s)
- Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaobo Liu
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei’e Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingqing Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tiantian Pan
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Gang Qian
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Gang Qian,
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Engineering Research Center of Key Technology Development for Guizhou Provincial Dendrobium nobile Industry, Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Gang Qian,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
- Engineering Research Center of Key Technology Development for Guizhou Provincial Dendrobium nobile Industry, Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Gang Qian,
| |
Collapse
|
11
|
Production and Functionalities of Specialized Metabolites from Different Organic Sources. Metabolites 2022; 12:metabo12060534. [PMID: 35736468 PMCID: PMC9228302 DOI: 10.3390/metabo12060534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal plants are rich sources of specialized metabolites that are of great importance to plants, animals, and humans. The usefulness of active biological compounds cuts across different fields, such as agriculture, forestry, food processing and packaging, biofuels, biocatalysts, and environmental remediation. In recent years, research has shifted toward the use of microbes, especially endophytes (bacteria, fungi, and viruses), and the combination of these organisms with other alternatives to optimize the production and regulation of these compounds. This review reinforces the production of specialized metabolites, especially by plants and microorganisms, and the effectiveness of microorganisms in increasing the production/concentration of these compounds in plants. The study also highlights the functions of these compounds in plants and their applications in various fields. New research areas that should be explored to produce and regulate these compounds, especially in plants and microbes, have been identified. Methods involving molecular studies are yet to be fully explored, and next-generation sequencing possesses an interesting and reliable approach.
Collapse
|
12
|
Xiao Y, Liang W, Liu D, Zhang Z, Chang J, Zhu D. Isolation and acetylcholinesterase inhibitory activity of asterric acid derivatives produced by Talaromyces aurantiacus FL15, an endophytic fungus from Huperzia serrata. 3 Biotech 2022; 12:60. [PMID: 35186657 PMCID: PMC8817963 DOI: 10.1007/s13205-022-03125-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/23/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the fourth leading cause of death after cardiovascular disease, tumors, and stroke. Acetylcholinesterase (AChE) inhibitors, which are based on cholinergic damage, remain the mainstream drugs to alleviate AD-related symptoms. This study aimed to explore novel AChE inhibitors produced by the endophytic fungus FL15 from Huperzia serrata. The fungus was identified as Talaromyces aurantiacus FL15 according to its morphological characteristics and ITS, 18S rDNA, and 28S rDNA sequence analysis. Subsequently, seven natural metabolites were isolated from strain FL15, and identified as asterric acid (1), methyl asterrate (2), ethyl asterrate (3), emodin (4), physcion (5), chrysophanol (6), and sulochrin (7). Compounds 1-3, which possess a diphenyl ether structure, exhibited highly selective and moderate AChE inhibitory activities with IC50 values of 66.7, 23.3, and 20.1 μM, respectively. The molecular docking analysis showed that compounds 1-3 interacted with the active catalytic site and peripheral anionic site of AChE, and the esterification substitution groups at position 8 of asterric acid may contribute to its bioactivity. The asterric acid derivatives showed highly selective and moderate AChE inhibitory activities, probably via interaction with the peripheral anionic site and catalytic site of AChE. To the best of our knowledge, this study was the first report of the AChE inhibitory activity of asterric acid derivatives, which opens new perspectives for the design of more effective derivatives that could serve as a drug carrier for new chemotherapeutic agents to treat AD. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03125-2.
Collapse
Affiliation(s)
- Yiwen Xiao
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 Jiangxi People’s Republic of China
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Weizhong Liang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - De Liu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 Jiangxi People’s Republic of China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 Jiangxi People’s Republic of China
| | - Jun Chang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022 Jiangxi People’s Republic of China
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| |
Collapse
|
13
|
Polyketide Derivatives from the Endophytic Fungus Phaeosphaeria sp. LF5 Isolated from Huperzia serrata and Their Acetylcholinesterase Inhibitory Activities. J Fungi (Basel) 2022; 8:jof8030232. [PMID: 35330234 PMCID: PMC8955197 DOI: 10.3390/jof8030232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
The secondary metabolites of Phaeosphaeria sp. LF5, an endophytic fungus with acetylcholinesterase (AChE) inhibitory activity isolated from Huperzia serrata, were investigated. Their structures and absolute configurations were elucidated by means of extensive spectroscopic data, including one- and two-dimensional nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analyses, and calculations of electronic circular dichroism (ECD). A chemical study on the solid-cultured fungus LF5 resulted in 11 polyketide derivatives, which included three previously undescribed derivatives: aspilactonol I (4), 2-(1-hydroxyethyl)-6-methylisonicotinic acid (7), and 6,8-dihydroxy-3-(1′R, 2′R-dihydroxypropyl)-isocoumarin (9), and two new natural-source-derived aspilactonols (G, H) (2, 3). Moreover, the absolute configuration of de-O-methyldiaporthin (11) was identified for the first time. Compounds 4 and 11 exhibited inhibitory activity against AChE with half maximal inhibitory concentration (IC50) values of 6.26 and 21.18 µM, respectively. Aspilactonol I (4) is the first reported furanone AChE inhibitor (AChEI). The results indicated that Phaeosphaeria is a good source of polyketide derivatives. This study identified intriguing lead compounds for further research and development of new AChEIs.
Collapse
|